幾何学的位相に駆動されたデーモン

H Hayakawa and R Yoshii，arXiv：2205．15193（2022）．
（H Hayakawa，VMM Paasonen，R Yoshii，arXiv：2112．12370（2021）．）

吉井 涼輔
（山陽小野田市立山口東京理科大学）

共同研究者
早川尚男（京都大学）
（Ville M．M．Paasonen（Univ．Turku））

導入：Thouless pumping

トポロジカルポンプ
平均電圧がゼロでも電流が生じ得る Mean current！

Thouless， 1983

$$
\left\langle V_{\text {bias }}\right\rangle_{\text {time average }}=0
$$

量子ドット系

M．Switkes，et．al．，Science，283， 1905 （1999）．

冷却原子系
S．Nakajima，et．al．，Nat．Phys．，12， 296 （2016）．

パラメータ空間内の非自明な曲率

Gauss－Bonnet型の議論
\checkmark カレント～トラジェクトリで囲まれた部分の曲率の和 Berry－Sinitsyn－Nemenman（BSN）曲率

N．A．Sinitsyn and I．Nemenman PRL 99， 220408 （2007）．
熱力学にベクトルポテンシャルが現れる（スカラーでは不十分） K．Tomita and H．Tomita PTP 51， 6 （1974）．

熱力学の幾何学的な解釈 －Brandner－Saito（PRL 2020）：熱浴1つ －Hino－Hayakawa（PRR2021）：熱浴2つ －Ito－Dechant（PRX2020）：確率過程

本研究の目的

実験可能な系
量子ドット系 Quantum dot＋reservoirs

クーロン相互作用するフェミ流粒子系＋幾何学的効果

量子効果？多体効果？フェルミ統計？

か熱力学にどう影響を及ぼすか
仕事？効率？エントロピー生成？

前回の発表（16aB14－3 日本物理学会＠岡山大）
エントロピー生成がFisher情報量やHesse行列で書ける

マスター方程式

密度行列 ρ の時間発展

$$
\frac{d \rho}{d \theta}=\hat{\mathscr{K}} \rho \quad \hat{\mathscr{K}}: \rho \text { に作用する線形作用素 }
$$

(CPTP性を満たす)
$\theta:$ 無次元化した時間
$\hat{\mathscr{K}}:$ 周期駆動パラメータを含む
$\left.\left|r_{i}(\theta)\right\rangle\right\rangle: \hat{\mathscr{K}}$ の右固有状態
$\left\langle\left\langle\ell_{i}(\theta)\right|: \hat{\mathscr{K}}\right.$ の左固有状態
$\varepsilon_{i}: \hat{\mathscr{K}}$ の固有値

幾何学的状態

$$
\begin{aligned}
& \left.\left.|\rho(\theta)\rangle\rangle=\left|r_{0}(\theta)\right\rangle\right\rangle-\sum_{i \neq 0} \int_{0}^{\theta} d \phi e^{\rho_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\chi)} \mathscr{A}_{\mu} \frac{d \Lambda^{\mu}}{d \phi}\left|r_{i}(\theta)\right\rangle\right\rangle \\
& \left.\mathscr{A}_{\mu}=\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{\partial}{d \Lambda^{\mu}} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle \\
& \mathscr{F}_{\mu \nu}^{i} \equiv \frac{\partial \mathscr{A}_{\nu}^{i}}{\partial \Lambda_{\mu}}-\frac{\partial \mathscr{A}_{\mu}^{i}}{\partial \Lambda_{\nu}}
\end{aligned}
$$

幾何学的状態

$$
\begin{aligned}
& \left.|\rho(\theta)\rangle\rangle=\frac{\left.\left|r_{0}(\theta)\right\rangle\right\rangle}{\uparrow}-\sum_{i \neq 0} \int_{0}^{\theta} \frac{d \phi e^{\int_{\phi}^{\theta} d d \epsilon^{-1} \varepsilon_{i}(x)}}{\uparrow} \mathscr{A}_{\mu} \frac{d \Lambda^{\mu}}{d \phi}\left|r_{i}(\theta)\right\rangle\right\rangle \\
& \mathscr{A}_{\mu}= \\
& \mathscr{F}_{\mu \nu}^{i} \equiv \frac{\left\langle\left\langle\ell_{i}(\phi)\right| \frac{\partial}{d \mathscr{A}_{\nu}^{i}}\right| r_{\nu}}{\left.\left.\partial \Lambda_{\mu}(\phi)\right\rangle\right\rangle}-\frac{\partial \frac{\mathscr{A}_{\mu}^{i}}{\partial \Lambda_{\nu}}}{\text { 定常状態 }}{ }_{\text {指数減衰 }}
\end{aligned}
$$

幾何学的状態

不純物Andersonモデル

$$
\hat{H}^{\mathrm{tot}}=\hat{H}+\hat{H}^{r}+\hat{H}^{\mathrm{int}}
$$

$$
\hat{H}=\sum_{\sigma} \epsilon_{0} \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma}+U \hat{n}_{\uparrow} \hat{n}_{\downarrow} \quad\left(\hat{n}_{\uparrow / \downarrow}=\hat{d}_{\uparrow / \downarrow}^{\dagger} \hat{d}_{\uparrow \downarrow \downarrow}\right)
$$

$\hat{d}_{\sigma}^{\dagger}\left(\hat{d}_{\sigma}\right):$ ドット内のスピンのの電子の生成消滅演算子

$$
\hat{H}^{r}=\sum_{\alpha, k, \sigma} \epsilon_{\hat{k}} \hat{a}_{\alpha, k, \sigma}^{\dagger} \hat{o}_{\alpha, k, \sigma}
$$

$$
\hat{a}_{\alpha, k, \sigma}^{\dagger}\left(\hat{a}_{\alpha, k, \sigma}\right): \text { : ⿱⿱⿰⿱⿱土八土丸灬灬浴の電子の生成消滅演算子 }
$$

（スピン σ ，波数 $k, \alpha=$ left or right）

$$
\begin{aligned}
\hat{H}^{\mathrm{int}}= & \sum_{\alpha, k, \sigma} V_{\alpha} \hat{d}_{\sigma}^{\dagger} \hat{a}_{\alpha, k, \sigma}+\mathrm{h} . \mathrm{c} ., \\
& \text { (簡単のため } V_{L}=V_{R} \text {) }
\end{aligned}
$$

変調可能なパラメータ

$\delta:$ 左右の変調の位相差

- 実験的には温度制御は難しい
- 仕事を取り出すには量子ドット内のパラメータの変調が必要

変調可能なパラメータ

$\delta:$ 左右の変調の位相差

- 実験的には温度制御は難しい
- 仕事を取り出すには量子ドット内のパラメータの変調が必要

吸熱，発熱，仕事

$Q_{A}=\oint \frac{\mathscr{P}_{\mu}+\left|\mathscr{P}_{\mu}\right|}{2} d \Lambda^{\mu}, \quad Q_{R}=\oint \frac{\mathscr{P}_{\mu}-\left|\mathscr{P}_{\mu}\right|}{2} d \Lambda^{\mu}, \quad W=\oint \mathscr{P}_{\mu} d \Lambda^{\mu}, \quad \mathscr{P}_{\mu}=\operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right)$

負の仕事：幾何学的デーモン
効率：$\eta \equiv \frac{|W|}{Q_{A}}=\frac{\left|Q_{A}+Q_{R}\right|}{Q_{A}}$

$\begin{array}{cc}\downarrow \Theta^{\downarrow} \quad \downarrow \Theta_{\square} \uparrow \\ \delta=0 & \delta=\pi\end{array}$

相対エントロピーの時間発展

相対エントロピー：$S^{\mathrm{HS}}\left(\rho(\theta)| | \rho^{\mathrm{SS}}(\theta)\right)=\operatorname{Tr} \rho(\theta)\left[\ln \rho(\theta)-\ln \rho^{\mathrm{SS}}(\theta)\right]$
＂準＂定常状態が実現される
準定常状態から変化

$$
\Delta S=-S^{\mathrm{HS}}\left(\rho(2 \pi) \| \rho^{\mathrm{SS}}(2 \pi)\right)+S^{\mathrm{HS}}\left(\rho^{\mathrm{SS}}(0) \| \rho^{\mathrm{SS}}(0)\right)
$$

幾何学的効果によるエントロピー減少
\rightarrow 負の仕事：幾何学的デーモン
（※ パラメータ変調のコストは考慮していない）

結論

－パラメータ変調によって定常状態とは違う周期的な状態が実現

$$
|\rho(\theta)\rangle\rangle: \text { 時間に対して"準"局所的 }
$$

- 幾何学的位相由来の幾何学的デーモンの実現
- 相対エントロピーは変調により，負となり得る
- 取り出せる仕事は時間に対して指数減衰する

変調を止めて定常状態に戻す必要がある

パラメータ変調のさせ方

左右の熱浴の変調のずれ：δ

$$
U=U_{0}(1+\lambda), \lambda=\cos \theta, \quad \mu_{L}=\mu \sin \theta, \quad \mu_{R}=\mu \sin (\theta+\delta)
$$

始状態：パラメータ変調のない場合の定常状態仮定：パラメータ変調は遅いとする

Andersonモデルにおける幾何学的状態と曲率

$$
\left.\left.|\rho(\theta)\rangle\rangle=\left|r_{0}(\theta)\right\rangle\right\rangle+\sum_{i \neq 0} C_{i}\left|r_{i}(\theta)\right\rangle\right\rangle
$$

$$
\mathscr{F}_{\mu \nu}^{i} \equiv \frac{\partial \mathscr{A}_{\nu}^{i}}{\partial \Lambda_{\mu}}-\frac{\partial \mathscr{A}_{\mu}^{i}}{\partial \Lambda_{\nu}}
$$

実験での実現

量子ドット系
Quantum dot turnstile

冷却原子系 S．Nakajima，et．al．，Nat．Phys．，12， 296 （2016）．

熱浴自由度の逓減

全系の密度行列の時間発展

$$
i \frac{d}{d t} \rho^{\text {tot }}=\left[\hat{H}^{\text {tot }}, \rho^{\text {tot }}\right]
$$

熱浴自由度のトレースアウト
$\operatorname{Tr}_{\text {reservoirs }}\left[i \frac{d}{d t} \rho^{\text {tot }}\right]=\operatorname{Tr}_{\text {reservoirs }}\left[\left[\hat{H}^{\text {tot }}, \rho^{\text {tot }}\right]\right]+$ Markov approx．
$\square \frac{d}{d t}\left(\begin{array}{l}\rho_{d} \\ \rho_{\uparrow} \\ \rho_{\downarrow} \\ \rho_{e}\end{array}\right)=\Gamma\left(\begin{array}{cccc}-2 f_{-}^{(1)} & f_{+}^{(1)} & f_{+}^{(1)} & 0 \\ f_{-}^{(1)} & -f_{-}^{(0)}-f_{+}^{(1)} & 0 & f_{+}^{(0)} \\ f_{-}^{(1)} & 0 & -f_{-}^{(0)}-f_{+}^{(1)} & f_{+}^{(0)} \\ 0 & f_{-}^{(0)} & f_{-}^{(0)} & -2 f_{+}^{(0)}\end{array}\right)\left(\begin{array}{c}\rho_{d} \\ \rho_{\uparrow} \\ \rho_{\downarrow} \\ \rho_{e}\end{array}\right)$

縮約密度行列

縮約密度行列は今回の取り扱いでは対角要素のみとなる

$$
\rho=\left(\begin{array}{cccc}
\rho_{d} & 0 & 0 & 0 \\
0 & \rho_{\uparrow} & 0 & 0 \\
0 & 0 & \rho_{\downarrow} & 0 \\
0 & 0 & 0 & \rho_{e}
\end{array}\right)
$$

$$
|\rho\rangle\rangle=\left(\begin{array}{l}
\rho_{d} \\
\rho_{\uparrow} \\
\rho_{\downarrow} \\
\rho_{e}
\end{array}\right)
$$

Supervector representation
$\rho_{e}, \rho_{\uparrow}, \rho_{\downarrow}, \rho_{d}$

Empty

Double occupied

フェルミ分布関数

縮約密度行列はレート方程式に従う

$$
f_{ \pm}^{(j)}=\frac{1}{1+\exp \left[\pm\left(\epsilon_{0}+j U-\mu_{L}\right) / T\right]}+\frac{1}{1+\exp \left[\pm\left(\epsilon_{0}+j U-\mu_{R}\right) / T\right]}
$$

$f_{-}^{(0)}$

$f_{-}^{(j)}$ ：Hole distributions functions

マスター方程式の物理的な解釈

$$
\frac{d}{d t}\left(\begin{array}{l}
\rho_{d} \\
\rho_{\uparrow} \\
\rho_{\downarrow} \\
\rho_{e}
\end{array}\right)=\Gamma\left(\begin{array}{cccc}
-2 f_{-}^{(1)} & f_{+}^{(1)} & f_{+}^{(1)} & 0 \\
f_{-}^{(1)} & -f_{-}^{(0)}-f_{+}^{(1)} & 0 & f_{+}^{(0)} \\
f_{-}^{(1)} & 0 & -f_{-}^{(0)}-f_{+}^{(1)} & f_{+}^{(0)} \\
0 & -f_{-}^{(0)} & -f_{-}^{(0)} & -2 f_{+}^{(0)}
\end{array}\right)\left(\begin{array}{l}
\rho_{d} \\
\rho_{\uparrow} \\
\rho_{\downarrow} \\
\rho_{e}
\end{array}\right)
$$

$$
\Gamma=\pi \nu V^{2} \quad \nu: \text { 熱浴の状態密度 }
$$

e．g．2列目

$$
\frac{d}{d t} \rho_{\uparrow}=\underline{\Gamma f_{-}^{(1)} \rho_{d}}-\Gamma f_{-}^{(0)} \rho_{\uparrow}-\Gamma f_{+}^{(1)} \rho_{\uparrow}+\underline{\Gamma f_{+}^{(0)} \rho_{e}}
$$

Joule熱

各瞬間のバイアス電圧はノンゼロ＋カレント

Joule熱の1周期積算

効率

効率：$\eta \equiv \frac{|W|}{Q_{A}}=\frac{\left|Q_{A}+Q_{R}\right|}{Q_{A}}$

$$
\delta=2 \pi n \text { で最大, } \delta=(2 n+1) \pi \text { で最小 }
$$

相対エントロピーの時間発展

相対エントロピー：$S^{\mathrm{HS}}\left(\rho(\theta)| | \rho^{\mathrm{SS}}(\theta)\right)=\operatorname{Tr} \rho(\theta)\left[\ln \rho(\theta)-\ln \rho^{\mathrm{SS}}(\theta)\right]$
θ ：無次元化した時間
最初の緩和の後，すぐに θ に関する周期関数となる
＂準＂定常状態が実現される

始状態からの変化

（準定常化後：H Hayakawa，VMM Paasonen，R Yoshii，arXiv：2112．12370（2021）．）

MASTER EQUATION FORMALISM

Simplification in semi-classical system

Semiclassical \rightarrow off-diagonal part is completely decoupled N^{2} components to N components: $\left.|\rho(t)\rangle\right\rangle=\left(\rho_{11}, \rho_{22}, \cdots, \rho_{N N}\right)^{T}$ diagonal part only

$$
\left.\left.\frac{d}{d t}|\rho\rangle\right\rangle=\hat{\mathscr{K}}|\rho\rangle\right\rangle
$$

In this formalism, trace is given by the inner product with

$$
\begin{gathered}
\left\langle\left\langle\ell_{0}\right|=(1,1, \cdots, 1)\right. \\
\left\langle\left\langle\ell_{0} \mid \rho\right\rangle\right\rangle=\rho_{11}+\rho_{22}+\cdots+\rho_{N N}=\operatorname{Tr} \rho
\end{gathered}
$$

(generalization with off-diagonal part is straightforward)

Important properties 1

Trace of the density matrix must always be unity

$$
\begin{aligned}
\frac{d}{d t}\left\langle\left\langle e_{0} \mid \rho\right\rangle\right\rangle= & \left.\frac{d\left\langle\left\langle\ell_{0}\right|\right.}{d t}|\rho\rangle\right\rangle+\left\langle\left\langle\ell_{0}\right| \frac{d|\rho\rangle\rangle}{d t}=\left\langle\left\langle e_{0}\right| \hat{\mathscr{K}} \mid \rho\right\rangle\right\rangle \\
\frac{d}{d t}\left\langle\left\langle e_{0} \mid \rho\right\rangle\right\rangle= & \\
& \left\langle\left\langle\ell_{0}\right| \hat{\mathscr{K}}=0\right. \\
& \left\langle\langle \ell _ { 0 } | : \text { zero mode } \quad \left\langle\left\langle e_{0}\right|=(1,1, \cdots, 1)\right.\right. \\
& \text { Constraint on } \hat{\mathscr{K}}: \sum_{i} \hat{\mathscr{K}}_{i j}=0
\end{aligned}
$$

Important properties 2

Suppose the system has unique steady state
By using the right eigenvectors $\left|r_{n}\right\rangle$ (with eigenvalues λ_{n})

$$
\left.|\rho(0)\rangle\rangle=\sum_{n} a_{n}\left|r_{n}\right\rangle\right\rangle
$$

Time evolution and expected behavior for late time

$$
\left.\left.|\rho(t)\rangle\rangle=\sum_{n} a_{n} e^{\lambda_{n} t}\left|r_{n}\right\rangle\right\rangle \underset{t \rightarrow \infty}{\Rightarrow}\left|r_{0}\right\rangle\right\rangle
$$

(a_{0} must be chosen to satisfy $\operatorname{Tr} \rho=1$)
It is achieved only if all $\lambda_{n \neq 0}$ are negative

IN THE PRESENCE OF MODULATION NON-ADIABATIC GEOMETRICAL PHASE

Adiabatic limit

Non-dimentionalization

$$
\begin{aligned}
& \left.\left.\left.\left.\frac{d}{d t}|\rho\rangle\right\rangle=\hat{\mathscr{K}}|\rho\rangle\right\rangle \Rightarrow \epsilon \frac{d}{d \theta}|\rho\rangle\right\rangle=\hat{K}|\rho\rangle\right\rangle \\
& \epsilon=\tau_{m} / \tau_{0}
\end{aligned}
$$

τ_{m}, τ_{0} : characteristic times for modulation and relaxation
Adiabatic limit

$$
\left.\left.\frac{d}{d \theta}|\rho\rangle\right\rangle=\frac{1}{\epsilon} \hat{K}|\rho\rangle\right\rangle
$$

\rightarrow All eigenstates except for $\left.\left|r_{0}\right\rangle\right\rangle$ are suddenly dumped $\epsilon \rightarrow 0$

$$
\left.|\rho(t)\rangle\rangle_{\epsilon=0}=\left|r_{0}(\boldsymbol{\Lambda}(\mathbf{t}))\right\rangle\right\rangle
$$

Time evolution of the density matrix

Infinitesimal time evolution

$$
\begin{aligned}
\left.\frac{d}{d \theta}|\rho\rangle\right\rangle=\epsilon^{-1} & \left.\hat{K}(\theta)|\rho\rangle\rangle \Rightarrow|\rho(\theta+\Delta \theta)\rangle\rangle-|\rho(\theta)\rangle\rangle=\epsilon^{-1} \Delta \theta \hat{K}(\theta)|\rho(\theta)\rangle\right\rangle \\
\underline{|\rho(\theta+\Delta \theta)\rangle\rangle} & \left.\left.=\left(1+\epsilon^{-1} \Delta \theta \hat{K}(\theta)\right)|\rho(\theta)\rangle\right\rangle \simeq \exp \left(\epsilon^{-1} \Delta \theta \hat{K}(\theta)\right)|\rho(\theta)\rangle\right\rangle \\
& \left.\left.=\sum_{i}\left|r_{i}\right\rangle\right\rangle\left\langle\left\langle e_{i}\right| \exp \left(\epsilon^{-1} \Delta \theta \hat{K}(\theta)\right) \mid \rho(\theta)\right\rangle\right\rangle\left(\sum_{i}\left|r_{i}\right\rangle\right\rangle\left\langle\left\langle e_{i}\right|=\hat{I}\right) \\
& \left.=\sum_{i} \exp \left(\epsilon^{-1} \varepsilon_{i}(\theta) \Delta \theta\right)\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left\langle e_{i}(\theta) \underline{|\rho(\theta)\rangle\rangle}\right.\right.
\end{aligned}
$$

Recursive procedure

$$
\begin{aligned}
|\rho(\theta+\Delta \theta)\rangle\rangle= & \left.\sum_{i, j} e^{e^{-1} \varepsilon_{i}(\theta) \Delta \theta}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left\langle\ell_{i}(\theta)\right|\right. \\
& \left.\times e^{e^{-\varepsilon_{i}} \varepsilon_{j}(\theta-\Delta \theta) \Delta \theta}\left|r_{i}(\theta-\Delta \theta)\right\rangle\right\rangle\left\langle\left\langle\ell_{i}(\theta-\Delta \theta)\right| \underline{|\rho(\theta-\Delta \theta)\rangle\rangle}\right.
\end{aligned}
$$

Important remark 1

Eigenstates

$$
\left.\left.\hat{K}(\theta)\left|r_{i}(\theta)\right\rangle\right\rangle=\varepsilon_{i}(\theta)\left|r_{i}(\theta)\right\rangle\right\rangle,\left\langle\left\langle\ell_{i}(\theta)\right| \hat{K}(\theta)=\varepsilon_{i}(\theta)\left\langle\left\langle\ell_{i}(\theta)\right|\right.\right.
$$

means
$\left.\left.\hat{K}\left(\boldsymbol{\Lambda}_{\theta}\right)\left|r_{i}\left(\boldsymbol{\Lambda}_{\theta}\right)\right\rangle\right\rangle=\varepsilon_{i}\left(\boldsymbol{\Lambda}_{\theta}\right)\left|r_{i}\left(\boldsymbol{\Lambda}_{\theta}\right)\right\rangle\right\rangle,\left\langle\left\langle\ell_{i}\left(\boldsymbol{\Lambda}_{\theta}\right)\right| \hat{K}\left(\boldsymbol{\Lambda}_{\theta}\right)=\varepsilon_{i}\left(\boldsymbol{\Lambda}_{\theta}\right)\left\langle\left\langle\ell_{i}\left(\boldsymbol{\Lambda}_{\theta} \mid\right.\right.\right.\right.$
$\boldsymbol{\Lambda}_{\theta}$: set of parameters at time θ
Above equations: eigenstate for fixed parameters $\boldsymbol{\Lambda}_{\theta}$
(eigenstate for snapshot parameters)

Time evolution from the initial state

Path integral-like formula

$$
\begin{aligned}
& |\rho(\theta+\Delta \theta)\rangle\rangle \\
& =\sum_{i, j, \cdots, k} e^{\epsilon^{-1} \varepsilon_{i}(\theta) \Delta \theta} e^{\epsilon^{-1} \varepsilon_{j}(\theta) \Delta \theta} \cdots e^{\epsilon^{-1} \varepsilon_{k}(\theta) \Delta \theta} \\
& \left.\left.\quad \times\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left\langle e_{i}(\theta) \mid r_{j}(\theta-\Delta \theta)\right\rangle\right\rangle\left\langle\left\langle e_{j}(\theta-\Delta \theta)\right| \cdots \mid r_{k}(\Delta \theta)\right\rangle\right\rangle\left\langle\left\langle e_{k}(\Delta \theta) \mid \rho(0)\right\rangle\right\rangle
\end{aligned}
$$

Initial condition

$$
\left.\left.|\rho(0)\rangle\rangle=\sum_{i} a_{i}\left|r_{m}(0)\right\rangle\right\rangle\left\langle\left\langle\ell_{m}(0) \mid \rho(0)\right\rangle\right\rangle=\sum_{m} a_{m}\left|r_{m}(0)\right\rangle\right\rangle
$$

$|\rho(\theta+\Delta \theta)\rangle\rangle$
$=\sum_{i, j, \cdots, k, m} e^{\epsilon^{-1} \varepsilon_{i}(\theta) \Delta \theta} e^{\epsilon^{-1} \varepsilon_{j}(\theta) \Delta \theta} \cdots e^{\epsilon^{-1} \varepsilon_{k}(\theta) \Delta \theta} a_{m}$
$\left.\left.\times\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left\langle\ell_{i}(\theta) \mid r_{j}(\theta-\Delta \theta)\right\rangle\right\rangle\left\langle\left\langle\ell_{j}(\theta-\Delta \theta)\right| \cdots \mid r_{k}(\Delta \theta)\right\rangle\right\rangle\left\langle\left\langle\ell_{k}(\Delta \theta) \mid r_{m}(0)\right\rangle\right\rangle$

Connection

Connection between different time

$$
\begin{aligned}
\left\langle\left\langle\ell_{i}(\theta) \mid r_{j}(\theta-\Delta \theta)\right\rangle\right\rangle & \left.=\left\langle\left\langle\ell_{i}(\theta) \mid r_{j}(\theta)\right\rangle\right\rangle-\Delta \theta\left\langle\left.\left\langle\ell_{i}(\theta)\right| \frac{d}{d \theta} \right\rvert\, r_{j}(\theta)\right\rangle\right\rangle \\
& \left.=\delta_{i, j}-\Delta \theta\left\langle\left.\left\langle\ell_{i}(\theta)\right| \frac{d}{d \theta} \right\rvert\, r_{j}(\theta)\right\rangle\right\rangle
\end{aligned}
$$

Similar to translation in curved space

Quasi adiabatic limit

$$
\begin{aligned}
|\rho(\theta)\rangle\rangle \simeq & \left.\sum_{m} e^{\int_{0}^{\theta} d \phi \epsilon^{-1} \varepsilon_{m}(\phi)} a_{m}\left|r_{m}(0)\right\rangle\right\rangle \\
& \left.\left.-\sum_{m, i} \int_{0}^{\theta} d \phi e^{\int_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\chi)} a_{m} e^{\int_{0}^{\phi} d \chi \epsilon^{-1} \varepsilon_{m}(\chi)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{m}(\phi)\right\rangle\right\rangle
\end{aligned}
$$

Important remark 2

There is no transition from $j \neq 0 \rightarrow i=0$

$$
\begin{aligned}
& \left.\left\langle\left\langle\ell_{0}(\theta) \mid r_{j \neq 0}(\theta-\Delta \theta)\right\rangle\right\rangle=-\Delta \theta\left\langle\left.\left\langle\ell_{0}(\theta)\right| \frac{d}{d \theta} \right\rvert\, r_{j}(\theta)\right\rangle\right\rangle \\
& \left.=-\Delta \theta \frac{d}{d \theta} \frac{\left\langle\left\langle\ell_{0}(\theta) \mid r_{j}(\theta)\right\rangle\right\rangle}{=0}+\Delta \theta\left(\frac{d}{\frac{d \theta}{d \theta}\left\langle\left\langle\ell_{0}(\theta)\right|\right.}\right)\left|r_{j}(\theta)\right\rangle\right\rangle=0 \\
& \text { Orthogonal } \quad\left\langle\left\langle e_{0}(\theta)\right|=(1, \cdots, 1)\right.
\end{aligned}
$$

Coefficient for $\left.\left|r_{0}\right\rangle\right\rangle$ is unchanged

$$
\left.\left.|\rho(\theta)\rangle\rangle=a_{0}(\underline{0})\left|r_{0}(\theta)\right\rangle\right\rangle+\sum_{i \neq 0} a_{i}(\theta)\left|r_{m}(\theta)\right\rangle\right\rangle
$$

Consistent with $\operatorname{Tr} \rho=1 \rightarrow\left\langle\left\langle\ell_{0}(\theta) \mid \rho(\theta)\right\rangle\right\rangle=\left\langle\left\langle\ell_{0}(0) \mid \rho(0)\right\rangle\right\rangle=1$

$$
\text { (If } a(0)=1 \text {) }
$$

Special case: initially steady state

K Takahashi, K Fujii, Y Hino, H Hayakawa, PRL (2020).
In the case of $\left.\left.|\rho(0)\rangle\rangle=\left|r_{0}(0)\right\rangle\right\rangle=\left|\rho^{\mathrm{SS}}(0)\right\rangle\right\rangle$

$$
\left.|\rho(\theta)\rangle\rangle=\left|r_{0}(\theta)\right\rangle\right\rangle-\sum_{i \neq 0} \frac{\int_{0}^{\theta} d \phi e^{j_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(x)}}{B} \frac{\left.\left.\left.. . r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle}{C}
$$

"Feynman" diagram
Schematic understanding
A: transition at ϕ
B : exponential dumping
C: A takes place at any time
"Pumping and relaxation"

Slow modulating case

If $\epsilon \ll 1$

$$
\begin{aligned}
|\rho(\theta)\rangle\rangle & \left.\left.\left.\left.\sim\left|r_{0}(\theta)\right\rangle\right\rangle-\sum_{i \neq 0} \int_{0}^{\theta} d \phi \frac{e^{\rho_{\phi}^{d} d \chi e^{-1} \varepsilon_{i}(x)}}{\text { Only } \theta-\epsilon \leq \phi \leq \theta \text { contributes }} r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle e_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle \\
& \left.\left.\left.\sim\left|r_{0}(\theta)\right\rangle\right\rangle-\sum_{i \neq 0} \int_{\theta-\epsilon}^{\theta} d \phi e^{\int_{\phi}^{\theta} d \epsilon^{-1} \varepsilon_{i}(\gamma)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle e_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle \\
& \left.\left.\left.\sim\left|r_{0}(\theta)\right\rangle\right\rangle-\epsilon \sum_{i \neq 0} e^{e_{i}(\theta)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\theta)\right| \frac{d}{d \theta} \right\rvert\, r_{0}(\theta)\right\rangle\right\rangle \\
& \left.\left.\sim\left|r_{0}(\theta)\right\rangle\right\rangle-\epsilon \sum_{i \neq 0} c_{i}(\theta)\left|r_{i}(\theta)\right\rangle\right\rangle
\end{aligned}
$$

Deviation from $\left.\left|r_{0}(\theta)\right\rangle\right\rangle$ is $O(\epsilon)$

Important remark 3

For $\left.\left.\epsilon \ll 1 \quad|\rho(\theta)\rangle\rangle \sim\left|r_{0}(\theta)\right\rangle\right\rangle-\epsilon \sum_{i \neq 0} c_{i}(\theta)\left|r_{i}(\theta)\right\rangle\right\rangle$
We neglect the higher orders ~ Born approximation

"Feynman" diagram

$$
\begin{aligned}
|\rho(\theta)\rangle\rangle & \left.\left.\left.\sim\left|r_{0}(\theta)\right\rangle\right\rangle-\sum_{i \neq 0} \int_{0}^{\theta} d d e^{j_{\phi}^{\theta} d \chi e^{-1} \varepsilon_{i}(\lambda)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle e_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle \\
& \left.\left.\left.+\sum_{i \neq 0} \sum_{j \neq 0} \int_{\xi}^{\theta} d \phi \int_{0}^{\xi} d \zeta e^{\int_{\phi}^{\theta} d \lambda_{1} e^{-1} \varepsilon_{i}\left(\chi_{1}\right)} e^{\iint_{\xi}^{\xi} d \lambda_{2} e^{-1} \varepsilon_{j}\left(\gamma_{2}\right)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\epsilon_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{j}(\phi)\right\rangle\right\rangle\left\langle\left.\left\langle e_{j}(\zeta)\right| \frac{d}{d \zeta} \right\rvert\, r_{0}(\zeta)\right\rangle\right\rangle
\end{aligned}
$$

$$
+\cdots
$$

Suggestive example

If we start the modulation at θ_{1} and stop at θ_{2}
(I)

(III)

(I) $\left.|\rho(\theta)\rangle\rangle=\left|r_{0}\left(\boldsymbol{\Lambda}_{\text {ini }}\right)\right\rangle\right\rangle$
(II) $\left.\left.\left.|\rho(\theta)\rangle\rangle=\left|r_{0}(\mathbf{\Lambda})\right\rangle\right\rangle-\sum_{i \neq 0} \int_{\theta_{1}}^{\theta} d \phi e^{\int_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\chi)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle$
(III) $\begin{aligned}|\rho(\theta)\rangle\rangle & \left.=\left|r_{0}\left(\boldsymbol{\Lambda}_{\mathrm{fin}}\right)\right\rangle\right\rangle-\sum_{i \neq 0} \int_{\theta_{1}}^{\theta_{2}} d \frac{e^{\int_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\chi)}}{\Rightarrow 0\left(\theta \gg \theta_{2}\right)} \\ & \left.\left.\Rightarrow\left|r_{0}(\theta)\right\rangle\right\rangle\left\langle\left\langle\Lambda_{\mathrm{fin}}\right)\right\rangle\right\rangle\end{aligned}$

Expected behavior

If we continuously modulate parameters

$$
\left.\left.\left.|\rho(\theta)\rangle\rangle=\left|r_{0}(\theta)\right\rangle\right\rangle-\sum_{i \neq 0} \int_{0}^{\theta} d \phi \underline{e^{\int_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\chi)}}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle
$$

Exponential factor cut off the contribution from far past

$|\rho(\theta)\rangle\rangle$: quasi local in time
$|\rho(\theta)\rangle\rangle$ becomes quasi steady state
which wears the effect from the past
Similar to Fermi liquid

Geometrical interpretation

In the case of $\left.\left.|\rho(0)\rangle\rangle=\left|r_{0}(0)\right\rangle\right\rangle=\left|\rho^{\mathrm{SS}}(0)\right\rangle\right\rangle$

$$
\begin{aligned}
|\rho(\theta)\rangle\rangle & \left.\left.=\left|r_{0}(\theta)\right\rangle\right\rangle+\sum_{i \neq 0} C^{i}\left|r_{i}(\theta)\right\rangle\right\rangle \\
C^{i} & \left.=-\int_{0}^{\theta} d \phi e^{e_{\phi}^{j} d \lambda e^{-1} \varepsilon_{i}(\lambda)}\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle
\end{aligned}
$$

"Vector potential"

$$
\left.\left.\left.\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle=\frac{d \Lambda^{\mu}}{d \phi}\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{\partial}{d \Lambda^{\mu}} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle\right) \equiv \mathscr{A}_{\mu}^{i}
$$

"Curvature"

$$
\mathscr{F}_{\mu \nu}^{i} \equiv \frac{\partial \mathscr{A}_{\nu}^{i}}{\partial \Lambda_{\mu}}-\frac{\partial \mathscr{A}_{\mu}^{i}}{\partial \Lambda_{\nu}}
$$

RELATIVE ENTROPY

Distance between two distribution

How to measure the distance between two distribution?

Naive idea: compare von-Neumann entropies

$$
S_{1}^{\mathrm{VN}}=\operatorname{Tr}\left(-\rho_{1} \ln \rho_{1}\right) \quad S_{2}^{\mathrm{VN}}=\operatorname{Tr}\left(-\rho_{2} \ln \rho_{2}\right)
$$

Shortcoming: it is not positive-semidefinite

$$
\begin{aligned}
& \Delta S^{\mathrm{vN}}(\rho \| \sigma)=-\rho \ln \rho+\sigma \ln \sigma \\
& \quad \text { If } \Delta S^{\mathrm{VN}}(\rho \| \sigma)>0, \text { then } \Delta S^{\mathrm{VN}}(\sigma \| \rho)<0
\end{aligned}
$$

Useful tool: Relative entropy

Quantum Relative entropy
(Kullback-Leibler-Umegaki relative entropy)

$$
\Delta S^{\mathrm{KL}}(\rho \| \sigma)=\operatorname{Tr}[\rho(\ln \rho-\ln \sigma)]
$$

Positive-semidefiniteness

$$
\Delta S^{\mathrm{KL}}(\rho \| \sigma) \geq 0 \quad \Delta S^{\mathrm{KL}}(\sigma \| \rho) \geq 0
$$

(Note that $\Delta S^{\mathrm{KL}}(\rho \| \sigma) \neq \Delta S^{\mathrm{KL}}(\sigma \| \rho)$ in general)
Diagonal case (in our study, it is the case)
$-\Delta S^{\mathrm{KL}}(\rho \| \sigma)=-\sum_{i}\left[\rho_{i i}\left(\ln \rho_{i i}-\ln \sigma_{i i}\right)\right]$
$=\sum_{i} \rho_{i i} \ln \frac{\sigma_{i i}}{\rho_{i i}} \leq \sum_{45}^{\sum_{i} \rho_{i i}\left(\frac{\sigma_{i i}}{\rho_{i i}}-1\right)=\operatorname{Tr} \sigma-\operatorname{Tr} \rho=0}$

$$
\ln x \leq x-1
$$

Meaning of Relative entropy

Uncertainty of information $\sim-\ln \rho$
Entropy $=\langle-\rho \ln \rho\rangle=-\operatorname{Tr} \rho \ln \rho$
ex.) $\rho_{1}=(0,1), \rho_{2}=(1 / 4,3 / 4), \rho_{3}=(1 / 2,1 / 2)$
$-\operatorname{Tr} \rho_{1} \ln \rho_{1}=0, \quad-\operatorname{Tr} \rho_{2} \ln \rho_{2}=2 \ln 2-\frac{3}{4} \ln 3, \quad-\operatorname{Tr} \rho_{3} \ln \rho_{3}=2 \ln 2$ Certain Uncertain

If we obtain information and ρ becomes $\rho_{3} \rightarrow \rho_{1}$
Reduction of the uncertainty $\sim-\left[-\ln \rho_{1}-\left(-\ln \rho_{3}\right)\right]$
Average information gain

$$
\left\langle\ln \rho_{1}-\ln \rho_{3}\right\rangle=\operatorname{Tr} \rho_{1}\left(\ln \rho_{1}-\ln \rho_{3}\right)=\Delta S^{\mathrm{KL}}\left(\rho_{1}| | \rho_{3}\right)
$$

Distance from the steady state

Relative entropy between ρ and $\rho^{\text {SS }}$

$$
S^{\mathrm{KL}}\left(\rho \| \rho^{\mathrm{SS}}\right)=\operatorname{Tr} \rho\left(\ln \rho-\ln \rho^{\mathrm{SS}}\right)
$$

In the relaxation process $\rho=\rho^{\mathrm{SS}}+\sum_{i} \rho^{(i)} e^{\lambda_{i, t}}\left(\lambda_{i}<0\right)$

$$
\begin{gathered}
S^{\mathrm{KL}}\left(\rho \| \rho^{\mathrm{SS}}\right)=\sum_{n}\left(\rho_{n n}^{\mathrm{SS}}+\sum_{i} \rho_{n n}^{(i)} e^{\lambda_{i} t}\right)\left[\ln \left(\rho_{n n}^{\mathrm{SS}}+\sum_{k} \rho_{n n}^{(k)} e^{\lambda_{k} t}\right)-\ln \rho_{n n}^{\mathrm{SS}}\right] \\
\xrightarrow[t \rightarrow \infty]{ } \sum_{n} \rho_{n n}^{\mathrm{SS}}\left(\ln \rho_{n n}^{\mathrm{SS}}-\ln \rho_{n n}^{\mathrm{SS}}\right)=0 \\
S^{\mathrm{KL}}\left(\rho \| \rho^{\mathrm{SS}}\right) \geq 0 \xrightarrow[\text { relaxation }]{ } S^{\mathrm{KL}}\left(\rho^{\mathrm{SS}}| | \rho^{\mathrm{SS}}\right)=0
\end{gathered}
$$

Monotonicity of relative entropy

Complete Positive Trace Preserving (CPTP) map

$$
\mathscr{E}: \rho \rightarrow \mathscr{E}(\rho)(\operatorname{Tr} \mathscr{E}(\rho)=1, \mathscr{E}(\rho) \text { is positive semi-definite })
$$

Monotonic property of relative entropy

$$
S^{\mathrm{KL}}(\rho \| \sigma) \geq S^{\mathrm{KL}}(\mathscr{E}(\rho) \| \mathscr{E}(\sigma))
$$

(Proof is found in arXiv: 2112.12370)
In the case \mathscr{E} is time evolution, $\rho^{\text {SS }}$ is the fixed point

$$
\begin{aligned}
& \mathscr{E}\left(\rho^{\mathrm{SS}}\right)=\rho^{\mathrm{SS}} \\
& S^{\mathrm{KL}}\left(\rho \| \rho^{\mathrm{SS}}\right) \geq S^{\mathrm{KL}}\left(\mathscr{E}(\rho) \| \rho^{\mathrm{SS}}\right) \\
& \quad \text { "H-theorem" }
\end{aligned}
$$

"Entropy" of the arbitrary state

Monotonically increasing quantity in time evolution

$$
S\left(\rho \| \rho^{\mathrm{SS}}\right)=-S^{\mathrm{KL}}\left(\rho \| \rho^{\mathrm{SS}}\right)=-\operatorname{Tr} \rho\left(\ln \rho-\ln \rho^{\mathrm{SS}}\right)
$$

Remark 1
$S\left(\rho \| \rho^{\mathrm{SS}}\right)$ is negative semi-definite
Remark 2
Maximum value of $S\left(\rho \| \rho^{\text {SS }}\right.$) is zero

In the presence of modulation

Steady states in two parameter setting

Time evolution of the steady state

Two possibility of the definition of entropy

Definition 1

$S\left(\rho_{1}(t) \| \rho_{0}^{\mathrm{SS}}\right)$: Deviation from the initial state
(:) $S\left(\rho_{1}(t) \| \rho_{0}^{\mathrm{SS}}\right)$ monitors the distance from the initial state
(2. even if $\rho_{1}(t)$ coincides $\rho_{1}^{\mathrm{SS}}, S\left(\rho_{1}(t) \| \rho_{0}^{\mathrm{SS}}\right)$ is nonzero

Two possibility of the definition of entropy

Definition 2

$S\left(\rho_{1}(t) \| \rho_{1}^{\mathrm{SS}}\right)$: Deviation from the steady state
(:) $S\left(\rho_{1}(t) \| \rho_{1}^{\mathrm{SS}}\right)$ characterize the distance from steady state
: difficult to compare the different time

Our choice

Definition 2

$S\left(\rho_{1}(t) \| \rho_{1}^{\mathrm{SS}}\right)$

- Deviation from the steady state $S\left(\rho_{1}^{\mathrm{SS}} \| \rho_{1}^{\mathrm{SS}}\right)=0$
- House keeping part is subtracted

Important remark

In the presence of the parameter modulation

$$
S\left(\rho \| \rho_{0}^{\mathrm{SS}}\right) \leq S\left(\mathscr{E}(\rho)| | \mathscr{E}\left(\rho_{0}^{\mathrm{SS}}\right)\right) \neq \underset{\uparrow}{S\left(\mathscr{E}(\rho)| | \rho_{0}^{\mathrm{SS}}\right)}
$$

ρ_{0}^{SS} is no longer the fixed point

Expected behavior

If Modulation is much slower than other time scales

The effect of the modulation can be detected

$$
S\left(\rho(t) \| \rho_{1}^{\mathrm{SS}}\right) \neq 0
$$

RESULT 1: GENERAL PROPERTY

After quasi steady state is achieved

Case of Slow modulation

Expansion in ϵ

$$
\rho=\rho^{\mathrm{SS}}+\epsilon \rho^{(1)}+\cdots
$$

$\epsilon:$ time scale of the parameter modulation
$\epsilon=0 \Rightarrow$ adiabatic limit
Relative entropy deviation from steady state

$$
\begin{aligned}
\Delta S\left(\rho \| \rho^{\mathrm{SS}}\right) & =S\left(\rho^{\mathrm{SS}}| | \rho^{\mathrm{SS}}\right)-S\left(\rho \| \rho^{\mathrm{SS}}\right) \\
& =\operatorname{Tr} \rho\left(\ln \rho-\ln \rho^{\mathrm{SS}}\right) \\
& =\frac{1}{2} \epsilon^{2} \operatorname{Tr}\left[\rho^{(1)}\left(\rho^{\mathrm{SS}}\right)^{-1} \rho^{(1)}\right]+O\left(\epsilon^{3}\right)
\end{aligned}
$$

Linear response calculation

Supervector formalism

$$
\left.\left.\left.\left.\left.\epsilon \frac{d}{d \theta}|\rho\rangle\right\rangle=\hat{K}|\rho\rangle\right\rangle, \quad|\rho\rangle\right\rangle=\left|\rho^{\mathrm{SS}}\right\rangle\right\rangle+\epsilon\left|\rho^{(1)}\right\rangle\right\rangle+\cdots
$$

Spectral decomposition

$$
\begin{aligned}
& \left.\hat{K}=\sum_{m} \varepsilon_{m}\left|r_{m}\right\rangle\right\rangle\left\langle\left\langle\ell_{m}\right| \begin{array}{l}
\varepsilon_{m}: \text { eigenvalues of } \hat{K} \\
\left.\left|r_{m}\right\rangle\right\rangle,\left\langle\left\langle\ell_{m}\right|: ~ r i g h t ~ a n d ~ l e f t ~ e i g e n v e c t o r s ~\right.
\end{array}\right. \\
& \left.\hat{K}^{+} \equiv \sum_{m \neq 0} \varepsilon_{m}^{-1}\left|r_{m}\right\rangle\right\rangle\left\langle\left\langle\ell_{m}\right|: \text { pseudo inverse of } \hat{K}\right.
\end{aligned}
$$

Geometrical interpretation

Quantum relative entropy for slow modulation

$$
\begin{aligned}
& \Delta S\left(\rho \| \rho^{\mathrm{SS}}\right)=\frac{1}{2} \epsilon^{2} \operatorname{Tr}\left[\left(\partial^{\mu} \rho^{\mathrm{SS}}\right)\left(\rho^{\mathrm{SS}}\right)^{-1}\left(\partial^{\nu} \rho^{\mathrm{SS}}\right)\right] \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}+O\left(\epsilon^{3}\right) \\
&=\frac{1}{2} \epsilon^{2} \operatorname{Tr} \rho^{\mathrm{SS}}\left[\left(\partial^{\mu} \ln \rho^{\mathrm{SS}}\right)\left(\partial^{\nu} \ln \rho^{\mathrm{SS}}\right)\right] \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}+O\left(\epsilon^{3}\right) \\
& \Delta S\left(\rho \| \rho^{\mathrm{SS}}\right)=\frac{1}{2} \epsilon^{2} g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}+O\left(\epsilon^{3}\right) \\
& g^{\mu \nu}=\operatorname{Tr} \rho^{\mathrm{SS}}\left[\left(\partial^{\mu} \ln \rho^{\mathrm{SS}}\right)\left(\partial^{\nu} \ln \rho^{\mathrm{SS}}\right)\right] \text { :Fisher information matrix } \\
&=-\operatorname{Tr} \rho^{\mathrm{SS}}\left[\partial^{\mu} \partial^{\nu} \ln \rho^{\mathrm{SS}}\right]: \text { Hessian matrix of } \ln \rho^{\mathrm{SS}} \times(-1)
\end{aligned}
$$

Stability of Steady State

Averaged quantum relative entropy in one-cycle

$$
\bar{S}_{\mathrm{cycle}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{1}{2} \epsilon^{2} g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}+O\left(\epsilon^{3}\right)
$$

Positive semi-definiteness

$$
g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}=\operatorname{Tr}\left[\rho^{\mathrm{SS}}\left(\frac{d \Lambda_{\mu}}{d \theta} \partial^{\mu} \ln \rho^{\mathrm{SS}}\right)^{2}\right] \geq 0
$$

"Entropy" increases towards any direction
It implies the stability of steady state

Thermodynamic length

Lower bound on "entropy" production

$$
\begin{aligned}
& \bar{S}_{\text {cycle }}=\frac{\epsilon^{2}}{2} \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta} \\
& \quad \text { Cauchy-Schwartz inequality } \\
& \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta} \geq\left(\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \sqrt{g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}}\right)^{2} \\
& \bar{S}_{\text {cycle }}=\frac{\epsilon^{2}}{2} \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta} \geq \epsilon^{2} \mathscr{L}^{2}
\end{aligned}
$$

Thermal length

$$
\mathscr{L}=\frac{1}{\sqrt{2}} \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} \sqrt{g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}}=\frac{1}{\sqrt{2}} \oint \sqrt{g^{\mu \nu} d \Lambda_{\mu} d \Lambda_{\nu}}
$$

WORK AND EFFICIENCY

Work relations

The "work" (see, for instance, Jarzynski 1997)

$$
W=\int d t \dot{E}(t)=\int d t\langle\dot{E}(t)\rangle=\int d t\langle\dot{H}(t)\rangle
$$

If the time dependence only appears through parameters

$$
\rho(t), H(t) \rightarrow \rho\left(\Lambda^{\mu}(t)\right), H\left(\Lambda^{\mu}(t)\right)
$$

Chain rule $\dot{H}(t)=\frac{d \Lambda^{\mu}}{d t} \frac{\partial H}{\partial \Lambda^{\mu}}$ yields

$$
W=\int \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right) \frac{d \Lambda^{\mu}}{d t} d t
$$

Geometrical interpretation

Work represented by contour integral

$$
W=\int \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right) \frac{d \Lambda^{\mu}}{d t} d t=\int \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \lambda^{\mu}}\right) d \Lambda^{\mu}
$$

In the case of the cyclic modulation $\lambda_{\text {initial }}=\lambda_{\text {final }}$

$$
W=\oint d \Lambda^{\mu} \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right)
$$

Work is given by the contour integral of the vector field

$$
W=\oint \mathscr{P}_{\mu} d \Lambda^{\mu} \quad \mathscr{P}_{\mu}=\operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right)
$$

Work-density-tensor in parameter space

By using the Stokes' theorem

$$
\begin{aligned}
& W=\oint_{\partial \Omega} \mathscr{P}_{\mu} d \Lambda^{\mu} \\
& W=\int_{\Omega} \mathscr{R}_{\mu \nu} d S^{\mu \nu} \\
& \mathscr{R}_{\mu \nu}=\frac{\partial \mathscr{P}_{\nu}}{\partial \Lambda_{\mu}}-\frac{\partial \mathscr{P}_{\mu}}{\partial \Lambda_{\nu}}: \text { curvature associated with the work } \\
& d S^{\mu \nu}=\frac{1}{2} d \Lambda_{\mu} \wedge d \Lambda_{\nu}
\end{aligned}
$$

Work in one-cycle

Various representations of work

$$
\begin{aligned}
& W=\int d t\langle\rho(t) \dot{H}(t)\rangle=\oint \mathscr{P}_{\mu} d \Lambda^{\mu}=\int_{\Omega} \mathscr{R}_{\mu \nu} d S^{\mu \nu} \\
& \mathscr{P}_{\mu}=\operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right) \quad \mathscr{R}_{\mu \nu}=\frac{\partial \mathscr{A}_{\nu}}{\partial \Lambda_{\mu}}-\frac{\partial \mathscr{A}_{\mu}}{\partial \Lambda_{\nu}}
\end{aligned}
$$

"Work" is either positive or negative (opposite direction)

If $W<0$, work is extracted from the system

Efficiency

Absorption process and release process

$$
Q_{A}=\oint \frac{\mathscr{P}_{\mu}+\left|\mathscr{P}_{\mu}\right|}{2} d \Lambda^{\mu}, \quad Q_{R}=\oint \frac{\mathscr{P}_{\mu}-\left|\mathscr{P}_{\mu}\right|}{2} d \Lambda^{\mu}
$$

Efficiency: $\eta \equiv \frac{|W|}{Q_{A}}=\frac{\left|Q_{A}+Q_{B}\right|}{Q_{A}}$

RESULT 2: EFFICIENCY AND POWER

"First low" in the presence of modulation

The "work", "entropy" production, and heat

$$
\begin{aligned}
& W=\oint d \Lambda^{\mu} \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right) \\
& \bar{S}_{\text {cycle }}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{1}{2} \epsilon^{2} g^{\mu \nu} \frac{d \Lambda_{\mu}}{d \theta} \frac{d \Lambda_{\nu}}{d \theta}+O\left(\epsilon^{3}\right)
\end{aligned}
$$

$Q \equiv W+T \bar{S}_{\text {cycle }}$

Efficiency is given by

$$
\begin{aligned}
\eta^{\text {eff }} \equiv \frac{W}{W+T \bar{S}_{\text {cycle }}} & \simeq 1-\frac{T \bar{S}_{\text {cycle }}}{W} \leq 1-\epsilon^{2} \frac{T \mathscr{L}^{2}}{W} \\
& \eta^{\text {eff }} \leq 1-\epsilon^{3} \frac{T \mathscr{L}^{2}}{P} \quad P=\epsilon W: \text { power }
\end{aligned}
$$

Trade-off relation

Upper bound on power

$$
\eta^{\mathrm{eff}} \leq 1-\epsilon^{3} \frac{T \mathscr{L}^{2}}{P}, \quad \epsilon=\frac{P}{W}
$$

Larger efficiency \Rightarrow lower power

$$
\begin{aligned}
& \left.\left.\left.|\rho(\theta)\rangle\rangle=\left|r_{0}(\theta)\right\rangle\right\rangle-\sum_{i \neq 0} \int_{0}^{\theta} d \phi e^{\rho_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\chi)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle \\
& \left.\left.-\sum_{i \neq 0} \int_{0}^{\theta} d \phi e^{\int_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\chi)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\phi)\right| \frac{d}{d \phi} \right\rvert\, r_{0}(\phi)\right\rangle\right\rangle \\
& \left.\left.\sim-\sum_{i \neq 0} \int_{0}^{\theta} d \phi e^{\int_{\phi}^{\theta} d \chi \epsilon^{-1} \varepsilon_{i}(\theta)}\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\theta)\right| \frac{d}{d \theta} \right\rvert\, r_{0}(\theta)\right\rangle\right\rangle \\
& \left.\left.\quad \simeq \epsilon \sum_{i \neq 0} \frac{1}{\varepsilon_{i}}\left(1-e^{\epsilon^{-1} \varepsilon_{i} \theta}\right)\left|r_{i}(\theta)\right\rangle\right\rangle\left\langle\left.\left\langle\ell_{i}(\theta)\right| \frac{d}{d \theta} \right\rvert\, r_{0}(\theta)\right\rangle\right\rangle
\end{aligned}
$$

