

幾何学的位相に駆動されたデーモン

H Hayakawa and R Yoshii, arXiv:2205.15193 (2022).

(H Hayakawa, VMM Paasonen, R Yoshii, arXiv:2112.12370 (2021).)

吉井 涼輔 (山陽小野田市立山口東京理科大学) 共同研究者 早川尚男 (京都大学) (Ville M. M. Paasonen (Univ. Turku))

幾何学的な解釈

N. A. Sinitsyn and I. Nemenman PRL 99, 220408 (2007).

熱力学にベクトルポテンシャルが現れる(スカラーでは不十分)

K. Tomita and H. Tomita PTP **51**, 6 (1974).

熱力学の幾何学的な解釈

Brandner-Saito (PRL 2020): 熱浴1つ
Hino-Hayakawa (PRR2021): 熱浴2つ
Ito-Dechant (PRX2020): 確率過程

実験可能な系

量子ドット系 Quantum dot + reservoirs

クーロン相互作用するフェミ流粒子系+幾何学的効果

量子効果? 多体効果? フェルミ統計?

が熱力学にどう影響を及ぼすか

仕事?効率?エントロピー生成?

前回の発表(16aB14-3 日本物理学会@岡山大)

エントロピー生成がFisher情報量やHesse行列で書ける

マスター方程式

密度行列_ρの時間発展

$\frac{d\rho}{d\theta} = \hat{\mathscr{X}}\rho$ $\hat{\mathscr{X}}: \rho$ に作用する線形作用素 (CPTP性を満たす)

θ: 無次元化した時間

泳: 周期駆動パラメータを含む

$|r_i(\theta)\rangle$: $\hat{\mathscr{X}}$ の右固有状態

 $\langle \langle \ell_i(\theta) | : \hat{X}$ の左固有状態

ε_i : $\hat{\mathscr{X}}$ の固有値

幾何学的状態

$$\begin{split} |\rho(\theta)\rangle\rangle &= |r_{0}(\theta)\rangle\rangle - \sum_{i\neq 0} \int_{0}^{\theta} d\phi e^{\int_{\phi}^{\theta} d\chi e^{-1}\varepsilon_{i}(\chi)} \mathscr{A}_{\mu} \frac{d\Lambda^{\mu}}{d\phi} |r_{i}(\theta)\rangle\rangle \\ \mathscr{A}_{\mu} &= \langle \langle \mathscr{E}_{i}(\phi) | \frac{\partial}{d\Lambda^{\mu}} |r_{0}(\phi)\rangle \rangle \\ \mathscr{F}_{\mu\nu}^{i} &\equiv \frac{\partial \mathscr{A}_{\nu}^{i}}{\partial\Lambda_{\mu}} - \frac{\partial \mathscr{A}_{\mu}^{i}}{\partial\Lambda_{\nu}} \end{split}$$

幾何学的状態

$$\begin{split} |\rho(\theta)\rangle\rangle &= |r_{0}(\theta)\rangle\rangle - \sum_{i\neq 0} \int_{0}^{\theta} \underline{d\phi} e^{\int_{\phi}^{\theta} d\chi e^{-1}\varepsilon_{i}(\chi)} \mathscr{A}_{\mu} \frac{d\Lambda^{\mu}}{d\phi} |r_{i}(\theta)\rangle\rangle \\ \mathscr{A}_{\mu} &= \langle \langle \ell_{i}(\phi) | \frac{\partial}{d\Lambda^{\mu}} |r_{0}(\phi)\rangle \rangle \\ \mathscr{F}_{\mu\nu}^{i} &\equiv \frac{\partial \mathscr{A}_{\nu}^{i}}{\partial\Lambda_{\mu}} - \frac{\partial \mathscr{A}_{\mu}^{i}}{\partial\Lambda_{\nu}} \\ \widehat{r} \ddot{r} \ddot{r} \ddot{r} \ddot{k} \ddot{k} \\ \end{split}$$

幾何学的状態

不純物Andersonモデル

 $\hat{H}^{\text{tot}} = \hat{H} + \hat{H}^r + \hat{H}^{\text{int}}$

 $\hat{H} = \sum_{\sigma} \epsilon_0 \hat{d}_{\sigma}^{\dagger} \hat{d}_{\sigma} + U \hat{n}_{\uparrow} \hat{n}_{\downarrow} \qquad \left(\hat{n}_{\uparrow/\downarrow} = \hat{d}_{\uparrow/\downarrow}^{\dagger} \hat{d}_{\uparrow/\downarrow} \right)$

 $\hat{d}^{\dagger}_{\sigma}(\hat{d}_{\sigma})$:ドット内のスピン σ の電子の生成消滅演算子

$$\hat{H}^{r} = \sum_{\alpha,k,\sigma} \epsilon_{k} \hat{a}^{\dagger}_{\alpha,k,\sigma} \hat{a}_{\alpha,k,\sigma}$$

$$\hat{a}^{\dagger}_{lpha,k,\sigma}$$
 ($\hat{a}_{lpha,k,\sigma}$): 熱浴の電子の生成消滅演算子

(スピン σ , 波数k, α = left or right)

$$\hat{H}^{\text{int}} = \sum_{lpha,k,\sigma} V_{lpha} \hat{d}_{\sigma}^{\dagger} \hat{a}_{lpha,k,\sigma} + \text{h.c.},$$
(簡単のため $V_L = V_R$)

変調可能なパラメータ

- ・実験的には温度制御は難しい
- ・仕事を取り出すには量子ドット内のパラメータの変調が必要

変調可能なパラメータ

- ・実験的には温度制御は難しい
- ・仕事を取り出すには量子ドット内のパラメータの変調が必要

> *U*, μ_L, μ_Rを変調させる

相対エントロピーの時間発展

θ: 無次元化した時間

相対エントロピー: $S^{HS}(\rho(\theta) | | \rho^{SS}(\theta)) = \text{Tr}\rho(\theta) [\ln \rho(\theta) - \ln \rho^{SS}(\theta)]$ "準"定常状態が実現される

幾何学的効果によるエントロピー減少 → 負の仕事: <mark>幾何学的デーモン</mark>

(※ パラメータ変調のコストは考慮していない)

・パラメータ変調によって定常状態とは違う周期的な状態が実現

 $|\rho(\theta)\rangle$:時間に対して"準"局所的

- ・幾何学的位相由来の幾何学的デーモンの実現
- ・相対エントロピーは変調により、負となり得る
- 取り出せる仕事は時間に対して指数減衰する

変調を止めて定常状態に戻す必要がある

パラメータ変調のさせ方

左右の熱浴の変調のずれ: δ

 $U = U_0(1 + \lambda), \ \lambda = \cos \theta, \quad \mu_L = \mu \sin \theta, \quad \mu_R = \mu \sin(\theta + \delta)$

Andersonモデルにおける幾何学的状態と曲率

熱浴自由度の逓減

全系の密度行列の時間発展

$$i\frac{d}{dt}\rho^{\text{tot}} = [\hat{H}^{\text{tot}}, \rho^{\text{tot}}]$$

熱浴自由度のトレースアウト

$$\operatorname{Tr}_{\operatorname{reservoirs}}\left[i\frac{d}{dt}\rho^{\operatorname{tot}}\right] = \operatorname{Tr}_{\operatorname{reservoirs}}\left[\left[\hat{H}^{\operatorname{tot}},\rho^{\operatorname{tot}}\right]\right] + \operatorname{Markov} \operatorname{approx}.$$

$$\square \searrow \frac{d}{dt} \begin{pmatrix} \rho_d \\ \rho_{\uparrow} \\ \rho_{\downarrow} \\ \rho_e \end{pmatrix} = \Gamma \begin{pmatrix} -2f_-^{(1)} & f_+^{(1)} & f_+^{(1)} & 0 \\ f_-^{(1)} & -f_-^{(0)} - f_+^{(1)} & 0 & f_+^{(0)} \\ f_-^{(1)} & 0 & -f_-^{(0)} - f_+^{(1)} & f_+^{(0)} \\ 0 & f_-^{(0)} & f_-^{(0)} & -2f_+^{(0)} \end{pmatrix} \begin{pmatrix} \rho_d \\ \rho_{\uparrow} \\ \rho_{\downarrow} \\ \rho_e \end{pmatrix}$$

縮約密度行列

縮約密度行列は今回の取り扱いでは対角要素のみとなる

$$\rho = \begin{pmatrix} \rho_d & 0 & 0 & 0 \\ 0 & \rho_{\uparrow} & 0 & 0 \\ 0 & 0 & \rho_{\downarrow} & 0 \\ 0 & 0 & 0 & \rho_e \end{pmatrix}$$

$$|\rho\rangle\rangle = \begin{pmatrix} \rho_d \\ \rho_{\uparrow} \\ \rho_{\downarrow} \\ \rho_e \end{pmatrix}$$

Supervector representation

 $\rho_e, \rho_{\uparrow}, \rho_{\downarrow}, \rho_d$

フェルミ分布関数

マスター方程式の物理的な解釈

$$\frac{d}{dt} \begin{pmatrix} \rho_d \\ \rho_{\uparrow} \\ \rho_{\downarrow} \\ \rho_e \end{pmatrix} = \Gamma \begin{pmatrix} -2f_{-}^{(1)} & f_{+}^{(1)} & f_{+}^{(1)} & 0 \\ f_{-}^{(1)} & -f_{-}^{(0)} - f_{+}^{(1)} & 0 & f_{+}^{(0)} \\ f_{-}^{(1)} & 0 & -f_{-}^{(0)} - f_{+}^{(1)} & f_{+}^{(0)} \\ 0 & -f_{-}^{(0)} & -f_{-}^{(0)} & -2f_{+}^{(0)} \end{pmatrix} \begin{pmatrix} \rho_d \\ \rho_{\uparrow} \\ \rho_{\downarrow} \\ \rho_e \end{pmatrix}$$

 $\Gamma = \pi \nu V^2 \quad \nu$: 熱浴の状態密度

e.g. 2列目

各瞬間のバイアス電圧はノンゼロ + カレント

相対エントロピーの時間発展

相対エントロピー: $S^{HS}(\rho(\theta) | | \rho^{SS}(\theta)) = \text{Tr}\rho(\theta) [\ln \rho(\theta) - \ln \rho^{SS}(\theta)]$ $\theta :$ 無次元化した時間

最初の緩和の後、すぐにθに関する周期関数となる

"準"定常状態が実現される

(準定常化後: H Hayakawa, VMM Paasonen, R Yoshii, arXiv:2112.12370 (2021).)

MASTER EQUATION FORMALISM

Simplification in semi-classical system

Semiclassical \rightarrow off-diagonal part is completely decoupled N^2 components to N components: $|\rho(t)\rangle\rangle = (\rho_{11}, \rho_{22}, \dots, \rho_{NN})^T$

diagonal part only

$$\frac{d}{dt}|\rho\rangle\rangle = \hat{\mathscr{K}}|\rho\rangle\rangle$$

In this formalism, trace is given by the inner product with

$$\langle \langle \ell_0 | = (1, 1, \cdots, 1)$$

$$\langle \langle \ell_0 | \rho \rangle \rangle = \rho_{11} + \rho_{22} + \dots + \rho_{NN} = \text{Tr}\rho$$

(generalization with off-diagonal part is straightforward)

Important properties 1

Trace of the density matrix must always be unity

Important properties 2

Suppose the system has unique steady state

By using the right eigenvectors $|r_n\rangle\rangle$ (with eigenvalues λ_n)

$$|\rho(0)\rangle\rangle = \sum_{n} a_{n} |r_{n}\rangle\rangle$$

Time evolution and expected behavior for late time

$$|\rho(t)\rangle\rangle = \sum_{n} a_{n} e^{\lambda_{n} t} |r_{n}\rangle\rangle \Rightarrow |r_{0}\rangle\rangle$$

$$t \to \infty$$

(a_0 must be chosen to satisfy Tr $\rho = 1$)

It is achieved only if all $\lambda_{n\neq 0}$ are negative

IN THE PRESENCE OF MODULATION NON-ADIABATIC GEOMETRICAL PHASE

Adiabatic limit

Non-dimentionalization

$$\frac{d}{dt}|\rho\rangle\rangle = \hat{\mathcal{K}}|\rho\rangle\rangle \implies \epsilon \frac{d}{d\theta}|\rho\rangle\rangle = \hat{K}|\rho\rangle\rangle$$
$$\epsilon = \tau_m/\tau_0$$

 τ_m, τ_0 : characteristic times for modulation and relaxation

Adiabatic limit

$$\frac{d}{d\theta}|\rho\rangle\rangle = \frac{1}{\epsilon}\hat{K}|\rho\rangle\rangle$$

 \rightarrow All eigenstates except for $| r_0 \rangle \rangle$ are suddenly dumped $\epsilon \rightarrow 0$

$$|\rho(t)\rangle\rangle_{\epsilon=0} = |r_0(\Lambda(\mathbf{t}))\rangle\rangle$$

Time evolution of the density matrix

Infinitesimal time evolution

$$\frac{d}{d\theta}|\rho\rangle\rangle = \epsilon^{-1}\hat{K}(\theta)|\rho\rangle\rangle \implies |\rho(\theta + \Delta\theta)\rangle\rangle - |\rho(\theta)\rangle\rangle = \epsilon^{-1}\Delta\theta\hat{K}(\theta)|\rho(\theta)\rangle\rangle$$

$$\frac{|\rho(\theta + \Delta\theta)\rangle\rangle}{|\rho(\theta)\rangle\rangle} = \left(1 + e^{-1}\Delta\theta\hat{K}(\theta)\right)|\rho(\theta)\rangle\rangle \simeq \exp(e^{-1}\Delta\theta\hat{K}(\theta))|\rho(\theta)\rangle\rangle$$
$$= \sum_{i} |r_{i}\rangle\rangle\langle\langle\ell_{i}|\exp(e^{-1}\Delta\theta\hat{K}(\theta))|\rho(\theta)\rangle\rangle \left(\sum_{i} |r_{i}\rangle\rangle\langle\langle\ell_{i}| = \hat{I}\right)$$
$$= \sum_{i} \exp(e^{-1}\varepsilon_{i}(\theta)\Delta\theta)|r_{i}(\theta)\rangle\rangle\langle\langle\ell_{i}(\theta)|\rho(\theta)\rangle\rangle$$

Recursive procedure

$$\begin{split} |\rho(\theta + \Delta\theta)\rangle\rangle &= \sum_{i,j} e^{\epsilon^{-1}\varepsilon_{i}(\theta)\Delta\theta} |r_{i}(\theta)\rangle\rangle\langle\langle\ell_{i}(\theta)| \\ &\times e^{\epsilon^{-1}\varepsilon_{j}(\theta - \Delta\theta)\Delta\theta} |r_{i}(\theta - \Delta\theta)\rangle\rangle\langle\langle\ell_{i}(\theta - \Delta\theta)|\rho(\theta - \Delta\theta)\rangle\rangle \\ &\xrightarrow{32} \end{split}$$

Important remark 1

Eigenstates

$$\hat{K}(\theta) | r_i(\theta) \rangle = \varepsilon_i(\theta) | r_i(\theta) \rangle, \langle \langle \ell_i(\theta) | \hat{K}(\theta) = \varepsilon_i(\theta) \langle \langle \ell_i(\theta) | \theta \rangle \rangle$$

means

$$\hat{K}(\Lambda_{\theta}) | r_i(\Lambda_{\theta}) \rangle = \varepsilon_i(\Lambda_{\theta}) | r_i(\Lambda_{\theta}) \rangle, \langle \langle \ell_i(\Lambda_{\theta}) | \hat{K}(\Lambda_{\theta}) = \varepsilon_i(\Lambda_{\theta}) \langle \langle \ell_i(\Lambda_{\theta}) | \hat{K}(\Lambda_{\theta}) \rangle \rangle$$

 Λ_{θ} : set of parameters at time θ

Above equations: eigenstate for fixed parameters $\Lambda_{ heta}$

(eigenstate for snapshot parameters)

Time evolution from the initial state

Connection

Connection between different time

$$\begin{split} \left\langle \left\langle \ell_{i}(\theta) \left| r_{j}(\theta - \Delta \theta) \right\rangle \right\rangle &= \left\langle \left\langle \ell_{i}(\theta) \left| r_{j}(\theta) \right\rangle \right\rangle - \Delta \theta \left\langle \left\langle \ell_{i}(\theta) \left| \frac{d}{d\theta} \left| r_{j}(\theta) \right\rangle \right\rangle \right. \right. \right. \\ &= \delta_{i,j} - \Delta \theta \left\langle \left\langle \ell_{i}(\theta) \left| \frac{d}{d\theta} \left| r_{j}(\theta) \right\rangle \right\rangle \right. \end{split}$$

Similar to translation in curved space

$$|r_{j}(\theta - \Delta \theta)\rangle |r_{j}(\theta)\rangle$$

Quasi adiabatic limit

$$\begin{split} |\rho(\theta)\rangle\rangle &\simeq \sum_{m} e^{\int_{0}^{\theta} d\phi \epsilon^{-1} \varepsilon_{m}(\phi)} a_{m} | r_{m}(0)\rangle\rangle \\ &- \sum_{m,i} \int_{0}^{\theta} d\phi e^{\int_{\phi}^{\theta} d\chi \epsilon^{-1} \varepsilon_{i}(\chi)} a_{m} e^{\int_{0}^{\phi} d\chi \epsilon^{-1} \varepsilon_{m}(\chi)} | r_{i}(\theta)\rangle\rangle \langle \langle \mathcal{E}_{i}(\phi) | \frac{d}{d\phi} | r_{m}(\phi)\rangle \rangle \end{split}$$

Important remark 2

There is no transition from $j \neq 0 \rightarrow i = 0$

$$\begin{split} \langle \langle \ell_0(\theta) \, | \, r_{j \neq 0}(\theta - \Delta \theta) \rangle \rangle &= -\Delta \theta \langle \langle \ell_0(\theta) \, | \frac{d}{d\theta} \, | \, r_j(\theta) \rangle \rangle \\ &= -\Delta \theta \frac{d}{d\theta} \underbrace{\langle \ell_0(\theta) \, | \, r_j(\theta) \rangle \rangle}_{= 0} + \Delta \theta \left(\frac{d}{d\theta} \langle \langle \ell_0(\theta) \, | \ \right) \, | \, r_j(\theta) \rangle \rangle = 0 \\ &= 0 \\ \\ &\text{Orthogonal} \qquad \langle \langle \ell_0(\theta) \, | = (1, \dots, 1) \end{split}$$

Coefficient for $|r_0\rangle\rangle$ is unchanged

$$|\rho(\theta)\rangle\rangle = a_0(\underline{0}) |r_0(\theta)\rangle\rangle + \sum_{i\neq 0} a_i(\theta) |r_m(\theta)\rangle\rangle$$

Consistent with $\text{Tr}\rho = 1 \rightarrow \langle \langle \ell_0(\theta) | \rho(\theta) \rangle \rangle = \langle \langle \ell_0(0) | \rho(0) \rangle \rangle = 1$

(If a(0) = 1)
Special case: initially steady state

K Takahashi, K Fujii, Y Hino, H Hayakawa, PRL (2020).

In the case of $|\rho(0)\rangle\rangle = |r_0(0)\rangle\rangle = |\rho^{SS}(0)\rangle\rangle$

$$|\rho(\theta)\rangle\rangle = |r_{0}(\theta)\rangle\rangle - \sum_{i\neq 0} \frac{\int_{0}^{\theta} d\phi e^{\int_{\phi}^{\theta} d\chi e^{-1}\varepsilon_{i}(\chi)} |r_{i}(\theta)\rangle\rangle \langle \langle \ell_{i}(\phi)|\frac{d}{d\phi}|r_{0}(\phi)\rangle\rangle}{C}$$

"Feynman" diagram

Schematic understanding

- A: transition at ϕ
 - **B**: exponential dumping
 - C: A takes place at any time

"Pumping and relaxation"

Slow modulating case

If $\epsilon \ll 1$ $|\rho(\theta)\rangle\rangle \sim |r_0(\theta)\rangle\rangle - \sum_{i\neq 0} \int_0^\theta d\phi \underline{e}^{\int_\phi^\theta d\chi e^{-1}\varepsilon_i(\chi)} |r_i(\theta)\rangle\rangle \langle \langle \ell_i(\phi) | \frac{d}{d\phi} | r_0(\phi)\rangle \rangle$ Only $\theta - \epsilon \leq \phi \leq \theta$ contributes $\sim |r_{0}(\theta)\rangle\rangle - \sum_{i \neq 0} \int_{\theta = \epsilon}^{\theta} d\phi e^{\int_{\phi}^{\theta} d\chi \epsilon^{-1} \varepsilon_{i}(\chi)} |r_{i}(\theta)\rangle\rangle \langle \langle \ell_{i}(\phi) | \frac{d}{d\phi} | r_{0}(\phi) \rangle \rangle$ $\sim |r_0(\theta)\rangle\rangle - \epsilon \sum e^{\varepsilon_i(\theta)} |r_i(\theta)\rangle\rangle \langle \langle \ell_i(\theta) | \frac{d}{d\theta} | r_0(\theta)\rangle \rangle$ $\sim |r_0(\theta)\rangle\rangle - \epsilon \sum c_i(\theta) |r_i(\theta)\rangle\rangle$

Deviation from $|r_0(\theta)\rangle\rangle$ is $O(\epsilon)$

Important remark 3

For $\epsilon \ll 1$ $|\rho(\theta)\rangle\rangle \sim |r_0(\theta)\rangle\rangle - \epsilon \sum_{i\neq 0} c_i(\theta) |r_i(\theta)\rangle\rangle$

We neglect the higher orders ~ Born approximation

Suggestive example

If we start the modulation at θ_1 and stop at θ_2

$$(I) |\rho(\theta)\rangle\rangle = |r_{0}(\Lambda_{\text{ini}})\rangle\rangle$$

$$(II) |\rho(\theta)\rangle\rangle = |r_{0}(\Lambda)\rangle\rangle - \sum_{i\neq 0} \int_{\theta_{1}}^{\theta} d\phi e^{\int_{\phi}^{\theta} d\chi e^{-1}\varepsilon_{i}(\chi)} |r_{i}(\theta)\rangle\rangle\langle\langle\ell_{i}(\phi)|\frac{d}{d\phi}|r_{0}(\phi)\rangle\rangle$$

$$(III) |\rho(\theta)\rangle\rangle = |r_{0}(\Lambda_{\text{fin}})\rangle\rangle - \sum_{i\neq 0} \int_{\theta_{1}}^{\theta_{2}} d\phi \underbrace{e^{\int_{\phi}^{\theta} d\chi e^{-1}\varepsilon_{i}(\chi)}}_{\Rightarrow 0 \ (\theta \gg \theta_{2})} |r_{i}(\theta)\rangle\rangle\langle\langle\ell_{i}(\phi)|\frac{d}{d\phi}|r_{0}(\phi)\rangle\rangle$$

$$\Rightarrow |r_{0}(\Lambda_{\text{fin}})\rangle\rangle$$

Expected behavior

If we continuously modulate parameters

$$|\rho(\theta)\rangle\rangle = |r_0(\theta)\rangle\rangle - \sum_{i\neq 0} \int_0^\theta d\phi \underline{e^{\int_\phi^\theta d\chi e^{-1}\varepsilon_i(\chi)}} |r_i(\theta)\rangle\rangle \langle \langle \ell_i(\phi) | \frac{d}{d\phi} | r_0(\phi)\rangle \rangle$$

Exponential factor cut off the contribution from far past

 $|\rho(\theta)\rangle$ becomes quasi steady state

which wears the effect from the past

Similar to Fermi liquid

Geometrical interpretation

In the case of $|\rho(0)\rangle\rangle = |r_0(0)\rangle\rangle = |\rho^{SS}(0)\rangle\rangle$

$$\begin{split} |\rho(\theta)\rangle\rangle &= |r_0(\theta)\rangle\rangle + \sum_{i\neq 0} C^i |r_i(\theta)\rangle\rangle\\ C^i &= -\int_0^\theta d\phi e^{\int_\phi^\theta d\chi e^{-1}\varepsilon_i(\chi)} \langle \langle \ell_i(\phi) | \frac{d}{d\phi} | r_0(\phi)\rangle \rangle \end{split}$$

"Vector potential"

$$\left\langle \left\langle \ell_{i}(\phi) \left| \frac{d}{d\phi} \left| r_{0}(\phi) \right\rangle \right\rangle = \frac{d\Lambda^{\mu}}{d\phi} \left\langle \left\langle \ell_{i}(\phi) \left| \frac{\partial}{d\Lambda^{\mu}} \left| r_{0}(\phi) \right\rangle \right\rangle \right\rangle \\ \equiv \mathscr{A}_{\mu}^{i}$$

"Curvature"

$$\mathcal{F}^{i}_{\mu\nu} \equiv \frac{\partial \mathscr{A}^{i}_{\nu}}{\partial \Lambda_{\mu}} - \frac{\partial \mathscr{A}^{i}_{\mu}}{\partial \Lambda_{\nu}}$$

RELATIVE ENTROPY

Distance between two distribution

How to measure the distance between two distribution?

$$\rho_1$$
 ρ_2

Naive idea: compare von-Neumann entropies

$$S_1^{vN} = Tr(-\rho_1 \ln \rho_1)$$
 $S_2^{vN} = Tr(-\rho_2 \ln \rho_2)$

Shortcoming: it is not positive-semidefinite

$$\Delta S^{\rm vN}(\rho \,|\, |\, \sigma) = -\,\rho \ln \rho + \sigma \ln \sigma$$

If $\Delta S^{vN}(\rho | | \sigma) > 0$, then $\Delta S^{vN}(\sigma | | \rho) < 0$

Useful tool: Relative entropy

Quantum Relative entropy

(Kullback-Leibler-Umegaki relative entropy)

$$\Delta S^{\text{KL}}(\rho \,|\, |\, \sigma) = \text{Tr}[\rho(\ln \rho - \ln \sigma)]$$

Positive-semidefiniteness

$$\begin{split} \Delta S^{\mathrm{KL}}(\rho \,|\, |\, \sigma) &\geq 0 \qquad \Delta S^{\mathrm{KL}}(\sigma \,|\, |\, \rho) \geq 0 \\ & \left(\text{Note that } \Delta S^{\mathrm{KL}}(\rho \,|\, |\, \sigma) \neq \Delta S^{\mathrm{KL}}(\sigma \,|\, |\, \rho) \text{ in general } \right) \end{split}$$

Diagonal case (in our study, it is the case)

$$-\Delta S^{\mathrm{KL}}(\rho \mid \mid \sigma) = -\sum_{i} \left[\rho_{ii}(\ln \rho_{ii} - \ln \sigma_{ii})\right]$$
$$= \sum_{i} \rho_{ii} \ln \frac{\sigma_{ii}}{\rho_{ii}} \leq \sum_{i} \rho_{ii} \left(\frac{\sigma_{ii}}{\rho_{ii}} - 1\right) = \mathrm{Tr}\sigma - \mathrm{Tr}\rho = 0$$
$$\ln x \leq x - 1$$

Meaning of Relative entropy

Uncertainty of information $\sim -\ln \rho$ Entropy = $\langle -\rho \ln \rho \rangle$ = $-\operatorname{Tr} \rho \ln \rho$

ex.)
$$\rho_1 = (0,1), \ \rho_2 = (1/4,3/4), \ \rho_3 = (1/2,1/2)$$

 $-\text{Tr}\rho_1 \ln \rho_1 = 0, \quad -\text{Tr}\rho_2 \ln \rho_2 = 2 \ln 2 - \frac{3}{4} \ln 3, \quad -\text{Tr}\rho_3 \ln \rho_3 = 2 \ln 2$
Certain Uncertain

If we obtain information and ρ becomes $\rho_3 \rightarrow \rho_1$ Reduction of the uncertainty $\sim -[-\ln \rho_1 - (-\ln \rho_3)]$ Average information gain

$$\langle \ln \rho_1 - \ln \rho_3 \rangle = \text{Tr}\rho_1(\ln \rho_1 - \ln \rho_3) = \Delta S^{\text{KL}}(\rho_1 | | \rho_3)$$

Distance from the steady state

Relative entropy between ρ and ρ^{SS}

$$S^{\mathrm{KL}}(\rho \,|\, |\, \rho^{\mathrm{SS}}) = \mathrm{Tr}\rho \left(\ln \rho - \ln \rho^{\mathrm{SS}} \right)$$

In the relaxation process $\rho = \rho^{SS} + \sum_{i} \rho^{(i)} e^{\lambda_i t} (\lambda_i < 0)$

$$S^{\mathrm{KL}}(\rho \mid \mid \rho^{\mathrm{SS}}) = \sum_{n} \left(\rho_{nn}^{\mathrm{SS}} + \sum_{i} \rho_{nn}^{(i)} e^{\lambda_{i}t} \right) \left[\ln \left(\rho_{nn}^{\mathrm{SS}} + \sum_{k} \rho_{nn}^{(k)} e^{\lambda_{k}t} \right) - \ln \rho_{nn}^{\mathrm{SS}} \right]$$

$$\xrightarrow{t \to \infty} \sum_{n} \rho_{nn}^{SS} \left(\ln \rho_{nn}^{SS} - \ln \rho_{nn}^{SS} \right) = 0$$

$$S^{\text{KL}}(\rho \,|\, |\rho^{\text{SS}}) \ge 0 \xrightarrow{} S^{\text{KL}}(\rho^{\text{SS}} \,|\, |\rho^{\text{SS}}) = 0$$
relaxation

Monotonicity of relative entropy

Complete Positive Trace Preserving (CPTP) map

 $\mathscr{E}: \rho \to \mathscr{E}(\rho) \ (\operatorname{Tr}\mathscr{E}(\rho) = 1, \mathscr{E}(\rho) \text{ is positive semi-definite})$

Monotonic property of relative entropy

 $S^{\mathrm{KL}}(\rho \,|\, |\, \sigma) \geq S^{\mathrm{KL}}(\mathcal{E}(\rho) \,|\, |\, \mathcal{E}(\sigma))$

(Proof is found in arXiv: 2112.12370)

In the case \mathscr{C} is time evolution, ρ^{SS} is the fixed point

"Entropy" of the arbitrary state

Monotonically increasing quantity in time evolution

$$S(\rho \mid \mid \rho^{SS}) = -S^{KL}(\rho \mid \mid \rho^{SS}) = -\operatorname{Tr}\rho\left(\ln\rho - \ln\rho^{SS}\right)$$

Remark 1

 $S(\rho || \rho^{SS})$ is negative semi-definite Remark 2

Maximum value of $S(\rho || \rho^{SS})$ is zero

In the presence of modulation

Steady states in two parameter setting

Time evolution of the steady state

Two possibility of the definition of entropy

Definition 1

 $S(\rho_1(t) | | \rho_0^{SS})$: Deviation from the initial state

 $\bigcup S(\rho_1(t) | | \rho_0^{SS})$ monitors the distance from the initial state

 \bigotimes even if $\rho_1(t)$ coincides ρ_1^{SS} , $S(\rho_1(t) | | \rho_0^{SS})$ is nonzero

Two possibility of the definition of entropy

Definition 2

$S(\rho_1(t) | | \rho_1^{SS})$: Deviation from the steady state

 \bigcirc S($\rho_1(t) | | \rho_1^{SS}$) characterize the distance from steady state

ifficult to compare the different time

Our choice

Definition 2

 $S(\rho_1(t)\,|\,|\rho_1^{\rm SS})$

- Deviation from the steady state $S(\rho_1^{SS} | | \rho_1^{SS}) = 0$
- House keeping part is subtracted

Important remark

In the presence of the parameter modulation

$$\begin{split} S(\rho \,|\, |\, \rho_0^{\,\text{SS}}) &\leq S(\mathscr{E}(\rho) \,|\, |\, \mathscr{E}(\rho_0^{\,\text{SS}})) \neq S(\mathscr{E}(\rho) \,|\, |\, \rho_0^{\,\text{SS}}) \\ &\uparrow \\ \rho_0^{\,\text{SS}} \text{ is no longer the fixed point} \end{split}$$

Expected behavior

If Modulation is much slower than other time scales

The effect of the modulation can be detected

 $S(\rho(t) \,|\, |\, \rho_1^{\rm SS}) \neq 0$

RESULT 1: GENERAL PROPERTY

After quasi steady state is achieved

Case of Slow modulation

Expansion in ϵ

$$\rho = \rho^{\rm SS} + \epsilon \rho^{(1)} + \cdots$$

 $\boldsymbol{\epsilon}$: time scale of the parameter modulation

 $\epsilon = 0 \Rightarrow$ adiabatic limit

Relative entropy deviation from steady state

$$\Delta S(\rho \mid \mid \rho^{SS}) = S(\rho^{SS} \mid \mid \rho^{SS}) - S(\rho \mid \mid \rho^{SS})$$
$$= \operatorname{Tr}\rho \left(\ln \rho - \ln \rho^{SS} \right)$$
$$= \frac{1}{2} \epsilon^2 \operatorname{Tr}[\rho^{(1)} \left(\rho^{SS}\right)^{-1} \rho^{(1)}] + O(\epsilon^3)$$

Supervector formalism

$$\epsilon \frac{d}{d\theta} |\rho\rangle\rangle = \hat{K} |\rho\rangle\rangle, \quad |\rho\rangle\rangle = |\rho^{SS}\rangle\rangle + \epsilon |\rho^{(1)}\rangle\rangle + \cdots$$

Spectral decomposition

 $\hat{K} = \sum_{m} \varepsilon_{m} |r_{m}\rangle\rangle\langle\langle\ell_{m}| \qquad \begin{array}{c} \varepsilon_{m}: \text{ eigenvalues of } \hat{K} \\ |r_{m}\rangle\rangle, \,\langle\langle\ell_{m}|: \text{ right and left eigenvectors} \end{array}$

$$\hat{K}^{+} \equiv \sum_{m \neq 0} \varepsilon_{m}^{-1} |r_{m}\rangle \rangle \langle \langle \ell_{m} | : \text{pseudo inverse of } \hat{K}$$

$$\int |\rho^{(1)}\rangle = \frac{d\Lambda_{\mu}}{d\theta} \hat{K}^{+} \frac{\partial}{\partial\Lambda_{\mu}} |\rho^{SS}\rangle \equiv \frac{d\Lambda_{\mu}}{d\theta} |\partial^{\mu}\rho^{SS}\rangle$$

Geometrical interpretation

Quantum relative entropy for slow modulation

$$\Delta S(\rho \mid \mid \rho^{SS}) = \frac{1}{2} \epsilon^2 \operatorname{Tr} \left[\left(\partial^{\mu} \rho^{SS} \right) \left(\rho^{SS} \right)^{-1} \left(\partial^{\nu} \rho^{SS} \right) \right] \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} + O(\epsilon^3)$$
$$= \frac{1}{2} \epsilon^2 \operatorname{Tr} \rho^{SS} \left[\left(\partial^{\mu} \ln \rho^{SS} \right) \left(\partial^{\nu} \ln \rho^{SS} \right) \right] \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} + O(\epsilon^3)$$

$$\Delta S(\rho \,|\, |\, \rho^{\rm SS}) = \frac{1}{2} \epsilon^2 g^{\mu\nu} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} + O(\epsilon^3)$$

 $g^{\mu\nu} = \text{Tr}\rho^{\text{SS}} \left[\left(\partial^{\mu} \ln \rho^{\text{SS}} \right) \left(\partial^{\nu} \ln \rho^{\text{SS}} \right) \right] \text{:Fisher information matrix}$ $= -\text{Tr}\rho^{\text{SS}} \left[\partial^{\mu} \partial^{\nu} \ln \rho^{\text{SS}} \right] \text{:Hessian matrix of } \ln \rho^{\text{SS}} \times (-1)$

Stability of Steady State

Averaged quantum relative entropy in one-cycle

$$\bar{S}_{\text{cycle}} = \frac{1}{2\pi} \int_0^{2\pi} d\theta \frac{1}{2} \epsilon^2 g^{\mu\nu} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} + O(\epsilon^3)$$

Positive semi-definiteness

$$g^{\mu\nu}\frac{d\Lambda_{\mu}}{d\theta}\frac{d\Lambda_{\nu}}{d\theta} = \operatorname{Tr}\left[\rho^{\mathrm{SS}}\left(\frac{d\Lambda_{\mu}}{d\theta}\partial^{\mu}\ln\rho^{\mathrm{SS}}\right)^{2}\right] \ge 0$$

"Entropy" increases towards any direction

It implies the stability of steady state

Thermodynamic length

Lower bound on "entropy" production

$$\bar{S}_{\text{cycle}} = \frac{\epsilon^2}{2} \int_0^{2\pi} \frac{d\theta}{2\pi} g^{\mu\nu} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta}$$
Cauchy-Schwartz inequality
$$\int_0^{2\pi} \frac{d\theta}{2\pi} g^{\mu\nu} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} \ge \left(\int_0^{2\pi} \frac{d\theta}{2\pi} \sqrt{g^{\mu\nu}} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} \right)^2$$

$$\bar{S}_{\text{cycle}} = \frac{\epsilon^2}{2} \int_0^{2\pi} \frac{d\theta}{2\pi} g^{\mu\nu} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} \ge \epsilon^2 \mathscr{L}^2$$

Thermal length

$$\mathscr{L} = \frac{1}{\sqrt{2}} \int_{0}^{2\pi} \frac{d\theta}{2\pi} \sqrt{g^{\mu\nu}} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} = \frac{1}{\sqrt{2}} \oint \sqrt{g^{\mu\nu}} d\Lambda_{\mu} d\Lambda_{\nu}$$

WORK AND EFFICIENCY

Work relations

The "work" (see, for instance, Jarzynski 1997)

$$W = \int dt \dot{E}(t) = \int dt \langle \dot{E}(t) \rangle = \int dt \langle \dot{H}(t) \rangle$$

If the time dependence only appears through parameters

$$\rho(t), H(t) \rightarrow \rho(\Lambda^{\mu}(t)), H(\Lambda^{\mu}(t))$$

Chain rule
$$\dot{H}(t) = \frac{d\Lambda^{\mu}}{dt} \frac{\partial H}{\partial \Lambda^{\mu}}$$
 yields

$$W = \int \operatorname{Tr} \left(\rho \frac{\partial H}{\partial \Lambda^{\mu}} \right) \frac{d\Lambda^{\mu}}{dt} dt$$

Geometrical interpretation

Work represented by contour integral

$$W = \int \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right) \frac{d\Lambda^{\mu}}{dt} dt = \int \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \lambda^{\mu}}\right) d\Lambda^{\mu}$$

In the case of the cyclic modulation $\lambda_{initial} = \lambda_{final}$

$$W = \oint d\Lambda^{\mu} \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right)$$

 $\lambda_{\text{initial}} = \lambda_{\text{final}}$

Work is given by the contour integral of the vector field

$$W = \oint \mathscr{P}_{\mu} d\Lambda^{\mu} \qquad \qquad \mathscr{P}_{\mu} = \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right)$$

Work-density-tensor in parameter space

By using the Stokes' theorem

$$\begin{split} \mathscr{R}_{\mu\nu} &= \frac{\partial \mathscr{P}_{\nu}}{\partial \Lambda_{\mu}} - \frac{\partial \mathscr{P}_{\mu}}{\partial \Lambda_{\nu}}: \text{ curvature associated with the work} \\ dS^{\mu\nu} &= \frac{1}{2} d\Lambda_{\mu} \wedge d\Lambda_{\nu} \end{split}$$

Work in one-cycle

Various representations of work

$$\begin{split} W &= \int dt \langle \rho(t) \dot{H}(t) \rangle = \oint \mathscr{P}_{\mu} d\Lambda^{\mu} = \int_{\Omega} \mathscr{R}_{\mu\nu} dS^{\mu\nu} \\ \mathscr{P}_{\mu} &= \operatorname{Tr} \left(\rho \frac{\partial H}{\partial \Lambda^{\mu}} \right) \qquad \mathscr{R}_{\mu\nu} = \frac{\partial \mathscr{A}_{\nu}}{\partial \Lambda_{\mu}} - \frac{\partial \mathscr{A}_{\mu}}{\partial \Lambda_{\nu}} \end{split}$$

"Work" is either positive or negative (opposite direction)

If W < 0, work is extracted from the system

Efficiency

Absorption process and release process

Efficiency:
$$\eta \equiv \frac{|W|}{Q_A} = \frac{|Q_A + Q_B|}{Q_A}$$

RESULT 2: EFFICIENCY AND POWER

"First low" in the presence of modulation

The "work", "entropy" production, and heat

$$W = \oint d\Lambda^{\mu} \operatorname{Tr}\left(\rho \frac{\partial H}{\partial \Lambda^{\mu}}\right)$$

$$\bar{S}_{\text{cycle}} = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \frac{1}{2} \epsilon^{2} g^{\mu\nu} \frac{d\Lambda_{\mu}}{d\theta} \frac{d\Lambda_{\nu}}{d\theta} + O(\epsilon^{3})$$

$$Q \equiv W + T\bar{S}_{\text{cycle}}$$

Efficiency is given by

$$\eta^{\text{eff}} \equiv \frac{W}{W + T\bar{S}_{\text{cycle}}} \simeq 1 - \frac{T\bar{S}_{\text{cycle}}}{W} \leq 1 - \epsilon^2 \frac{T\mathscr{L}^2}{W}$$
$$\eta^{\text{eff}} \leq 1 - \epsilon^3 \frac{T\mathscr{L}^2}{P} \quad P = \epsilon W \text{: power}$$

Trade-off relation

Upper bound on power

Larger efficiency \Rightarrow lower power

$$|\rho(\theta)\rangle\rangle = |r_0(\theta)\rangle\rangle - \sum_{i\neq 0} \int_0^\theta d\phi e^{\int_\phi^\theta d\chi \epsilon^{-1} \varepsilon_i(\chi)} |r_i(\theta)\rangle\rangle \langle \langle \ell_i(\phi) | \frac{d}{d\phi} | r_0(\phi)\rangle \rangle$$

$$-\sum_{i\neq 0} \int_0^\theta d\phi e^{\int_\phi^\theta d\chi \epsilon^{-1} \varepsilon_i(\chi)} |r_i(\theta)\rangle \rangle \langle \langle \ell_i(\phi) | \frac{d}{d\phi} | r_0(\phi) \rangle \rangle$$

$$\sim -\sum_{i\neq 0} \int_0^\theta d\phi e^{\int_\phi^\theta d\chi \epsilon^{-1} \varepsilon_i(\theta)} |r_i(\theta)\rangle \rangle \langle \langle \ell_i(\theta) | \frac{d}{d\theta} | r_0(\theta) \rangle \rangle$$

$$\simeq \epsilon \sum_{i \neq 0} \frac{1}{\varepsilon_i} \left(1 - e^{\epsilon^{-1} \varepsilon_i \theta} \right) |r_i(\theta)\rangle \rangle \langle \langle \ell_i(\theta) | \frac{d}{d\theta} | r_0(\theta) \rangle \rangle$$