2nd Kakenhi meeting (Kakenhi No. 21H01006, 01/11/22)

Multi species ASEP with impurities: matrix product state, negative mobility and clustering

Amit Kumar Chatterjee, Hisao Hayakawa (Yukawa Institute for Theoretical Physics, Kyoto University)

[*References: arXiv*:2205.03082 (2022),

arXiv:2208.03297 (2022)]

NON-EQUILIBRIUM SYSTEMS

- Transport phenomena
 - net flow or current [absent in equilibrium]

Phase transitions (e.g. traffic jam)

Understanding

COMPLEX NON-EQUILIBRIUM PHENOMENA

using

EXACTLY SOLVABLE TOY MODELS

Non-equilibrium steady state probability distribution

<u>A random walker</u>

periodic lattice

STEADY STATE: all equally likely configurations

Generalization:

many interacting random walkers

Model:

Asymmetric Simple Exclusion Process

- Exactly solvable model: Matrix Product State [*open boundary condition*]
- Boundary induced phase transitions
- Applications: protein transport, traffic flow

Multi-lane ASEP: [more realistic]

almost no exact solution with correlation between lanes

(either mean field solution, or, exact solutions factorized over lanes)

Question: Approximate mapping of multi-lane ASEP to 1-d model that allows exact solution ??

<u>Question:</u> Equivalent 1-d model??

TASKS: (i) matrix algebra (ii) matrix representations

Matrix algebra: (2-species ASEP with impurities)

$$p_{1}D_{1}E-q_{1}ED_{1} = D_{1}$$

$$p_{2}D_{2}E-q_{2}ED_{2} = D_{2}$$

$$\epsilon AE = A$$

$$w_{12}D_{1}A = w_{21}D_{2}A$$

$$\Rightarrow Solution?$$

RESULTS:

Explicit representation $\implies [arXiv:2205.03082 (2022)]$ of the matrices

Negative Differential Mobility 12

General notion:

Drift current of species "K": J_{K0}

3

Counter-flow induced clustering

• Jamming in granular materials

Cluster formation

- Traffic jam in vehicular/pedestrian traffic flow
- Active matter, cellular jamming in cancer

Clustering from counter-flow

pedestrians moving in opposite directions in a narrow lane f traffic jam at bigh density

Density : two different phases

16

 $\rho_1 = \langle 1 \rangle$

Motion and matrix dimension

Partially asymmetric Totally asymmetric Infinite Finite dimensional dimensional

[arXiv:2205.03082 (2022)]

Negative differential mobility

Counter-flow induced clustering

free flowing phase (non-monotonic density and non-zero current)

clustering phase (constant density and vanishing current)

Future directions

- Generalization of the model with open boundaries, allowing entry/exit of particles, closer to more realistic transport situations.
- 2) Exact solution of the full dynamical problem (Bethe Ansatz).
- 3) Rigorous study of multi-lane models to establish the usefulness of the present 1-d approximation.
- 4) Analytical study of geometric phase in ASEP and related models.

5) Exploring possible quantum version of the present model.

THANK YOU