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Rheology of granular materials

Dense granular materials have rigidity.
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Frictionless grains

Strain amplitude : γ0

Non-linear elasticity

MO and H. Hayakawa, 90, 042202 (2014)

Strain

Frictionless grains exhibit non-linear response as  increases.γ0

St
or
ag

e 
m
od

ul
us

 : 
G

′ 

J. Boschan, et. al.,(2016), S. Dagois-Bohy, et. al., (2017),  
T. Kawasaki and K. Miyazaki, (2020), MO and H. Hayakawa, arXiv:2101.07473

Shear modulus: G Packing fraction: ϕ

 for G > 0 ϕ > ϕJ

Jamming point: ϕJ
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Nonlinear rheology of frictional grains
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Strain amplitude : γ0Strain amplitude : γ0
MO and H. Hayakawa, Eur. Phys. J. E 44, 106 (2021)MO and H. Hayakawa, Phys. Rev. E 95, 062902 (2017)

•  decreases as  increases. 

• The critical strain depends on . 

•  exhibits two step relaxation.

G′ γ0

μ

G′ 

μ: Friction coefficient The number of grains : N ≥ 1000

Small μ Small μ

•  becomes finite as  increases. 

• The critical strain depends on . 

•  has a peak for small .

G′ ′ γ0

μ

G′ ′ μ

Theoretical analysis is difficult Disorder, non-affine motion, friction, etc.
3



Approach: simple effective model
Example: Mean field theory for Ising model

Gas-liquid transitionElastic response of amorphous solid

Feng, Thorpe, and Garboczi, Phys. Rev. B 31, 276 (1995) Lennard-Jones, Devonshire, Proc. R. Soc. Lond A 63, 53 (1937)

Electric band structure for disordered solid

Yonezawa, Morigaki, Prog. Theor. Supple. 53, 1 (1973)

Effective medium theory Cell model

Coherent potential approximation
Rheology of frictional grains under shear 

?

Random spring network Two nodes with effective spring Many molecules One molecule in an effective media

Disordered alloy Homogeneous effective medium

Many grains
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3 particle model
3 particle model:

Tangential friction:

Ft � µFn

Ft � µFn
Stick Slip

δ

kt: (Effective) tangential elastic constant 
|Ft | = ktδ, Ft < μFn

 : Normal repulsive force 
 : Tangential friction

Fn

Ft

：Friction coefficientμ
Coulomb’s law Ft  µFn

Particle interaction

The type of the force is 
the same as in DEM.

Tangential displacement: δ

Many particle system: 
(DEM simulation)

r0 = ( 3γ(t)l/4, 3l/4)

r±1 = (±l/2 − 3γ(t)l/4, − 3l/4)

Shear strain: γ(t) = γ0 sin(ωt)

l = d(1 − ϵ)：Initial distance
ϵ：compressive strain ∝ ϕ − ϕJ

γ(t)

r−1 r1

r0

γ0: Amplitude, ω: Frequencyγ(t)

ℓ
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Shear modulus in 3 particle model
3 particle model:Many particle system: 

(DEM simulation)

G′ =
ω
π ∫

2π/ω

0
dθ

σ(t)sin(ωt)
γ0

G′ ′ =
ω
π ∫

2π/ω

0
dθ

σ(t)cos(ωt)
γ0

Storage modulus Loss modulus

Shear stress: σ(t), Pressure: PInteraction force: Fij

r0 = ( 3γ(t)l/4, 3l/4)

l = d(1 − ϵ)：Initial distance
ϵ：compressive strain ∝ ϕ − ϕJ

γ(t)

r−1 r1

r0

γ0: Amplitude, ω: Frequencyγ(t)

ℓ
Shear strain: γ(t) = γ0 sin(ωt)

r±1 = (±l/2 − 3γ(t)l/4, − 3l/4)
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 and  in 3 particle modelG′ G′ ′ 

Loss modulus
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Strain amplitude : γ0

Storage modulus
3 particle model qualitatively reproduces results in many particle system.

ϵ = 0.001

Small μ

•  decreases as  increases. 
• The critical strain depends on . 
•  exhibits two step relaxation.

G′ γ0

μ
G′ 
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Strain amplitude : γ0

Small μ

•  becomes finite as  increases. 
• The critical strain depends on . 
•  has a peak for small .

G′ ′ γ0

μ
G′ ′ μ

ϵ = 0.001

Many particle system: 
(DEM simulation)

Many particle system: 
(DEM simulation)
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Origin of nonlinear response
Decrease of  and finite  result from the transition in tangential friction.G′ G′ ′ 

Tangential friction Critical strain for slip

Displacement for slip：δc = μFn /kt

Pressure：P ∼ Fn /d

|Ft| = kt�, Ft < µFn
Strain for slip：γc ∼ δc/d ∼ μP/kt

Ft � µFn

Ft � µFn
Stick Slip

δ
Normal force: Fn, Diameter of grain: d

kt: Tangential elastic constant

Tangential displacement: δ
γc =

9
32

μP
kt

Analytical solution:
Assumption: μ ≪ 1

Dashed lines:  for each γc μ
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Strain amplitude : γ0

 decreases above . 
 becomes finite above .

G′ γc

G′ ′ γc

Origin of nonlinear response : 
Slip in tangential friction.
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Theoretical explanation for  dependenceγ0

G′ =
ω
π ∫

2π/ω

0
dθ

σ(t)sin(ωt)
γ0

≃ [Maximum of σ
γ0
]

G′ ′ =
ω
π ∫

2π/ω

0
dθ

σ(t)cos(ωt)
γ0

= [Area of σ
γ0

vs
γ
γ0
]/π

Tangential friction:

|Ft| = kt�, Ft < µFn

Ft � µFn

�

Ft � µFn
Stick Slip

kt: Tangential elastic constant
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Strain : γ × 104
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tr
es
s:
 σ

/γ
0

Normalized strain : γ/γ0

Analytical solution:
Assumption: μ ≪ 1

Stick (Frictional)

Slip (Frictionless)

There is a peak in G′ ′ .

 decreases as  increases.G′ γ0

Decreasing γ0
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Prediction by 3 particle model: scaling law
Analytical solution of 3 particle model:

kt: Tangential elastic constant

P: Pressure

G′ (γ0, μ, ϕ) = G′ M(μ, ϕ) ℱ1 ( ktγ0

μP(μ, ϕ) )

Assumption: μ ≪ 1
μ: Friction coefficient

G′ ′ (γ0, μ, ϕ) = G′ ′ M(μ, ϕ) ℱ2 ( ktγ0

μP(μ, ϕ) )

Critical strain: γc =
9
32

μP
kt

Prediction: Scaling laws for  and G′ G′ ′ 

∼ γ0/γc

ℱ1(x), ℱ2(x): Scaling functions
G′ ′ M(μ, ϕ): Maximum value of G′ ′ 

Many particle system: 
(DEM simulation)

G
′ /G

′ M

G
′ ′ /

G
′ ′ M

ktγ0/(μP) ktγ0/(μP)

Lines: 3 particle model

Scaling laws are 
satisfied in DEM.

 is used as a fitting parameter.kt

G′ M(μ, ϕ): Maximum value of G′ 
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Summary
• Topic :  Non-linear rheology of frictional granular materials. 

• We have proposed 3 particle model. 

• 3 particle model qualitatively reproduces  and  in DEM simulations. 

• Non-linear response results from the transition in the tangential friction. 

• We derive scaling laws, which are satisfied in DEM simulations. 

• Problem: Disorder and non-affine motions are neglected. 

• Future work: Self-consistent determination of a fitting parameter kt.

G′ G′ ′ 

G′ = G′ M F1 ( ktγ0

μP(μ, ϕ) )
G′ ′ = G′ ′ M ℱ2 ( ktγ0

μP(μ, ϕ) )

Scaling laws:
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