

Viscoelastic response of the impact process in dense suspensions

Pradipto and H. Hayakawa, Phys. Fluids 33, 093110 (2021).

Pradipto and Hisao Hayakawa

Yukawa Institute for Theoretical Physics Kyoto University

JPS Annual Meeting 2022

17aB11-1

Dense suspensions under impact

Fracture Roche et al, PRL 2013

Source: Itai Cohen Group on YouTube https://youtu.be/hP88C-_LgnE

Impact-induced hardening

Occurs on hard particles suspended in Newtonian solvent

Cannot be observed in fluids or granular particles alone

A person can run on top of dense suspensions

Physical explanations remain elusive

- Inherently far-from-equilibrium
- Highly dissipative —> transient

Dense suspensions under impact have stronger response than the one observed in shear thickening suspensions

Waitukaitis and Jaeger, Nature 487, 205 (2012) Han et al, Nat. Comms. 2016

Dynamically Jammed Region

Localized and transient solid-like region beneath the impactor

Elastic rebound Egawa and Katsuragi, Phys. Fluids 31, 053304 (2019)

Simulation of impact-induced hardening

Pradipto and Hayakawa, Phys. Rev. Fluids 6, 033301 (2021).

Hydrodynamic interaction

LBM + Lubrication corrections

Contact between particles

Free surface

LBM

Elastic rebound depends on impact velocity and frictional interactions

between particles Pradipto and Hayakawa, Phys. Rev. Fluids 6, 033301 (2021).

Inside the hardening suspension

Force chains

- Formed by contacting suspended particles
- Transmitting force from the impactor to the bottom boundary
- Sustain the impactor \rightarrow rebound

Power-law relations between u_0 , F_{max} , and t_{max}

Viscous force from the dynamically jammed region

$$F_v = -C_v \pi D \eta_s k z \frac{v}{\delta}$$
. Cannot recover the elastic rebound

Purpose of this talk

Z

Elucidate the connection between this power-law relation and the rebound motion

Force on the impactor reach its peak before the rebound

Rebound depends on the depth of the container

The origin of F_{max} is the **floating** jammed region

The origin of rebound is the transmission of force from the impactor to the bottom plate and vice versa

Phenomenology Floating + force chains model

From floating jammed region

Drag on the impactor is proportional to its depth before completely immersed

 $n(t) \longrightarrow force chains from the impactor to the bottom boundary$

Analytical solution of floating model in $u_0 \gg 1/\eta_{\text{eff}}$: $F_{\text{max}} \propto u_0^{\frac{3}{2}}$ and $t_{\text{max}} \propto u_0^{-\frac{1}{2}}$ **Model vs simulations** Power-law relationships between F_{max} , t_{max} , and u_0

9

 Elastic term from percolating force chains is necessary to recover rebound

- **Crossover** from low u_0 to high u_0 regime
- High u_0 regime: $F_{\text{max}} \propto u_0^{\alpha}$ and $t_{\text{max}} \propto u_0^{\beta}$
- Similar to experiments Brassard, et. al, JFM **923**, A38 (2021)
- Independent of system size

Discussions and future directions

- **Current picture:** elastic response only takes place when force chains percolate
- Even before touching the boundary, dynamically jammed region is **rigid**
 - Future task:
 - Delineate the dynamically jammed region
 - Directly measure the elasticity of the dynamically jammed region

Coarse-grained fields J. Zhang, R. P. Behringer, I. Goldhirsch, Prog. Theor. Phys. Supp 184, 16 (2010)

Summary

Rebound motion depends on the system size and takes place later than t_{max}

Our phenomenology shows that the powerlaw relationship between $F_{\rm max}$, $t_{\rm max}$, and u_0 arises solely from the viscous process

(Current picture) Elastic rebound is originated from percolating force chains

Future task: Measure the elasticity of the dynamically jammed region

For more details, please check:

Pradipto and H. Hayakawa, Phys. Fluids 33, 093110 (2021).