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導入: Thouless pumping
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トポロジカルポンプ
平均電圧がゼロでも電流が生じ得る

⟨Vbias⟩time average = 0

Mean current!

Thouless, 1983

量子ドット系
M. Switkes, et.al., Science, 283, 1905 (1999).

When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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Topological Thouless pumping of
ultracold fermions
Shuta Nakajima1*, Takafumi Tomita1, Shintaro Taie1, Tomohiro Ichinose1, Hideki Ozawa1, Lei Wang2,
Matthias Troyer2 and Yoshiro Takahashi1

An electron gas in a one-dimensional periodic potential can be
transportedeven in theabsenceofavoltagebias if thepotential
is slowly and periodically modulated in time. Remarkably, the
transferred charge per cycle is sensitive only to the topology of
the path in parameter space. Although this so-called Thouless
charge pump was first proposed more than thirty years ago1, it
has not yet been realized. Here we report the demonstration of
topological Thouless pumping using ultracold fermionic atoms
in a dynamically controlled optical superlattice. We observe a
shift of the atomic cloud as a result of pumping, and extract the
topological invariance of the pumping process from this shift.
We demonstrate the topological nature of the Thouless pump
by varying the topology of the pumping path and verify that
the topological pump indeed works in the quantum regime by
varying the speed and temperature.

Topology manifests itself in physics in a variety of ways2–4, with
the integer quantumHall effect (IQHE) being one of the best-known
examples in condensedmatter systems. There, theHall conductance
of a two-dimensional electron gas is quantized very precisely in
units of fundamental constants5. As discussed in the celebrated
Thouless–Kohmoto–Nightingale–den Nijs paper6, this quantized
value is given by a topological invariant, the sum of the Chern
numbers of the occupied energy bands.

In 1983, Thouless considered a seemingly different phenomenon
of quantum transport of an electron gas in an infinite one-
dimensional periodic potential, driven in a periodic cycle1. This
seems to be similar to the famous Archimedes screw7, which
pumps water via a rotating spiral tube. However, whereas the
Archimedes screw follows classical physics and the pumped amount
of water can be changed continuously by tilting the screw, the
charge pumped by the Thouless pump is a topological quantum
number and not affected by a smooth change of parameters1.
Interestingly, this quantization of pumped charge shares the same
topological origin as the IQHE. The charge pumped per cycle
can be expressed by the Chern number defined over a (1+ 1)-
dimensional periodic Brillouin zone formed by quasimomentum k
and time t . Although several single-electron pumping experiments
have been implemented in nanoscale devices, such as quantum
dots with modulated gate voltages8–10 or surface acoustic waves
to create a potential periodic in time11, the topological Thouless
pump, which should have the spatial periodicity to define the Bloch
wavefunction as well as the temporal periodicity, has not been
realized in electron systems.

In this Letter, we report a realization of Thouless’ topological
charge pump by exploiting the controllability of ultracold atoms
in an optical superlattice. Differently from recent realizations of
topological bands in two (spatial or synthetic) dimensions12–17,
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Figure 1 | The Rice–Mele model. a, Schematic of the Rice–Mele model. b, A
pumping cycle sketched (qualitatively) in δ–∆ space. c. Schematic of the
continuous Rice–Mele (cRM) pumping sequence. The pink shaded packet
indicates the wavefunction of a particular atom initially localized at the unit
cell i. The wavefunction shifts to right as the pumping proceeds and the
atom moves to unit cell i+ 1 after one pumping cycle. The blue dashed
curve and the green arrow indicate the harmonic confinement (not in scale)
and an initial hole, respectively.

our experiment explores the topology of a (1+ 1)-dimensional
adiabatic process, in which a dynamically controllable one-
dimensional optical superlattice is implemented following the
proposal of ref. 18. Topological pumping is seen as a shift of
the centre of mass (CoM) of an atomic cloud measured with
in situ imaging. We extract the Chern number of the pumping
procedure from the average shift of the CoM per pumping
cycle. The topological nature of the pump is revealed by the
clear dependence on the topology of the pumping trajectories
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幾何学的な解釈

パラメータ空間内の非自明な曲率
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λ2

λ1

Gauss-Bonnet型の議論
カレント ~ トラジェクトリで囲まれた部分の曲率の和

N. A. Sinitsyn and I. Nemenman PRL 99, 220408 (2007).

Berry-Sinitsyn-Nemenman(BSN)曲率

熱力学にベクトルポテンシャルが現れる(スカラーでは不十分)

•Brandner-Saito (PRL 2020) : 熱浴1つ
•Hino-Hayakawa (PRR2021): 熱浴2つ 
•Ito-Dechant (PRX2020): 確率過程

熱力学の幾何学的な解釈

K. Tomita and H. Tomita PTP 51, 6 (1974).



本研究の目的

4

量子ドット系
実験可能な系

Quantum dot + reservoirs

When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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クーロン相互作用するフェミ流粒子系+幾何学的効果
量子効果? 多体効果?

が熱力学にどう影響を及ぼすか
フェルミ統計?

仕事? 効率? エントロピー生成?

前回の発表(16aB14-3　日本物理学会@岡山大 )

エントロピー生成がFisher情報量やHesse行列で書ける



マスター方程式

密度行列 の時間発展ρ
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dρ
dθ

= 𝒦̂ρ : に作用する線形作用素𝒦̂ ρ
(CPTP性を満たす)

: の右固有状態|ri(θ)⟩⟩ 𝒦̂

: 周期駆動パラメータを含む𝒦̂

: の左固有状態⟨⟨ℓi(θ) | 𝒦̂

: の固有値εi 𝒦̂

: 無次元化した時間θ



幾何学的状態

|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ)𝒜μ
dΛμ

dϕ
|ri(θ)⟩⟩

ℱi
μν ≡

∂𝒜i
ν

∂Λμ
−

∂𝒜i
μ

∂Λν

𝒜μ = ⟨⟨ℓi(ϕ) |
∂

dΛμ
|r0(ϕ)⟩⟩
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定常状態
指数減衰



幾何学的状態

|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ)𝒜μ
dΛμ

dϕ
|ri(θ)⟩⟩

ℱi
μν ≡

∂𝒜i
ν

∂Λμ
−

∂𝒜i
μ

∂Λν

𝒜μ = ⟨⟨ℓi(ϕ) |
∂

dΛμ
|r0(ϕ)⟩⟩

定常状態
指数減衰

時間的に“ほぼ”局所的になる
だけが寄与θ − ϵ ≤ ϕ ≤ θ

λ2

λ1

(λ1(θ), λ2(θ))

“準”定常的
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Ĥr ĤrĤ
Ĥ int Ĥ int

( ̂n↑/↓ = ̂d†
↑/↓

̂d↑/↓)

: 熱浴の電子の生成消滅演算子̂a†
α,k,σ ( ̂aα,k,σ)

Ĥ = ∑
σ

ϵ0
̂d†
σ

̂dσ + U ̂n↑ ̂n↓

Ĥr = ∑
α,k,σ

ϵk ̂a†
α,k,σ ̂aα,k,σ

Ĥ int = ∑
α,k,σ

Vα
̂d†
σ ̂aα,k,σ + h . c . ,

Ĥ tot = Ĥ + Ĥr + Ĥ int

: ドット内のスピン の電子の生成消滅演算子̂d†
σ ( ̂dσ) σ

(スピン , 波数 , )σ k α = left or right

不純物Andersonモデル

(簡単のため )VL = VR
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変調可能なパラメータ

Ĥr ĤrĤ
Ĥ int Ĥ int

μL

μR
TR

TL

VL VR

U

• 実験的には温度制御は難しい

• 仕事を取り出すには量子ドット内のパラメータの変調が必要

ϵ0

δ = 0 δ = π

: 左右の変調の位相差δ
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変調可能なパラメータ

Ĥr ĤrĤ
Ĥ int Ĥ int

μL

μR
TR

TL

VL VR

U

• 実験的には温度制御は難しい

• 仕事を取り出すには量子ドット内のパラメータの変調が必要

ϵ0

を変調させるU, μL, μR

δ = 0 δ = π

: 左右の変調の位相差δ
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QA = ∮
𝒫μ + 𝒫μ

2
dΛμ, QR = ∮

𝒫μ − 𝒫μ

2
dΛμ, W = ∮ 𝒫μdΛμ,

負の仕事: 幾何学的デーモン

𝒫μ = Tr (ρ
∂H
∂Λμ )
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相対エントロピーの時間発展
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“準”定常状態が実現される
相対エントロピー: SHS(ρ(θ) | |ρSS(θ)) = Trρ(θ)[ln ρ(θ) − ln ρSS(θ)]

 : 無次元化した時間θ

指数減衰

準定常状態から変化

4
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Figure 2. Sequential plots of SHS(ρ̂(2nπ)||ρ̂SS(2nπ)) with
non-negative integers n = 0, 1, · · · . Ryosuke: This fig-
ure should be improved. First, the labels of vertical axes
should be SHS(ρ̂(2nπ)||ρ̂SS(2nπ)). Second. we should use the
figure to clarify the change of SHS.
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where the black solid line is the trajectory of the parameters.
The color scale at a θ expresses FµLµR

1 . (b) and (c) The
BSN curvature FµLµR

1 and FµLµR
3 at θ = 0 are plotted. The

parameters are set to be βµ = 0.1, βU0 = 0.1 and βε0 = 0.1
for all figures.

lutions of the elements ρd(θ), ρ↑(θ), ρ↓(θ) and ρe(θ) of
density matrix in Fig. S10. This figure clearly exhibits
that all components of the density matrix are positive
definite. Therefore, the dynamics keeps the property of
CPTP. These results are obtained by the BSN connec-
tion Ci(θ) in Eqs. (7) and (8), all of which are negative
definite as shown in Ref. [42].

Figure 3 (a) illustrates the contour of integral Eq. (10)
in the paramer space (µL(θ), µR(θ), θ), where λ(θ) is not
explicitly shown though it changes the configuration of
the curvature. The BSN curvature always exists, though
the magnitude of them decreases with θ. The BSN cur-
vatures at specific θs are plotted in Figs. 3 (b) and (c),
where the half-width of the peak or the dip are approx-
imately located at βεL and βεR ∼ 10. What are εL and
εR which are undefined?
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Figure 4. Plots of ∆S against δ for r = 0.5 (solid line), 0.7
(dotted line), 0.9 (dashed line) with fixing βU0 = 0.1 (a) and
plots of ∆S against δ for βU0 = 0.3 (solid line), 0.5 (dotted
line), 0.7 (dashed line) with fixing r = 0.9 (b).
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Figure 5. Plot of the work done on the system in one-cycle
modulation against δ. We set βU0 = 0.1 and r = 0.9 (solid
line) and fitting by the sinusoidal function (dotted line) (a)
and plots of the work done on the system against δ in the ab-
sorption process (QA, dashed line) and release process (|QR|,
solid line) where βU0 = 0.1 and r = 0.9 and fittings by the
sinusoidal functions (dotted lines) (b).

Figure 4 (a) illustrates how ∆S depends on the pa-
rameter r and δ under the fixing βU0. As expected ∆S
is negative definite for all regions. As can be seen, the
decrement of ∆S is enhanced for larger r. Figure 4 (b)
is the plots of ∆S versus δ for various βU0 with fixing
r. In this range, the decrement ∆S is enhanced as βU0

increases.
The work W defined in Eq. (13) also becomes negative

as shown in Fig. 5. This indicates that we can extract
the work by the cyclic modulations of the parameters
in Anderson model without fine tuning. In Fig. 6 we
plot the efficiency η defined in Eq. (17). These results
are obtained from ∆S < 0 and, thus, we call the engine
geometrical Maxwell’s demon.

Concluding Remarks.- We have implemented
Maxwell’s demon by the modulations of the chemi-
cal potentials in the reservoirs and the repulsion U in
the system Hamiltonian under the isothermal condition.
We can extract the work of this engine automatically
with the increment of the relative entropy if we begin
with the nonequilibrium steady state. This is caused
by the BSN connection which prevents the system from
keeping the initial nonequilibrium steady state. Our
Maxwell’s demon does not need any observation of
states to increase the KL-divergence. In this sense,
our Maxwell’s demon is easily implemented in realistic
situations, and thus, we expect wide applications of this
demon. Nevertheless, we should note that the extract
work by geometrical Maxwell’s demon decreases with

(※ パラメータ変調のコストは考慮していない)

幾何学的効果によるエントロピー減少
→ 負の仕事: 幾何学的デーモン

ΔS = − SHS(ρ(2π) | |ρSS(2π)) + SHS(ρSS(0) | |ρSS(0))
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結論

• 幾何学的位相由来の幾何学的デーモンの実現

• 相対エントロピーは変調により、負となり得る

• 取り出せる仕事は時間に対して指数減衰する

• パラメータ変調によって定常状態とは違う周期的な状態が実現

: 時間に対して”準”局所的|ρ(θ)⟩⟩

変調を止めて定常状態に戻す必要がある
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パラメータ変調のさせ方

左右の熱浴の変調のずれ:  δ

16

11

In the opposite limit βU0 → ∞, f (1)
+ = 0, f (1)

− = 2 and
Ci also vanishes since

lim
U0→∞

C1 = −
∫ 2π

0
dφ

2

f (0)
+

df (0)
+

dφ

= −2

∫ 2π

0
dφ

d ln f (0)
+

dφ
= 0,

lim
U0→∞

C3 = 0. (S49)

Therefore, the entropy production due to the geometrical
term is also absent for βU0 → ∞.

V. ENTROPY PRODUCTION FOR ANDERSON
MODEL

The entropy production in one-cycle is given by

∆S =− Tr
{
ρ̂(2π)[ln ρ̂(2π)− ln ρ̂SS(2π)]

}

+Tr
{
ρ̂(0)[ln ρ̂(0)− ln ρ̂SS(0)]

}

=− Tr
{
ρ̂(2π)[ln ρ̂(2π)− ln ρ̂SS(2π)]

}
, (S50)

where we assume that the initial state is the steady state,
namely ρ̂(0) = ρ̂SS(0) and |ρ̂SS(0)〉 = |ρ̂SS(2π)〉 = |r0(0)〉.
The density matrix |ρ̂〉 after one-cycle modulation be-
comes

|ρ(2π)〉 = |r0(2π)〉+
∑

i

Ci|ri(2π)〉

=





α0f
(0)
+ f (1)

+ + C1α1f
(1)
+ + C3α3f

(0)
− f (1)

−
α0f

(0)
+ f (1)

− + C1α1γ − C3α3f
(0)
− f (1)

+

α0f
(0)
+ f (1)

− + C1α1γ − C3α3f
(0)
− f (1)

+

α0f
(0)
− f (1))

− − C1α1f
(0)
− + C3α3f

(0)
+ f (1)

+




,

(S51)

where α0 = [2(f (0)
+ + f (1)

− )]−1, α1 = 2[(f (0)
+ + f (1)

− )(f (1)
+ +

f (0)
− )]−1, α3 = [2(f (0)

− +f (1)
+ )]−1, and γ = (−f (0)

+ +f (1)
− )/2.

VI. SOME DETAILED RESULTS

In this section, we present some detailed results beyond
main text as well as a figure of control parameters in the
parameter space.

First, let us plot the control parameters in parameter
space. Figure S7 is a schematic of the control parameters
in parameter space.

Now, let us present some detailed results of the calcu-
lation of the Anderson model beyond the main text. In
Fig. S8, we plot C1 (left figure), C3 (right figure) against
δ for various r with fixed βU0 = 0.1. As shown the coef-
ficients increases as r increases. The coefficients C1 and
C3 become zero at δ = π.

Figure S9 shows that coefficients C1 (left figure), C3
(right figure) for various βU0 with fixed r = 0.9. As
shown in Fig. S9 |Ci with i = 1 and 3 increases with βU0.

μL μR

λ

Figure S7. A schematic of control of parameters. We set r = 1
and δ = π/4.
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Figure S8. Plots of C1 (left figure) and C3 (right figure) against
δ for r = 0.5, 0.7, 0.9 where βU0 = 0.1.

Figure S10 plots the time evolution of the elements of
ρ̂(θ) as ρ11, ρ22, ρ33 and ρ44. Ryosuke: Do not you use ρe,
ρ↓, ρ↑ and ρd? This figure clearly supports the positivity
of all elements to keep the completely positivity.
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Figure S9. Plots of C1 (left figure) and C3 (right figure) against
δ for βU0 = 0.3, 0.5, 0.7 with r = 0.9.

U = U0(1 + λ), λ = cos θ, μL = μ sin θ, μR = μ sin(θ + δ)

始状態: パラメータ変調のない場合の定常状態
仮定: パラメータ変調は遅いとする
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μν ≡

∂𝒜i
ν

∂Λμ
−

∂𝒜i
μ

∂Λν
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Figure 2. Sequential plots of SHS(ρ̂(2nπ)||ρ̂SS(2nπ)) with
non-negative integers n = 0, 1, · · · . Ryosuke: This fig-
ure should be improved. First, the labels of vertical axes
should be SHS(ρ̂(2nπ)||ρ̂SS(2nπ)). Second. we should use the
figure to clarify the change of SHS.
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Figure 3. (a) Schematics of a contour of the integral of C1,
where the black solid line is the trajectory of the parameters.
The color scale at a θ expresses FµLµR

1 . (b) and (c) The
BSN curvature FµLµR

1 and FµLµR
3 at θ = 0 are plotted. The

parameters are set to be βµ = 0.1, βU0 = 0.1 and βε0 = 0.1
for all figures.

lutions of the elements ρd(θ), ρ↑(θ), ρ↓(θ) and ρe(θ) of
density matrix in Fig. S10. This figure clearly exhibits
that all components of the density matrix are positive
definite. Therefore, the dynamics keeps the property of
CPTP. These results are obtained by the BSN connec-
tion Ci(θ) in Eqs. (7) and (8), all of which are negative
definite as shown in Ref. [42].

Figure 3 (a) illustrates the contour of integral Eq. (10)
in the paramer space (µL(θ), µR(θ), θ), where λ(θ) is not
explicitly shown though it changes the configuration of
the curvature. The BSN curvature always exists, though
the magnitude of them decreases with θ. The BSN cur-
vatures at specific θs are plotted in Figs. 3 (b) and (c),
where the half-width of the peak or the dip are approx-
imately located at βεL and βεR ∼ 10. What are εL and
εR which are undefined?
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Figure 4. Plots of ∆S against δ for r = 0.5 (solid line), 0.7
(dotted line), 0.9 (dashed line) with fixing βU0 = 0.1 (a) and
plots of ∆S against δ for βU0 = 0.3 (solid line), 0.5 (dotted
line), 0.7 (dashed line) with fixing r = 0.9 (b).
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Figure 5. Plot of the work done on the system in one-cycle
modulation against δ. We set βU0 = 0.1 and r = 0.9 (solid
line) and fitting by the sinusoidal function (dotted line) (a)
and plots of the work done on the system against δ in the ab-
sorption process (QA, dashed line) and release process (|QR|,
solid line) where βU0 = 0.1 and r = 0.9 and fittings by the
sinusoidal functions (dotted lines) (b).

Figure 4 (a) illustrates how ∆S depends on the pa-
rameter r and δ under the fixing βU0. As expected ∆S
is negative definite for all regions. As can be seen, the
decrement of ∆S is enhanced for larger r. Figure 4 (b)
is the plots of ∆S versus δ for various βU0 with fixing
r. In this range, the decrement ∆S is enhanced as βU0

increases.
The work W defined in Eq. (13) also becomes negative

as shown in Fig. 5. This indicates that we can extract
the work by the cyclic modulations of the parameters
in Anderson model without fine tuning. In Fig. 6 we
plot the efficiency η defined in Eq. (17). These results
are obtained from ∆S < 0 and, thus, we call the engine
geometrical Maxwell’s demon.

Concluding Remarks.- We have implemented
Maxwell’s demon by the modulations of the chemi-
cal potentials in the reservoirs and the repulsion U in
the system Hamiltonian under the isothermal condition.
We can extract the work of this engine automatically
with the increment of the relative entropy if we begin
with the nonequilibrium steady state. This is caused
by the BSN connection which prevents the system from
keeping the initial nonequilibrium steady state. Our
Maxwell’s demon does not need any observation of
states to increase the KL-divergence. In this sense,
our Maxwell’s demon is easily implemented in realistic
situations, and thus, we expect wide applications of this
demon. Nevertheless, we should note that the extract
work by geometrical Maxwell’s demon decreases with

|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ + ∑
i≠0

Ci |ri(θ)⟩⟩

11

In the opposite limit βU0 → ∞, f (1)
+ = 0, f (1)

− = 2 and
Ci also vanishes since

lim
U0→∞

C1 = −
∫ 2π

0
dφ

2

f (0)
+

df (0)
+

dφ

= −2

∫ 2π

0
dφ

d ln f (0)
+

dφ
= 0,

lim
U0→∞

C3 = 0. (S49)

Therefore, the entropy production due to the geometrical
term is also absent for βU0 → ∞.

V. ENTROPY PRODUCTION FOR ANDERSON
MODEL

The entropy production in one-cycle is given by

∆S =− Tr
{
ρ̂(2π)[ln ρ̂(2π)− ln ρ̂SS(2π)]

}

+Tr
{
ρ̂(0)[ln ρ̂(0)− ln ρ̂SS(0)]

}

=− Tr
{
ρ̂(2π)[ln ρ̂(2π)− ln ρ̂SS(2π)]

}
, (S50)

where we assume that the initial state is the steady state,
namely ρ̂(0) = ρ̂SS(0) and |ρ̂SS(0)〉 = |ρ̂SS(2π)〉 = |r0(0)〉.
The density matrix |ρ̂〉 after one-cycle modulation be-
comes

|ρ(2π)〉 = |r0(2π)〉+
∑

i

Ci|ri(2π)〉

=





α0f
(0)
+ f (1)

+ + C1α1f
(1)
+ + C3α3f

(0)
− f (1)

−
α0f

(0)
+ f (1)

− + C1α1γ − C3α3f
(0)
− f (1)

+

α0f
(0)
+ f (1)

− + C1α1γ − C3α3f
(0)
− f (1)

+

α0f
(0)
− f (1))

− − C1α1f
(0)
− + C3α3f

(0)
+ f (1)

+




,

(S51)

where α0 = [2(f (0)
+ + f (1)

− )]−1, α1 = 2[(f (0)
+ + f (1)

− )(f (1)
+ +

f (0)
− )]−1, α3 = [2(f (0)

− +f (1)
+ )]−1, and γ = (−f (0)

+ +f (1)
− )/2.

VI. SOME DETAILED RESULTS

In this section, we present some detailed results beyond
main text as well as a figure of control parameters in the
parameter space.

First, let us plot the control parameters in parameter
space. Figure S7 is a schematic of the control parameters
in parameter space.

Now, let us present some detailed results of the calcu-
lation of the Anderson model beyond the main text. In
Fig. S8, we plot C1 (left figure), C3 (right figure) against
δ for various r with fixed βU0 = 0.1. As shown the coef-
ficients increases as r increases. The coefficients C1 and
C3 become zero at δ = π.

Figure S9 shows that coefficients C1 (left figure), C3
(right figure) for various βU0 with fixed r = 0.9. As
shown in Fig. S9 |Ci with i = 1 and 3 increases with βU0.
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Figure S7. A schematic of control of parameters. We set r = 1
and δ = π/4.
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Figure S8. Plots of C1 (left figure) and C3 (right figure) against
δ for r = 0.5, 0.7, 0.9 where βU0 = 0.1.

Figure S10 plots the time evolution of the elements of
ρ̂(θ) as ρ11, ρ22, ρ33 and ρ44. Ryosuke: Do not you use ρe,
ρ↓, ρ↑ and ρd? This figure clearly supports the positivity
of all elements to keep the completely positivity.
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冷却原子系 S. Nakajima, et.al., Nat. Phys., 12, 296 (2016).

M. Switkes, et.al., Science, 283, 1905 (1999).Quantum dot turnstile

When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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Topological Thouless pumping of
ultracold fermions
Shuta Nakajima1*, Takafumi Tomita1, Shintaro Taie1, Tomohiro Ichinose1, Hideki Ozawa1, Lei Wang2,
Matthias Troyer2 and Yoshiro Takahashi1

An electron gas in a one-dimensional periodic potential can be
transportedeven in theabsenceofavoltagebias if thepotential
is slowly and periodically modulated in time. Remarkably, the
transferred charge per cycle is sensitive only to the topology of
the path in parameter space. Although this so-called Thouless
charge pump was first proposed more than thirty years ago1, it
has not yet been realized. Here we report the demonstration of
topological Thouless pumping using ultracold fermionic atoms
in a dynamically controlled optical superlattice. We observe a
shift of the atomic cloud as a result of pumping, and extract the
topological invariance of the pumping process from this shift.
We demonstrate the topological nature of the Thouless pump
by varying the topology of the pumping path and verify that
the topological pump indeed works in the quantum regime by
varying the speed and temperature.

Topology manifests itself in physics in a variety of ways2–4, with
the integer quantumHall effect (IQHE) being one of the best-known
examples in condensedmatter systems. There, theHall conductance
of a two-dimensional electron gas is quantized very precisely in
units of fundamental constants5. As discussed in the celebrated
Thouless–Kohmoto–Nightingale–den Nijs paper6, this quantized
value is given by a topological invariant, the sum of the Chern
numbers of the occupied energy bands.

In 1983, Thouless considered a seemingly different phenomenon
of quantum transport of an electron gas in an infinite one-
dimensional periodic potential, driven in a periodic cycle1. This
seems to be similar to the famous Archimedes screw7, which
pumps water via a rotating spiral tube. However, whereas the
Archimedes screw follows classical physics and the pumped amount
of water can be changed continuously by tilting the screw, the
charge pumped by the Thouless pump is a topological quantum
number and not affected by a smooth change of parameters1.
Interestingly, this quantization of pumped charge shares the same
topological origin as the IQHE. The charge pumped per cycle
can be expressed by the Chern number defined over a (1+ 1)-
dimensional periodic Brillouin zone formed by quasimomentum k
and time t . Although several single-electron pumping experiments
have been implemented in nanoscale devices, such as quantum
dots with modulated gate voltages8–10 or surface acoustic waves
to create a potential periodic in time11, the topological Thouless
pump, which should have the spatial periodicity to define the Bloch
wavefunction as well as the temporal periodicity, has not been
realized in electron systems.

In this Letter, we report a realization of Thouless’ topological
charge pump by exploiting the controllability of ultracold atoms
in an optical superlattice. Differently from recent realizations of
topological bands in two (spatial or synthetic) dimensions12–17,
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Figure 1 | The Rice–Mele model. a, Schematic of the Rice–Mele model. b, A
pumping cycle sketched (qualitatively) in δ–∆ space. c. Schematic of the
continuous Rice–Mele (cRM) pumping sequence. The pink shaded packet
indicates the wavefunction of a particular atom initially localized at the unit
cell i. The wavefunction shifts to right as the pumping proceeds and the
atom moves to unit cell i+ 1 after one pumping cycle. The blue dashed
curve and the green arrow indicate the harmonic confinement (not in scale)
and an initial hole, respectively.

our experiment explores the topology of a (1+ 1)-dimensional
adiabatic process, in which a dynamically controllable one-
dimensional optical superlattice is implemented following the
proposal of ref. 18. Topological pumping is seen as a shift of
the centre of mass (CoM) of an atomic cloud measured with
in situ imaging. We extract the Chern number of the pumping
procedure from the average shift of the CoM per pumping
cycle. The topological nature of the pump is revealed by the
clear dependence on the topology of the pumping trajectories

© 2016 Macmillan Publishers Limited. All rights reserved
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Figure 2 | Observation of cRM pumping and sliding lattice pumping. a,b, In situ absorption images on the CCD before and after 10 cRM pumpings,
respectively. c, One-dimensional optical densities (integrated along the x axis) before pumping (red circles, same data as a) and after 10 cRM pumping
(blue diamonds, same data as b). d, The centre of mass (CoM) of the atomic cloud after up to ten pumping cycles. Red circles and blue open diamonds
indicate the CoM shift of the sliding lattice and the cRM pumping lattice, respectively. Error bars denote the standard deviation of five
independent measurements.

in parameter space as to whether the trajectory is enclosing the
degenerate point or not. Our work introduces a new experimental
platform to study topological quantum phenomena in adiabatic
driven systems.

In our experiments, an ultracold Fermi gas of ytterbium atoms
171Yb is prepared (see Methods) and loaded into a dynamically
controlled optical superlattice. Specifically, we construct a stationary
lattice (short lattice) with a period of 266 nm and a dynamical
interferometric lattice (long lattice) with a period of 532 nm whose
phase is stabilized and controlled by a Michelson interferometer
(see Methods). As a result, these laser beams create the
required18 time-dependent one-dimensional optical superlattice of
the form

V (z , t)=−VS(t)cos2
(
2πz
d

)
−VL(t)cos2

(πz
d −φ(t)

)
(1)

where d = 532 nm is the lattice constant of the superlattice, VS
is the depth of the short lattice, VL the depth of the long lattice,
and φ is the phase difference between the two lattices. In our
experiments,VS andVL are controlled by the respective laser powers
and φ by changing the optical path difference between the two
interfering beams with a piezo-transducer (PZT)-mounted mirror,
which enables us to sweep φ up to ∼11π, corresponding to more
than ten pumping cycles. In the following, we use the lattice constant
d as the unit of length and the recoil energy ER=h2/(8md2) as the
unit of energy, where h denotes Planck’s constant andm is the atomic
mass of 174Yb (see Methods).

We load 171Yb atoms into an array of one-dimensional optical
superlattices, ensuring that they occupy the lowest energy band
(see Supplementary Information 4), and slowly sweep φ over time.
The lattice potential returns to its initial configuration whenever
φ changes by π, thus completing a pumping cycle. Because the
lattice potential is periodic both in space and time, one can define
energy bands, the Bloch wavefunction |ψk(t)〉 = eikz |uk(t)〉, and

corresponding topological invariants such as the Chern number ν
in a k–t Brillouin zone:

ν= 1
2π

∫ T

0
dt

∫ π/d

−π/d
dk$(k, t) (2)

where $(k, t)= i(〈∂t uk|∂kuk〉− 〈∂kuk|∂t uk〉) is the Berry curvature
(see Methods) and T the pumping period. We have ensured that
the bandgap never closes during the whole pumping procedure,
so ideally the atoms stay in the lowest band during the adiabatic
pumping process. The phase sweep breaks time-reversal symmetry
and the energy bands can acquire a non-zero Chern number ν.
The shift of the CoM of the atomic cloud in such a topologically
nontrivial band after one pumping cycle is simply given by νd .

The ability to tune all parameters of the lattice potential (1)
independently in a dynamic way offers the opportunity to realize
various pumping protocols. In the absence of the static short
lattice, V (z , t) describes the simple sliding lattice which Thouless
originally proposed1. Including theVS term, one realizes the double-
well lattice illustrated in Fig. 1. A pictorial understanding of
this alternative pumping process is provided by the tight-binding
Rice–Mele model19,20,

Ĥ=
∑

i

(
−(J+δ)â†i b̂i −(J −δ)â†i b̂i+1+h.c.+∆(â†i âi − b̂†i b̂i)

)
(3)

where âi (â†i ) and b̂i (b̂†i ) are fermionic annihilation (creation)
operators in the two sublattices of the ith unit cell, J ± δ is the
tunnelling amplitude within and between unit cells, and ∆ denotes
a staggered on-site energy offset, as shown in Fig. 1a. We ignore
the spin degree of freedom because we can neglect the interaction
between the two spin components owing to a very small s-wave
scattering length21.

Figure 1c shows the schematics of our ‘continuous Rice–Mele’
(cRM) pumping sequence. Sweeping the phase linearly in time
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熱浴自由度の逓減

全系の密度行列の時間発展

i
d
dt

ρtot = [Ĥ tot, ρtot]

熱浴自由度のトレースアウト

Trreservoirs [i
d
dt

ρtot] = Trreservoirs [[Ĥ tot, ρtot]]

d
dt

ρd
ρ↑
ρ↓
ρe

= Γ

−2f (1)
− f (1)

+ f (1)
+ 0

f (1)
− −f (0)

− − f (1)
+ 0 f (0)

+

f (1)
− 0 −f (0)

− − f (1)
+ f (0)

+

0 f (0)
− f (0)

− −2f (0)
+

ρd
ρ↑
ρ↓
ρe

+ Markov approx.

19



縮約密度行列

縮約密度行列は今回の取り扱いでは対角要素のみとなる

ρ =

ρd 0 0 0
0 ρ↑ 0 0
0 0 ρ↓ 0
0 0 0 ρe

|ρ⟩⟩ =

ρd
ρ↑
ρ↓
ρe

Supervector representation
ρe, ρ↑, ρ↓, ρd

Empty Single occupied Double occupied

20



フェルミ分布関数

縮約密度行列はレート方程式に従う

f ( j)
± =

1
1 + exp[ ± (ϵ0 + jU − μL)/T ]

+
1

1 + exp[ ± (ϵ0 + jU − μR)/T ]

ϵ0

ϵ0 + U
f (0)
+

f (1)
+

ϵ0

ϵ0 + Uf (0)
− f (1)

−

: Hole distributions functionsf ( j)
−

21



マスター方程式の物理的な解釈

d
dt

ρd
ρ↑
ρ↓
ρe

= Γ

−2f (1)
− f (1)

+ f (1)
+ 0

f (1)
− −f (0)

− − f (1)
+ 0 f (0)

+

f (1)
− 0 −f (0)

− − f (1)
+ f (0)

+

0 −f (0)
− −f (0)

− −2f (0)
+

ρd
ρ↑
ρ↓
ρe

e.g. 2列目
d
dt

ρ↑ = Γf (1)
− ρd − Γf (0)

− ρ↑ − Γf (1)
+ ρ↑ + Γf (0)

+ ρe

Γ = πνV2 : 熱浴の状態密度ν
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Joule熱
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各瞬間のバイアス電圧はノンゼロ + カレント

Joule熱の発生 QJoule ≡ IΔV
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Joule熱の1周期積算



効率
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効率: η ≡
|W |
QA

=
|QA + QR |
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相対エントロピーの時間発展

25

“準”定常状態が実現される
最初の緩和の後、すぐに に関する周期関数となるθ

相対エントロピー: SHS(ρ(θ) | |ρSS(θ)) = Trρ(θ)[ln ρ(θ) − ln ρSS(θ)]
 : 無次元化した時間θ

緩和 指数減衰

始状態からの変化

(準定常化後: H Hayakawa, VMM Paasonen, R Yoshii, arXiv:2112.12370 (2021).)
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MASTER EQUATION FORMALISM



Simplification in semi-classical system

Semiclassical  off-diagonal part is completely decoupled →

27

d
dt

|ρ⟩⟩ = 𝒦̂ |ρ⟩⟩

In this formalism, trace is given by the inner product with

 components to  components: N2 N |ρ(t)⟩⟩ = (ρ11, ρ22, ⋯, ρNN)T

diagonal part only

⟨⟨ℓ0 | = (1,1,⋯,1)

⟨⟨ℓ0 |ρ⟩⟩ = ρ11 + ρ22 + ⋯ + ρNN = Trρ

(generalization with off-diagonal part is straightforward)



Important properties 1

Trace of the density matrix must always be unity 

28

d
dt

⟨⟨ℓ0 |ρ⟩⟩ = 0

d
dt

⟨⟨ℓ0 |ρ⟩⟩ =
d⟨⟨ℓ0 |

dt
|ρ⟩⟩ + ⟨⟨ℓ0 |

d |ρ⟩⟩
dt

= ⟨⟨ℓ0 |𝒦̂ |ρ⟩⟩

⟨⟨ℓ0 |𝒦̂ = 0

 zero mode⟨⟨ℓ0 | :

Constraint on :  𝒦̂ ∑
i

𝒦̂ij = 0

⟨⟨ℓ0 | = (1,1,⋯,1)



Important properties 2

29

By using the right eigenvectors  (with eigenvalues )|rn⟩⟩ λn

|ρ(0)⟩⟩ = ∑
n

an |rn⟩⟩

It is achieved only if all  are negative λn≠0

(  must be chosen to satisfy )a0 Trρ = 1

Suppose the system has unique steady state

|ρ(t)⟩⟩ = ∑
n

aneλnt |rn⟩⟩ ⇒ |r0⟩⟩

Time evolution and expected behavior for late time

t → ∞
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IN THE PRESENCE OF MODULATION 
NON-ADIABATIC GEOMETRICAL PHASE



Adiabatic limit

Non-dimentionalization
d
dt

|ρ⟩⟩ = 𝒦̂ |ρ⟩⟩ ⇒ ϵ
d
dθ

|ρ⟩⟩ = K̂ |ρ⟩⟩

: characteristic times for modulation and relaxationτm, τ0

ϵ = τm /τ0

Adiabatic limit
d
dθ

|ρ⟩⟩ =
1
ϵ

K̂ |ρ⟩⟩

 All eigenstates except for  are suddenly dumped→ |r0⟩⟩
ϵ → 0

|ρ(t)⟩⟩ϵ=0 = |r0(Λ(t))⟩⟩

31



Time evolution of the density matrix

Infinitesimal time evolution
d
dθ

|ρ⟩⟩ = ϵ−1K̂(θ) |ρ⟩⟩ ⇒ |ρ(θ + Δθ)⟩⟩ − |ρ(θ)⟩⟩ = ϵ−1ΔθK̂(θ) |ρ(θ)⟩⟩

|ρ(θ + Δθ)⟩⟩ = (1 + ϵ−1ΔθK̂(θ)) |ρ(θ)⟩⟩ ≃ exp(ϵ−1ΔθK̂(θ)) |ρ(θ)⟩⟩

= ∑
i

|ri⟩⟩⟨⟨ℓi |exp(ϵ−1ΔθK̂(θ)) |ρ(θ)⟩⟩ (∑
i

|ri⟩⟩⟨⟨ℓi | = ̂I)
= ∑

i

exp(ϵ−1εi(θ)Δθ) |ri(θ)⟩⟩⟨⟨ℓi(θ) |ρ(θ)⟩⟩

Recursive procedure
|ρ(θ + Δθ)⟩⟩ = ∑

i,j

eϵ−1εi(θ)Δθ |ri(θ)⟩⟩⟨⟨ℓi(θ) |

× eϵ−1εj(θ−Δθ)Δθ |ri(θ − Δθ)⟩⟩⟨⟨ℓi(θ − Δθ) |ρ(θ − Δθ)⟩⟩
32



Important remark 1

Eigenstates
K̂(θ) |ri(θ)⟩⟩ = εi(θ) |ri(θ)⟩⟩, ⟨⟨ℓi(θ) | K̂(θ) = εi(θ)⟨⟨ℓi(θ) |

means

K̂(Λθ) |ri(Λθ)⟩⟩ = εi(Λθ) |ri(Λθ)⟩⟩, ⟨⟨ℓi(Λθ) | K̂(Λθ) = εi(Λθ)⟨⟨ℓi(Λθ |

: set of parameters at time Λθ θ

Above equations: eigenstate for fixed parameters Λθ

(eigenstate for snapshot parameters)

33



Time evolution from the initial state

Path integral-like formula

= ∑
i,j,⋯,k

eϵ−1εi(θ)Δθeϵ−1εj(θ)Δθ⋯eϵ−1εk(θ)Δθ

× |ri(θ)⟩⟩⟨⟨ℓi(θ) |rj(θ − Δθ)⟩⟩⟨⟨ℓj(θ − Δθ) |⋯ |rk(Δθ)⟩⟩⟨⟨ℓk(Δθ) |ρ(0)⟩⟩

|ρ(θ + Δθ)⟩⟩

Initial condition
|ρ(0)⟩⟩ = ∑

i

ai |rm(0)⟩⟩⟨⟨ℓm(0) |ρ(0)⟩⟩ = ∑
m

am |rm(0)⟩⟩

= ∑
i,j,⋯,k,m

eϵ−1εi(θ)Δθeϵ−1εj(θ)Δθ⋯eϵ−1εk(θ)Δθam

× |ri(θ)⟩⟩⟨⟨ℓi(θ) |rj(θ − Δθ)⟩⟩⟨⟨ℓj(θ − Δθ) |⋯ |rk(Δθ)⟩⟩⟨⟨ℓk(Δθ) |rm(0)⟩⟩

|ρ(θ + Δθ)⟩⟩

34



Connection

Connection between different time
⟨⟨ℓi(θ) |rj(θ − Δθ)⟩⟩ = ⟨⟨ℓi(θ) |rj(θ)⟩⟩ − Δθ⟨⟨ℓi(θ) |

d
dθ

|rj(θ)⟩⟩

= δi,j − Δθ⟨⟨ℓi(θ) |
d
dθ

|rj(θ)⟩⟩

|ρ(θ)⟩⟩ ≃ ∑
m

e ∫θ
0 dϕϵ−1εm(ϕ)am |rm(0)⟩⟩

Quasi adiabatic limit

−∑
m,i

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ)ame ∫ϕ
0 dχϵ−1εm(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |

d
dϕ

|rm(ϕ)⟩⟩

35

Similar to translation in curved space

|rj(θ)⟩
|rj(θ − Δθ)⟩

|rj(θ − Δθ)⟩



There is no transition from j ≠ 0 → i = 0

⟨⟨ℓ0(θ) |rj≠0(θ − Δθ)⟩⟩ = − Δθ⟨⟨ℓ0(θ) |
d
dθ

|rj(θ)⟩⟩

Important remark 2

= − Δθ
d
dθ

⟨⟨ℓ0(θ) |rj(θ)⟩⟩ + Δθ ( d
dθ

⟨⟨ℓ0(θ) |) |rj(θ)⟩⟩ = 0

= 0 = 0
Orthogonal ⟨⟨ℓ0(θ) | = (1,⋯,1)

Coefficient for  is unchanged|r0⟩⟩

|ρ(θ)⟩⟩ = a0(0) |r0(θ)⟩⟩ + ∑
i≠0

ai(θ) |rm(θ)⟩⟩

Consistent with Trρ = 1 → ⟨⟨ℓ0(θ) |ρ(θ)⟩⟩ = ⟨⟨ℓ0(0) |ρ(0)⟩⟩ = 1

(If )a(0) = 1
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Special case: initially steady state

In the case of |ρ(0)⟩⟩ = |r0(0)⟩⟩ = |ρSS(0)⟩⟩

|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

|r0⟩⟩

|r1⟩⟩

|r2⟩⟩

B
A

A

B
: transition at A ϕ

: exponential dumpingB

C

C :  takes place at any timeC A

Schematic understanding

“Pumping and relaxation”
37

“Feynman” diagram

K Takahashi, K Fujii, Y Hino, H Hayakawa, PRL (2020).



Slow modulating case

If ϵ ≪ 1

|ρ(θ)⟩⟩ ∼ |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

Only  contributesθ − ϵ ≤ ϕ ≤ θ

∼ |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

θ−ϵ
dϕe ∫θ

ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

∼ |r0(θ)⟩⟩ − ϵ∑
i≠0

eεi(θ) |ri(θ)⟩⟩⟨⟨ℓi(θ) |
d
dθ

|r0(θ)⟩⟩

∼ |r0(θ)⟩⟩ − ϵ∑
i≠0

ci(θ) |ri(θ)⟩⟩

Deviation from  is |r0(θ)⟩⟩ O(ϵ)
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For ϵ ≪ 1 |ρ(θ)⟩⟩ ∼ |r0(θ)⟩⟩ − ϵ∑
i≠0

ci(θ) |ri(θ)⟩⟩

We neglect the higher orders ~ Born approximation

39

Important remark 3

|r0⟩⟩
|r1⟩⟩

|r2⟩⟩
B

A

|r3⟩⟩

|ρ(θ)⟩⟩ ∼ |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

+∑
i≠0

∑
j≠0

∫
θ

ξ
dϕ∫

ξ

0
dζe ∫θ

ϕ dχ1ϵ−1εi(χ1)e ∫ξ
ζ dχ2ϵ−1εj(χ2) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |

d
dϕ

|rj(ϕ)⟩⟩⟨⟨ℓj(ζ) |
d
dζ

|r0(ζ)⟩⟩

C

“Feynman” diagram

A

B

+⋯



Suggestive example

If we start the modulation at  and stop at θ1 θ2

|ρ(θ)⟩⟩ = |r0(Λini)⟩⟩

|ρ(θ)⟩⟩ = |r0(Λ)⟩⟩ − ∑
i≠0

∫
θ

θ1

dϕe ∫θ
ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |

d
dϕ

|r0(ϕ)⟩⟩

0 ≤ θ < θ1 θ1 ≤ θ < θ2

|ρ(θ)⟩⟩ = |r0(Λfin)⟩⟩ − ∑
i≠0

∫
θ2

θ1

dϕe ∫θ
ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |

d
dϕ

|r0(ϕ)⟩⟩

θ2 ≤ θ

λ2

λ1

λ2

λ1

λ2

λ1

(I) (II) (III)

(I)

(II)

(III)

Λini

Λfin

⇒ |r0(Λfin)⟩⟩
⇒ 0 (θ ≫ θ2)
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0

1

2

3

4

5

6

ci≠0

θ1 θ2

ϵ



Expected behavior

If we continuously modulate parameters

|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

λ2

λ1

Exponential factor cut off the contribution from far past
(λ1(θ), λ2(θ))

: quasi local in time|ρ(θ)⟩⟩

41

 becomes quasi steady state |ρ(θ)⟩⟩
which wears the effect from the past

Similar to Fermi liquid



Geometrical interpretation

In the case of |ρ(0)⟩⟩ = |r0(0)⟩⟩ = |ρSS(0)⟩⟩

|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ + ∑
i≠0

Ci |ri(θ)⟩⟩

42

Ci = − ∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ)⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩ =

dΛμ

dϕ
⟨⟨ℓi(ϕ) |

∂
dΛμ

|r0(ϕ)⟩⟩

“Vector potential”

≡ 𝒜i
μ

“Curvature”

ℱi
μν ≡

∂𝒜i
ν

∂Λμ
−

∂𝒜i
μ

∂Λν
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RELATIVE ENTROPY



Distance between two distribution

How to measure the distance between two distribution?

Naive idea: compare von-Neumann entropies 
SvN

1 = Tr(−ρ1 ln ρ1) SvN
2 = Tr(−ρ2 ln ρ2)

ρ1 ρ2

Shortcoming: it is not positive-semidefinite
ΔSvN(ρ | |σ) = − ρ ln ρ + σ ln σ

If , then ΔSvN(ρ | |σ) > 0 ΔSvN(σ | |ρ) < 0
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Useful tool: Relative entropy

Quantum Relative entropy

ΔSKL(ρ | |σ) = Tr[ρ(ln ρ − ln σ)]

45

ΔSKL(ρ | |σ) ≥ 0
Positive-semidefiniteness

ΔSKL(σ | |ρ) ≥ 0

Note that ΔSKL(ρ | |σ) ≠ ΔSKL(σ | |ρ) in general

−ΔSKL(ρ | |σ) = − ∑
i

[ρii(ln ρii − ln σii)]

Diagonal case (in our study, it is the case)

= ∑
i

ρii ln
σii

ρii
≤ ∑

i

ρii ( σii

ρii
− 1) = Trσ − Trρ = 0

ln x ≤ x − 1

-1.0 -0.5 0.5 1.0 1.5 2.0

-4

-3

-2

-1

1

(Kullback-Leibler-Umegaki relative entropy)



Meaning of Relative entropy

Uncertainty of information ∼ − ln ρ

46

Entropy = ⟨−ρ ln ρ⟩ = − Trρ ln ρ

ex.) ρ1 = (0,1), ρ2 = (1/4,3/4), ρ3 = (1/2,1/2)

−Trρ1 ln ρ1 = 0, −Trρ2 ln ρ2 = 2 ln 2 −
3
4

ln 3, −Trρ3 ln ρ3 = 2 ln 2

Certain Uncertain

If we obtain information and  becomes  ρ ρ3 → ρ1

Reduction of the uncertainty ∼ − [−ln ρ1 − (−ln ρ3)]

Average information gain
⟨ln ρ1 − ln ρ3⟩ = Trρ1(ln ρ1 − ln ρ3) = ΔSKL(ρ1 | |ρ3)



Distance from the steady state

Relative entropy between  and ρ ρSS

SKL(ρ | |ρSS) = Trρ (ln ρ − ln ρSS)

47

In the relaxation process

SKL(ρ | |ρSS) = ∑
n (ρSS

nn + ∑
i

ρ(i)
nneλit) ln (ρSS

nn + ∑
k

ρ(k)
nn eλkt) − ln ρSS

nn

ρ = ρSS + ∑
i

ρ(i)eλit (λi < 0)

t → ∞ ∑
n

ρSS
nn (ln ρSS

nn − ln ρSS
nn ) = 0

SKL(ρ | |ρSS) ≥ 0 SKL(ρSS | |ρSS) = 0
relaxation



Monotonicity of relative entropy

Complete Positive Trace Preserving (CPTP) map

ℰ : ρ → ℰ(ρ) (Trℰ(ρ) = 1, ℰ(ρ) is positive semi-definite)

48

Monotonic property of relative entropy

ℰ(ρSS) = ρSS

In the case  is time evolution,  is the fixed pointℰ ρSS

SKL(ρ | |σ) ≥ SKL(ℰ(ρ) | |ℰ(σ))

SKL(ρ | |ρSS) ≥ SKL(ℰ(ρ) | |ρSS)

ρSS

ρ

ℰ(ρ)
ℰ(ℰ(ρ))

“H-theorem“

(Proof is found in arXiv: 2112.12370)



“Entropy” of the arbitrary state

Monotonically increasing quantity in time evolution

Remark 1

S(ρ | |ρSS) = − SKL(ρ | |ρSS) = − Trρ (ln ρ − ln ρSS)

 is negative semi-definiteS(ρ | |ρSS)

Remark 2

Maximum value of  is zeroS(ρ | |ρSS)
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In the presence of modulation

Steady states in two parameter setting

ρSS
0

μL(t)

μR(t)

μL(0) μR(0)

ρ1(t)

ρSS
0

μ′ L

μ′ R

μL μR

ρSS
1

Time evolution of the steady state

Time evolution
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Two possibility of the definition of entropy

Definition 1

ρSS
0

μL(t)

μR(t)

μL(0) μR(0)

ρ1(t)

Time evolution

: Deviation from the initial stateS(ρ1(t) | |ρSS
0 )

😥 even if  coincides ,  is nonzeroρ1(t) ρSS
1 S(ρ1(t) | |ρSS

0 )

😃  monitors the distance from the initial stateS(ρ1(t) | |ρSS
0 )
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Two possibility of the definition of entropy

Definition 2

μ′ L

μ′ RρSS
1

μL(t)

μR(t)ρ1(t)

: Deviation from the steady stateS(ρ1(t) | |ρSS
1 )

😥 difficult to compare the different time 

😃  characterize the distance from steady stateS(ρ1(t) | |ρSS
1 )
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Our choice

Definition 2

μ′ L

μ′ RρSS
1

μL(t)

μR(t)ρ1(t)

S(ρ1(t) | |ρSS
1 )

- Deviation from the steady state S(ρSS
1 | |ρSS

1 ) = 0

- House keeping part is subtracted
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Important remark

In the presence of the parameter modulation

54

S(ρ | |ρSS
0 ) ≤ S(ℰ(ρ) | |ℰ(ρSS

0 )) ≠ S(ℰ(ρ) | |ρSS
0 )

ρSS
0

μL(t)

μR(t)

μL(0) μR(0)

ρ1(t)

Time evolution

 is no longer the fixed pointρSS
0



Expected behavior 

If Modulation is much slower than other time scales

55

ρSS
0

μL(t)

μR(t)

μL(0) μR(0)

ρSS
1

Slow modulation

The effect of the modulation can be detected

S(ρ(0) | |ρSS
0 ) = 0 S(ρ(t) | |ρSS

1 ) = 0

S(ρ(t) | |ρSS
1 ) ≠ 0
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RESULT 1: GENERAL PROPERTY

After quasi steady state is achieved



Case of Slow modulation

Expansion in ϵ

ρ = ρSS + ϵρ(1) + ⋯

57

 : time scale of the parameter modulationϵ

adiabatic limit ϵ = 0 ⇒

ΔS(ρ | |ρSS) = S(ρSS | |ρSS) − S(ρ | |ρSS)

=
1
2

ϵ2Tr[ρ(1) (ρSS)−1 ρ(1)] + O(ϵ3)

Relative entropy deviation from steady state

= Trρ (ln ρ − ln ρSS)



Linear response calculation

Supervector formalism

|ρ⟩⟩ = |ρSS⟩⟩ + ϵ |ρ(1)⟩⟩ + ⋯

58

ϵ
d
dθ

|ρ⟩⟩ = K̂ |ρ⟩⟩,

|ρ(1)⟩⟩ =
dΛμ

dθ
K̂+ ∂

∂Λμ
|ρSS⟩⟩ ≡

dΛμ

dθ
|∂μρSS⟩⟩

: pseudo inverse of K̂+ ≡ ∑
m≠0

ε−1
m |rm⟩⟩⟨⟨ℓm | K̂

Spectral decomposition

K̂ = ∑
m

εm |rm⟩⟩⟨⟨ℓm |
: eigenvalues of εm K̂

: right and left eigenvectors|rm⟩⟩, ⟨⟨ℓm |



Geometrical interpretation

Quantum relative entropy for slow modulation

59

ΔS(ρ | |ρSS) =
1
2

ϵ2Tr [(∂μρSS) (ρSS)−1 (∂νρSS)]
dΛμ

dθ
dΛν

dθ
+ O(ϵ3)

=
1
2

ϵ2TrρSS [(∂μ ln ρSS) (∂ν ln ρSS)]
dΛμ

dθ
dΛν

dθ
+ O(ϵ3)

:Fisher information matrix

ΔS(ρ | |ρSS) =
1
2

ϵ2gμν
dΛμ

dθ
dΛν

dθ
+ O(ϵ3)

gμν = TrρSS [(∂μ ln ρSS) (∂ν ln ρSS)]
:Hessian matrix of  ln ρSS × (−1)= − TrρSS [∂μ∂ν ln ρSS]



Stability of Steady State
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S̄cycle =
1

2π ∫
2π

0
dθ

1
2

ϵ2gμν
dΛμ

dθ
dΛν

dθ
+ O(ϵ3)

Averaged quantum relative entropy in one-cycle

Positive semi-definiteness

gμν
dΛμ

dθ
dΛν

dθ
= Tr ρSS (

dΛμ

dθ
∂μ ln ρSS)

2

≥ 0

It implies the stability of steady state

“Entropy” increases towards any direction



Thermodynamic length

Lower bound on “entropy” production
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S̄cycle =
ϵ2

2 ∫
2π

0

dθ
2π

gμν
dΛμ

dθ
dΛν

dθ

∫
2π

0

dθ
2π

gμν
dΛμ

dθ
dΛν

dθ
≥ ∫

2π

0

dθ
2π

gμν
dΛμ

dθ
dΛν

dθ

2
Cauchy-Schwartz inequality

S̄cycle =
ϵ2

2 ∫
2π

0

dθ
2π

gμν
dΛμ

dθ
dΛν

dθ
≥ ϵ2ℒ2

ℒ =
1

2 ∫
2π

0

dθ
2π

gμν
dΛμ

dθ
dΛν

dθ
=

1

2 ∮ gμνdΛμdΛν

Thermal length
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WORK AND EFFICIENCY



Work relations

The “work” (see, for instance, Jarzynski 1997)

63

W = ∫ dt ·E(t) = ∫ dt⟨ ·E(t)⟩ = ∫ dt⟨ ·H(t)⟩

If the time dependence only appears through parameters

ρ(t), H(t) → ρ(Λμ(t)), H(Λμ(t))

Chain rule  yields·H(t) =
dΛμ

dt
∂H
∂Λμ

W = ∫ Tr (ρ
∂H
∂Λμ ) dΛμ

dt
dt



Geometrical interpretation

Work represented by contour integral

64

In the case of the cyclic modulation λinitial = λfinal

W = ∫ Tr (ρ
∂H
∂Λμ ) dΛμ

dt
dt = ∫ Tr (ρ

∂H
∂λμ ) dΛμ

W = ∮ dΛμ Tr (ρ
∂H
∂Λμ )

Work is given by the contour integral of the vector field

W = ∮ 𝒫μdΛμ 𝒫μ = Tr (ρ
∂H
∂Λμ )

λinitial = λfinal



Work-density-tensor in parameter space

65

By using the Stokes’ theorem

∂Ω

Ω

W = ∮∂Ω
𝒫μdΛμ

W = ∫Ω
ℛμνdSμν

: curvature associated with the workℛμν =
∂𝒫ν

∂Λμ
−

∂𝒫μ

∂Λν

dSμν =
1
2

dΛμ ∧ dΛν



Work in one-cycle
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Various representations of work 
∂Ω

Ω
𝒫μ = Tr (ρ

∂H
∂Λμ ) ℛμν =

∂𝒜ν

∂Λμ
−

∂𝒜μ

∂Λν

W = ∫ dt⟨ρ(t) ·H(t)⟩ = ∮ 𝒫μdΛμ = ∫Ω
ℛμνdSμν

“Work” is either positive or negative (opposite direction)

t = 0 t = τ

One-cycle

If , work is extracted from the systemW < 0



Efficiency
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Absorption process and release process

Efficiency: η ≡
|W |
QA

=
|QA + QB |

QA

t = 0 t = τ
Absorption process: WA

Release process: WR

QA = ∮
𝒫μ + 𝒫μ

2
dΛμ, QR = ∮

𝒫μ − 𝒫μ

2
dΛμ
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RESULT 2: EFFICIENCY AND POWER



“First low” in the presence of modulation 

The “work”, “entropy” production, and heat

69

S̄cycle =
1

2π ∫
2π

0
dθ

1
2

ϵ2gμν
dΛμ

dθ
dΛν

dθ
+ O(ϵ3)

W = ∮ dΛμ Tr (ρ
∂H
∂Λμ )

Q ≡ W + TS̄cycle

Efficiency is given by 

ηeff ≡
W

W + TS̄cycle
≃ 1 −

TS̄cycle

W
≤ 1 − ϵ2 Tℒ2

W

ηeff ≤ 1 − ϵ3 Tℒ2

P
: powerP = ϵW



Trade-off relation

Upper bound on power

70

ϵ =
P
W

ηeff ≤ 1 − ϵ3 Tℒ2

P
= 1 − P2 Tℒ2

W3

P2 ≤
W3

Tℒ2 (1 − ηeff)

P ≤
W
ℒ

W
T

1 − ηeff

ηeff ≤ 1 − ϵ3 Tℒ2

P
,

Larger efficiency  lower power⇒
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μL

μR

V V

U
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|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

−∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ) |ri(θ)⟩⟩⟨⟨ℓi(ϕ) |
d

dϕ
|r0(ϕ)⟩⟩

≃ ϵ∑
i≠0

1
εi

(1 − eϵ−1εiθ) |ri(θ)⟩⟩⟨⟨ℓi(θ) |
d
dθ

|r0(θ)⟩⟩

∼ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(θ) |ri(θ)⟩⟩⟨⟨ℓi(θ) |
d
dθ

|r0(θ)⟩⟩


