

日本物理学会 第77回年次大会(2022年) 15pB19-4

軟らかな粒子の 慣性サスペンションのレオロジー

Satoshi Takada (TUAT) Kazuhiro Hara (TUAT) Hisao Hayakawa (YITP, Kyoto Univ.)

国立大学法人 東京農工大学

ystems

機械システム工学専攻・学科

Mechanical Systems Engineering

Introduction

2022/3/15

2

• Viscosity $\eta(\varphi) \equiv \frac{\sigma(\varphi)}{\dot{\gamma}}$: characterizes noneq. transport Dilute case (Einstein, 1906): $\frac{\eta_s(\varphi)}{\eta_0} = 1 + \frac{5}{2}\varphi$ ($\varphi \le 0.03$)

Dense case (near jamming): $\frac{\eta_s(\varphi)}{\eta_0} = \left(1 - \frac{\varphi}{\varphi_m}\right)^{-2}$ (empirical)

confineme

log ý

- Shear rate dependent viscosity
 - Shear thickening (thinning): Viscosity becomes large (small) as γ increases.

 "Inertial effect" is often ignored. (overdamped) If this is not ignored, system is called as "inertial suspensions" (a model of aerosols or colloid)

viscous

(laminar

Solvent viscosity: η_0 Shear rate: $\dot{\gamma}$

Previous studies of inertial suspension

System: frictionless, Stokes' drag

3

- Dense suspension (soft-core particles)
 Kawasaki, Ikeda, & Berthier, EPL (2014)
 - Thinning \rightarrow thickening \rightarrow thinning for $\varphi \lesssim 0.60$
 - > No thickening for $\varphi \gtrsim 0.63$
 - X Only contact contribution

 Dilute to moderately dense inertial suspension (hard-core)
 Hayakawa & Takada, PTEP (2019), Takada, Hayakawa, Santos, & Garzó, PRE (2020)

DST

CST

- DST-like behavior for dilute systems (≅ ignited-quenched transition of the kinetic temp)
- Change to CST-like behavior at $\varphi \simeq 0.0176$
- Agreement for $\varphi \lesssim 0.5$
- Dilute inertial suspension (soft-core) Sugimoto & Takada, JPSJ (2020)
 - DST-like behavior can occur twice. 2022/3/15

 Dilute inertial suspension (soft-core), Second DST-like behavior
 Softness of particles
 "Does this behavior survive even in denser situations?"

		Hard-core	Soft-core
Theory & Sim.	Dilute	Hayakawa & Takada PTEP (2019)	Sugimoto & Takada JPSJ (2020)
	Moderately dense	Hayakawa, Takada, & Garzó PRE (2017), Takada, Hayakawa, Santos, & Garzó PRE (2020)	This study
Sim.	Dense		Kawasaki, Ikeda, & Berthier EPL (2014)

2022/3/15

4

Our question: Is it possible to observe DST-like behaviors for simple systems, esp, frictionless soft-core systems?

Approach:

- Langevin simulation
- (Kinetic theory of inertial suspension)

We consider two cases for hydrodynamic interaction:

6

 $d_{\rm H}$

1. Scalar resistance model: $F_i^{\rm H} = -\zeta p_i$

Only Stokes' drag ($\zeta = 3\pi d\eta_0/m$) Theoretical treatment is available.

Enskog kinetic equation for the inertial suspension

2. Stokes' + lubrication model: $F_i^{\rm H} = -\sum_j \overleftarrow{\zeta_{ij}} p_j$

 $\overrightarrow{\zeta_{ij}}$ has nondiagonal components Introduction of roughness parameter (dimple) d: collision diameter, $d_{\rm H}$: lubrication diameter $\delta \equiv \frac{d-d_{\rm H}}{d_{\rm H}} \sim 1 \sim 10\%$: Magnitude of dimple ($\fbox{}$ Mari et al., J. Rheol. 58, 1693 (2014); Pradipto & Hayakawa, Soft Matter 16, 945 (2020), etc.)

$$\zeta_{ij,\alpha\beta} = \begin{cases} \frac{3\pi d\eta_0}{m} \delta_{\alpha\beta} + \sum_{k\neq i} \frac{1}{m} A^{(1,1)}_{ik,\alpha\beta} \Theta(r_{\rm c} - r_{ik}) \ (i=j) \\ -\frac{1}{m} A^{(1,1)}_{ij,\alpha\beta} \Theta(r_{\rm c} - r_{ij}) \ (i\neq j) \end{cases}$$

 $A_{ij,\alpha\beta}^{(1,1)}$: function of $\hat{k} \equiv r_{ij}/|r_{ij}|$ $(r_{ij} \equiv r_j - r_i)$ (\Im Kim & Karrila, "Microhydrodynamics") $r_c \equiv d_H + \lambda$: cutoff length ($\lambda = 0.25d$)

(Dimensionless) control parameters:

1 Packing fraction: φ 2 Shear rate: $\dot{\gamma}^* \equiv \dot{\gamma}/\zeta$

(3) Particle softness: $\varepsilon^* \equiv \frac{\varepsilon}{m\sigma^2\zeta^2}$ (4) Env. temp.: $\xi_{env} \equiv \sqrt{\frac{T_{env}}{m}\frac{1}{\zeta\sigma}}$

(5) Magnitude of dimple: δ (only for 2nd case)

2022/3/15

Results 1: Scalar model

Parameters: $\varphi = 0.10, 0.20, 0.30$ $\varepsilon^* = 10^4, \xi_{env} = 1.0$

DST-like behavior survives

- even for finite density. (⇔ CST-like for hard-core system)
- Shear thinning in high shear regime_n*
- Kinetic theory reproduces the sim. results.

Results 2: Stokes' + Iubrication model

• Scaled viscosity $\tilde{\eta} \equiv \eta/\eta_1$ against the Peclet number $Pe \equiv \frac{3\pi\eta_0 d^3}{4\pi}\dot{\gamma}$ $4T_{env}$ $\eta \equiv P_{xy}/\dot{\gamma}, \eta_1 = \eta_0 \left(1 + \frac{5}{2}\varphi + 4\varphi^2 + 42\varphi^3\right)$: Parameters: $\varphi = 0.30$ η_1 : Empirical expression of $\varepsilon^* = 10^4, \xi_{env} = 1.0$ the apparent viscosity in the low shear limit (a) 10^3 theory Even for small δ (small dimple), 0.250 10^{2} **DST** occurs at $Pe \simeq 10$. 0.100 0.050 $\tilde{\eta}$ \Leftrightarrow DST occurs at Pe $\simeq 20$ 0.020 10^{1} for frictional Brownian suspension Aari et al., PNAS 112, 15326 (2015) For larger δ , tends to the previous model ^{10°} 10^{0} 10¹ 10^{-1} 10^{2} Pe

9

Discussion: Estimation of quantities

Aerosol

10

 $d \sim 10^{-5} \text{ m}, \rho \sim 1 \text{ g/cm}^3, E \sim 10 \text{ GPa} \Rightarrow m \sim 10^{-12} \text{ kg}$ Viscosity of air: $\eta_0 \sim 10^{-5} \text{ Pa} \cdot \text{s}$ DST takes place at $\dot{\gamma}_c \sim 10^3 \text{ 1/s} \Rightarrow$ shear speed 10 m/s if L = 1 cm

Colloid

- $d \sim 10^{-6} \text{ m}, \rho \sim 1 \text{ g/cm}^3, E \sim 1 \text{ GPa} \Rightarrow m \sim 10^{-14} \text{ kg}$ Viscosity of water: $\eta_0 \sim 10^{-3} \text{ Pa} \cdot \text{s}$ DST takes place at $\dot{\gamma}_c \sim 10^4 \text{ 1/s} \Rightarrow$ shear speed 10^4 m/s if L = 1 cm
- ► Kinetic temperature becomes 10² times larger. Is it possible to achieve this?
 ⇒ This will open for all researchers.

2022/3/15

Summary

11

Softness induced DST-like behaviors for frictionless system

- <u>Scalar model</u>
 DST-like behaviors
 Good agreement between sim. and theory.
- Lubrication model
 DST-like behaviors survive even for small δ

Future work

- Long range interaction (inclusion of Lotne-Prager tensor)
- Verifiability in experiments
 2022/3/15

