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Granular Materials
2

Macroscopic matters (𝜇m~km)

(Quantum effects are negligible.)

Examples:

sand, toner particles, coffee, volcanic ash,

PM2.5, Saturn’s ring…

Behavior is different from 

usual gas, liquid, or solid
Example: Brazil nut effect

Larger particles move up.
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Flow of granular materials

Surface flow of sand mountains

Only particles near the surface 

can flow (liquid-like).

Other particles do not move (solid-like).

Coexistence of both states in one system.

◼ Existence of the jamming density 𝜑J

• 𝜑 < 𝜑J: liquid-like response

• 𝜑 > 𝜑J: solid-like response
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Solid-like

Liquid-like

Slope flow

T. Hatano, JPSJ 77, 123002 (2008)
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Viscosity

 Viscosity 𝜂 𝜑 ≡
𝜎 𝜑

ሶ𝛾
: characterizes noneq. transport

Example: Suspension

Dilute case (Einstein, 1906): 
𝜂s 𝜑

𝜂0
= 1 +

5

2
𝜑 (𝜑 ≤ 0.03)

Dense case (near jamming): 
𝜂s 𝜑

𝜂0
= 1 −

𝜑

𝜑m

−2
(empirical)
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 Shear rate dependent viscosity

 Shear thickening (thinning):
Viscosity becomes large (small) 
as ሶ𝛾 increases.

Example: granular gas
𝜂 ∝ ሶ𝛾 (Bagnold scaling)

Solvent viscosity: 𝜂0
Shear rate: ሶ𝛾



Shear thickening
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• Discontinuous shear thickening (DST): 
viscosity discontinuously increases.

⇒ DST is studied in many contexts and setups.

DST for dense systems (simulations)

• Mutual friction is important.
M. Otsuki & H. Hayakawa, Phys. Rev. E 83, 051301 (2011)
R. Seto, et al., Phys. Rev. Lett. 111, 218301 (2013)

DST for colloidal systems (experiments)

• Normal stress difference 
is also important.
C. D. Cwalina & N.J. Wagner, J. Rheol. 58, 949 (2014)

R. Mari, et al., PNAS 112,15326 (2015)

“Inertial effect” is often ignored for suspension. (overdamped)
If this is not ignored, system is called as 
“inertial suspensions” (a model of aerosols or colloid)
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Previous studies of inertial suspension
6
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System: frictionless, Stokes’ drag

 Dense suspension (soft-core particles)
👉 Kawasaki, Ikeda, & Berthier, EPL (2014)

➢ Thinning → thickening → thinning for 𝜑 ≲ 0.60

➢ No thickening for 𝜑 ≳ 0.63

※ Only contact contribution

 Rheology of dilute gas-solid suspensions
without thermal noise
👉 Tsao and Koch, JFM 296, 211 (1995) 

Quenched-Ingnited transition
DST-like transition for temperature
but not for viscosity

Ignited state

Quenched state



Our previous works

Kinetic theoretical approach 

considering the thermal noise

(Hard-core system)

 Boltzmann-Enskog theory well describes 

monodisperse systems up to 𝜑 ≤ 0.50.

 DST-like transition in the dilute system
👉 H. Hayakawa and S. Takada, PTEP 2019, 083J01 (2019)

 DST-like to CST-like as the density ↗
👉 H. Hayakawa, S. Takada, and V. Garzó, PRE 96, 042903 (2017)

Mpemba effect in the relaxation process
👉 S. Takada, H. Hayakawa, and A. Santos, 

Phys. Rev. E 103, 032901 (2021)

7

DST = discontinuous shear thickening
CST = continuous shear thickening

𝜑 = 0.40
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Motivation

We would like to know

Impact of softness of particles on the rheology

2022/3/16
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Hard-core Soft-core

Dilute

Moderately 

dense

Hayakawa & 

Takada

PTEP (2019)

Hayakawa, Takada, 
& Garzó

PRE (2017),
Takada, Hayakawa, 

Santos, & Garzó
PRE (2020)

Our study

Kawasaki, Ikeda,

& Berthier

EPL (2014)
Dense

Th
e

o
ry

 &
 S

im
.

S
im

.

Suspension Granular system

Soft-core

Our study

Our theoretical tool:

Kinetic theory

Why kinetic theory?



Kinetic theory of granular gases

Ogawa; Savage and Jeffrey, 1978~1981

Beginning of application of 

inelastic Boltzmann equation

to granular system

 Brey et al., 1998

Application of Chapman-Enskog method

to inelastic Boltzmann equation

Transport coefficients for dilute system

Garzó & Dufty, 1999

Extension to finite density (Enskog equation)

9

Kinetic theory is a powerful tool 

to treat the system for 𝜙 < 0.5

S. Chialvo and S. Sundaresan, 
Phys. Fluid. 25, 0706503 (2013)
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Model and setup (Suspension)

 System = Particle + Solvent

 Particle: 

monodisperse (mass 𝑚, diameter 𝑑)

2022/3/16
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𝑑𝒓𝑖
𝑑𝑡

=
𝒑𝑖
𝑚
+ ሶ𝛾𝑦𝑖 ො𝒆𝑥

𝑑𝒑𝑖
𝑑𝑡

=෍

𝑗≠𝑖

𝑭𝑖𝑗
(el)

+ 𝑭𝑖
H − ሶ𝛾𝑝𝑖,𝑦 ො𝒆𝑥 + 𝝃𝑖(𝑡)

Shear (shear rate: ሶ𝛾)
Interparticle interaction = harmonic potential

𝑭𝑖𝑗
(el)

= −
𝜕𝑈(𝑟𝑖𝑗)

𝜕𝒓𝑖
, 𝑈 𝑟𝑖𝑗 =

𝜀

2
1 −

𝑟𝑖𝑗

𝑑

2

Θ 1 −
𝑟𝑖𝑗

𝑑

Noise term
(satisfies fluctuation-

dissipation theorem)
Temperature 𝑇env

Hydrodynamic interaction

𝑭𝑖
H = −𝜁𝒑𝑖 (Stokes’ drag, 𝜁 = 3𝜋𝑑𝜂0/𝑚)



Langevin model for suspensions

Langevin equation: 
𝑑𝒑𝑖

𝑑𝑡
= σ𝑗 𝑭𝑖𝑗 − 𝜁𝒑𝑖 +𝑚𝝃𝑖
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drag from the solventshear particle interaction

Collision integral: 𝐽 𝑽 𝑓, 𝑓 = ∫ 𝑑𝑽2∫ 𝑑෡𝒌𝜎s 𝜒, 𝑉12 𝑉12
× 𝑓(𝒓1, 𝑽1

′ , 𝑡)𝑓(𝒓2, 𝑽2
′ , 𝑡) − 𝑓(𝒓1, 𝑽1, 𝑡)𝑓(𝒓2, 𝑽2, 𝑡)

Boltzmann equation for the inertial suspension

𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽, 𝑡 = 𝜁

𝜕

𝜕𝑽
⋅ 𝑽 +

𝑇env
𝑚

𝜕

𝜕𝑽
𝑓 𝑽, 𝑡 + 𝐽(𝑽|𝑓, 𝑓)

𝜎s 𝜒, 𝑉12 : collision cross section

determined from the scattering problem

Softness appears here.

2022/3/16

(Dimensionless) control parameters:
① Packing fraction: 𝜑 ② Shear rate: ሶ𝛾∗ ≡ ሶ𝛾/𝜁

③ Particle softness: 𝜀∗ ≡
𝜀

𝑚𝜎2𝜁2
④ Env. temp.: 𝜉env ≡

𝑇env

𝑚

1

𝜁𝜎



Softness of particles

 Scattering analysis

2022/3/16
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Introduction of Omega integral: 

Ω2,2
∗ 𝑇∗ ≡ න

0

∞

𝑑𝑦 𝑦7𝑒−𝑦
2
න
0

1

𝑑𝑏∗𝑏∗sin2 𝜒 (𝑏∗, 2𝑦 𝑇∗)

• The ratio of the coll. freq. of soft particles 

to that of hard-core particles
Ω2,2
∗ = 𝜈soft/𝜈HC

• Low 𝑇: hard-core like (Ω2,2
∗ ≃ 1)

• High 𝑇: softer and softer (Ω2,2
∗ → 0)

𝜃 = ∫0
𝑢0 𝑏𝑑𝑢

1−𝑏2𝑢2−
4

𝑚𝑣2
𝑈

1

𝑢

= sin−1
𝑏

𝜎
+ 𝐶1𝐹 𝜙, 𝜈 + 𝐶2Π 𝑎; 𝜙 𝜈 + 𝐶3tan

−1𝛾 + 𝐶4



Enskog kinetic equation for the inertial suspension
13

𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽, 𝑡 = 𝜁

𝜕

𝜕𝑽
⋅ 𝑽 +

𝑇env
𝑚

𝜕

𝜕𝑽
𝑓 𝑽, 𝑡 + 𝐽E(𝑽|𝑓, 𝑓)

Kinetic stress: 𝑃𝛼𝛽
𝑘 = 𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝑓(𝑽, 𝑡)

Moment of the collision integral: Λ𝛼𝛽 = −𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝐽(𝑉|𝑓, 𝑓)

Evolution equation for the kinetic stress:

𝜕

𝜕𝑡
𝑃𝛼𝛽
𝑘 + ሶ𝛾 𝛿𝛼𝑥𝑃𝑦𝛽

𝑘 + 𝛿𝛽𝑥𝑃𝑦𝛼
𝑘 = −2𝜁 𝑃𝛼𝛽

𝑘 − 𝑛𝑇env𝛿𝛼𝛽 − Λ𝛼𝛽

Closure: Grad’s moment method

𝑓 𝑽 = 𝑓M 𝑽 1 +
𝑚

2𝑇

𝑃𝛼𝛽
𝑘

𝑛𝑇
− 𝛿𝛼𝛽 𝑉𝛼𝑉𝛽

Maxwellian distribution

𝑓M 𝑽 = 𝑛
𝑚

2𝜋𝑇

3
2
exp −

𝑚𝑉2

2𝑇

This equation is NOT closed!
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A set of dynamic equations:
𝑑𝜃

𝑑𝜏
= −

2

3
ሶ𝛾∗Π𝑥𝑦

∗ + 2 1 − 𝜃

𝑑Δ𝜃

𝑑𝜏
= −2 ሶ𝛾∗Π𝑥𝑦

∗ − 𝜈∗ + 2 𝛥𝜃

𝑑Π𝑥𝑦
∗

𝑑𝜏
= ሶ𝛾∗

1

3
Δ𝜃 − 𝜃 − 𝜈∗ + 2 Π𝑥𝑦

∗

Dimensionless quantities

𝜃 =
𝑇

𝑇env
: temperature

Δ𝜃 =
Δ𝑇

𝑇env
: anisotropic temperature

Π𝑥𝑦
∗ =

𝑃𝑥𝑦
𝑘

𝑛𝑇env
: kinetic shear stress

𝜈∗ =
95

5 𝜋
Ω2,2
∗ 𝜑𝜉env 𝜃

Then, the steady rheology is described by

All quantities are written 

as a function of the temperature.

ሶ𝛾∗ = 𝜈∗ + 2
3 𝜃 − 1

𝜈∗𝜃 + 2

𝜂∗ = −
Π𝑥𝑦
∗

ሶ𝛾
=

𝜈∗𝜃 + 2

𝜈∗ + 2 2



Steady rheology

 DST-like behavior

even for soft system

 2 step DST-like behaviors 

for harder system

 Shear thinning in high shear regime

 Kinetic theory reproduces 

the sim. results.

2022/3/16
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ሶ𝛾∗

𝜂∗

𝜀∗

 “Does this behavior survive even 

in denser situations?”

𝜀∗



Extension to denser system

2022/3/16
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drag from the solventshear particle interaction

Collision integral: 𝐽E 𝑽 𝑓, 𝑓 = ∫ 𝑑𝑽2∫ 𝑑෡𝒌𝜎s 𝜒, 𝑉12 𝑉12 𝑓
(2) 𝒓, 𝒓 + 𝑟min

෡𝒌, 𝑽1
′′, 𝑽2

′′, 𝑡 − 𝑓 2 𝒓, 𝒓 − 𝑟min
෡𝒌, 𝑽1, 𝑽2, 𝑡

𝜎s 𝜒, 𝑉12 : collision cross section, 𝑓 2 𝒓1, 𝒓2, 𝑽1, 𝑽2, 𝑡 ≃ 𝑔0𝑓(𝑟1, 𝑉1, 𝑡)𝑓(𝑟2, 𝑉2, 𝑡): decoupling approx.

Enskog kinetic equation for the inertial suspension

𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽, 𝑡 = 𝜁

𝜕

𝜕𝑽
⋅ 𝑽 +

𝑇env
𝑚

𝜕

𝜕𝑽
𝑓 𝑽, 𝑡 + 𝐽E(𝑽|𝑓, 𝑓)

Closure: Grad’s moment method

𝑓 𝑽 = 𝑓M 𝑽 1 +
𝑚

2𝑇

𝑃𝛼𝛽
𝑘

𝑛𝑇
− 𝛿𝛼𝛽 𝑉𝛼𝑉𝛽

Maxwellian distribution

𝑓M 𝑽 = 𝑛
𝑚

2𝜋𝑇

3
2
exp −

𝑚𝑉2

2𝑇



Denser system

 DST-like behavior survives 

even for finite density.
(⇔ CST-like for hard-core system)

 Shear thinning in high shear regime

 Kinetic theory reproduces 

the sim. results.

2022/3/16
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Parameters:
𝜑 = 0.10, 0.20, 0.30
𝜀∗ = 104, 𝜉env = 1.0

For large ሶ𝛾, 

Kinetic contribution ≫ Contact contribution

𝑃𝑥𝑦
𝑘 =

1

𝑉
෍

𝑖

𝑚𝑣𝑖,𝑥𝑣𝑖,𝑦 ≫ 𝑃𝑥𝑦
𝑐 =

1

𝑉
෍

𝑖

෍

𝑗≠𝑖

𝑥𝑖𝑗𝑓𝑖𝑗,𝑦

⇒ Inertia plays a role in this DST-like behavior.
(= cannot be ignored)



Stokes’ + lubrication model

More realistic hydrodynamic interaction
Stokes’ + lubrication model: 

𝑭𝑖
H = −σ𝑗 𝜁𝑖𝑗 𝒑𝑗

𝜁𝑖𝑗 has nondiagonal components

 Scaled viscosity ෤𝜂 ≡ 𝜂/𝜂1 against the Peclet number Pe ≡
3𝜋𝜂0𝑑

3

4𝑇env
ሶ𝛾

𝜂 ≡ 𝑃𝑥𝑦/ ሶ𝛾, 𝜂1 = 𝜂0 1 +
5

2
𝜑 + 4𝜑2 + 42𝜑3 : 

𝜂1: Empirical expression of 

the apparent viscosity in the low shear limit

 DST occurs at Pe ≃ 10.

2022/3/16
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Parameters:
𝜑 = 0.30
𝜀∗ = 104, 𝜉env = 1.0

𝑑
𝑑H

𝜁𝑖𝑗,𝛼𝛽 =

3𝜋𝑑𝜂0
𝑚

𝛿𝛼𝛽 +෍

𝑘≠𝑖

1

𝑚
𝐴𝑖𝑘,𝛼𝛽

1,1 Θ 𝑟c − 𝑟𝑖𝑘 (𝑖 = 𝑗)

−
1

𝑚
𝐴𝑖𝑗,𝛼𝛽

1,1 Θ 𝑟c − 𝑟𝑖𝑗 (𝑖 ≠ 𝑗)

𝐴𝑖𝑗,𝛼𝛽
1,1

: function of ෡𝒌 ≡ 𝒓𝑖𝑗/|𝒓𝑖𝑗| (𝒓𝑖𝑗 ≡ 𝒓𝑗 − 𝒓𝑖)

(👉 Kim & Karrila, “Microhydrodynamics”)

𝑟c ≡ 𝑑H + 𝜆: cutoff length (𝜆 = 0.25𝑑)



Discussion: Estimation

 Aerosol

𝑑 ∼ 10−5 m, 𝜌 ∼ 1 g/cm3, 𝐸 ∼ 10 GPa⇒ 𝑚 ∼ 10−12 kg
Viscosity of air: 𝜂0 ∼ 10−5 Pa ⋅ s
DST takes place at ሶ𝛾c ∼ 103 1/s⇒ shear speed 10 m/s if 𝐿 = 1 cm

Colloid

𝑑 ∼ 10−6 m, 𝜌 ∼ 1 g/cm3, 𝐸 ∼ 1 GPa⇒ 𝑚 ∼ 10−14 kg
Viscosity of water: 𝜂0 ∼ 10−3 Pa ⋅ s
DST takes place at ሶ𝛾c ∼ 104 1/s⇒ shear speed 104 m/s if 𝐿 = 1 cm

 Kinetic temperature becomes 102 times larger.

Is it possible to achieve this?

⇒ This will open for all researchers.

2022/3/16
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Case for nonlinear drag

Question: 

What happens if the drag coefficient has velocity dependence?

 By solving scattering problem, the drag coeff. becomes

𝜁 𝑣 = 𝜁0(1 + 𝛾𝑣2).

Change the env. Temperature at 𝑡 = 0.

 No external force

2022/3/16
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Velocity distribution func. deviates from the Maxwellian 

in the relaxation process.

Detect this deviation in terms of 𝑎2

ሚ𝑓 𝒄 = ሚ𝑓M 𝒄 1 + 𝑎2
1

2
𝑐4 −

5

2
𝑐2 +

15

8
, ሚ𝑓 𝒄 =

𝑣T
3

𝑛
𝑓 𝒗 , 𝑐 ≡

𝑣

𝑣T
, 𝑣T ≡

2𝑇

𝑚
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Deviation has a peak at a certain time.

Softness is not important in the relaxation process.

Good agreement with the simulation.



Extension to granular system

Our theory itself can treat only elastic collision.

 Assumption: collisions occur instantaneously.

(Hard-core like)

2022/3/16
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𝒗1
′ = 𝒗1 −

1 + 𝑒

2
𝒗12 ⋅ ෡𝒌 ෡𝒌

𝒗2
′ = 𝒗2 +

1 + 𝑒

2
(𝒗12 ⋅ ෡𝒌)෡𝒌

Collision integral: 𝐽 𝑽 𝑓, 𝑓 = ∫ 𝑑𝑽2∫ 𝑑෡𝒌𝜎s 𝜒, 𝑉12 𝑉12

×
1

𝑒2
𝑓(𝒓1, 𝑽1

′ , 𝑡)𝑓(𝒓2, 𝑽2
′ , 𝑡) − 𝑓(𝒓1, 𝑽1, 𝑡)𝑓(𝒓2, 𝑽2, 𝑡)

Softness

Hard-core like treatment

Boltzmann equation

𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽, 𝑡 = 𝐽(𝑽|𝑓, 𝑓)
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Boltzmann equation

𝜕

𝜕𝑡
− ሶ𝛾𝑉𝑦

𝜕

𝜕𝑉𝑥
𝑓 𝑽, 𝑡 = 𝐽(𝑽|𝑓, 𝑓)

Kinetic stress: 𝑃𝛼𝛽
𝑘 = 𝑚∫ 𝑑𝑽𝑉𝛼𝑉𝛽𝑓(𝑽, 𝑡)

Evolution equation for the kinetic stress:

𝜕

𝜕𝑡
𝑃𝛼𝛽
𝑘 + ሶ𝛾 𝛿𝛼𝑥𝑃𝑦𝛽

𝑘 + 𝛿𝛽𝑥𝑃𝑦𝛼
𝑘 = −𝜈 𝑃𝛼𝛽

𝑘 − 𝑛𝑇𝛿𝛼𝛽 − 𝜆𝑛𝑇𝛿𝛼𝛽



Results:

 Deviations from the Bagnold scaling

 Agreement with simulations for ሶ𝛾∗ ≲ 10−3

 No solution for ሶ𝛾∗ ≳ 4 × 10−3

Assumption does not hold for larger ሶ𝛾
Any idea? ⇒ No.

2022/3/16
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Summary

We have developed the kinetic theory of soft-core suspension 

and granular gases.

 Suspension:

Softness induced DST-like behaviors for frictionless system

DST-like behaviors can occur twice.

Second DST-like behavior survives even for finite density.

Deviation from the Maxwellian 

if the drag coeff. has vel. dependence.

Granular gas:

Deviation from the Bagnold scaling

No solution for larger shear rate
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