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Introduction: fracture

Pepper mill

Mining machine

crater

Fracture

Understanding leads to
・Improved efficiency
・Stabilization of grain size
Applicable to civil eng., 
earthquakes, etc.

Widely observed 
in many situations

To understand fracture phenomena,
we need to know what happens inside the system.



Introduction: fracture under quasi-static condition

load

load
Brizilian test

• Under quasi-static loads, 
fracture occurs 
on the load axis

• Strength test in which 
loads are applied to concrete

How is the stress distributed 
in the system?



𝜎𝑦𝑦 =
𝑃0
𝜋𝑎

−
2𝑃

𝜋

cos𝜃1sin
2𝜃1

𝑟1
+
cos𝜃2sin

2𝜃2
𝑟2

Introduction: static solution

Extensional stress (𝜎𝑦𝑦) 

• is constant 
𝑃0

𝜋𝑎

• becomes maximum
on this line.
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𝑦



Fracture under dynamic loading

Shock propagation

Different from under static load

Wave phenomena
・Rapid wave propagation 

inside the system
・Amplification by superposition

of reflected and traveling waves

Analysis of impact propagation 
inside an object is important

This study
Stress propagation 
in elastic media



What we solve in this study

This study

Elastic disk (finite size)

Previous study

semi-infinite space

• P-, S-, and surface waves

• Convergence to static sol.

Can we obtain a solution?

Motivation



Formulation of linearized elastodynamics

Starting point:
Navier-Cauchy equation

𝜌
𝜕2

𝜕𝑡2
𝒖 = ∇2𝒖 + 𝐺

1 + 𝜈

1 − 𝜈
𝛁 𝛁 ⋅ 𝒖

𝜌: density, 𝒖: displacement,
𝜈: Poisson ratio，
𝐺: shear modulus

Initial condition for 𝑡 ≤ 0
𝒖 = 𝟎

Boundary condition at 𝑟 = 𝑎
𝜎𝑟𝑟 = −𝑃 𝜃 Θ t , 𝜎𝑟𝜃 = 0

Constitutive relation

𝜎𝛼𝛽 = 𝜆𝛿𝛼𝛽𝜀𝛾𝛾 + 2𝐺𝜀𝛼𝛽 𝜀 =
1

2
𝛁𝒖 + 𝛁𝒖 𝑇



Formulation of linearized elastodynamics

Starting point:
Navier-Cauchy equation

𝜌
𝜕2

𝜕𝑡2
𝒖 = ∇2𝒖 + 𝐺

1 + 𝜈

1 − 𝜈
𝛁 𝛁 ⋅ 𝒖

Introduction of 
two potentials: 𝜙, 𝑨

𝒖 = 𝜵𝜙 + 𝛁 × 𝑨

Wave equations (d'Alembertian)
⧠𝐿𝜙 = 0, ⧠𝑇𝐴 = 0

Laplace transform

ℒ 𝜙 (𝑠) =෍

𝑚

𝑎𝑚 𝑠 cos 𝑚𝜃 𝐼𝑚
𝑠𝑟
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ℒ 𝐴 (𝑠) =෍

𝑚

𝑏𝑚 𝑠 sin 𝑚𝜃 𝐼𝑚
𝑠𝑟
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𝐼𝑚(𝑟): modified Bessel function 
of the first kind

𝑣L ≡
2

1−𝜈

𝐺

𝜌
: speed of P−wave

𝑣T ≡
𝐺

𝜌
: speed of S−wave

𝑎𝑚 𝑠 and 𝑏𝑚 𝑠 : determined by the boundary condition



Final result:
෤𝑢𝑟 = 𝛩P 1 − 𝛩S ෤𝑢𝑟

tr
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𝛩P ≡ Θ 𝑡∗ − 1 − 𝑟∗

ΘS ≡ Θ 𝑡∗ − 𝜇 1 − 𝑟∗

Formulation of linearized elastodynamics

Inverse Laplace transform
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Conversion to contour integration



Result: displacement and principal stress difference

𝜎11 − 𝜎22 = 2
𝜎𝑟𝑟 − 𝜎𝜃𝜃

2

2

+ 𝜎𝑟𝜃
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Result: three different regimes

𝑡 = 1.105

Three different regimes

① No wave arrives.
No stress

② Only P-wave arrives.

③ S-wave also arrives.
Solution contains both P- and S-waves.



Result: snapshots

𝑡∗ = 1.105

P-wave
S-wave

Surface wave

𝑡∗ = 1.905

S-wave due to reflection of P-wave

P-wave due to reflection of P-wave



Result: principal stress difference

𝜎11 − 𝜎22 = 2
𝜎𝑟𝑟 − 𝜎𝜃𝜃
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2



① Evaluated from 
the final value theorem

lim
𝑡→∞

𝜎𝛼𝛽 𝒓, 𝑡 = lim
𝑠→0

𝑠ℒ 𝜎𝛼𝛽 𝒓, 𝑠

② Consistent with 
the static solution

Long time limit

𝑡 = 1.105

Check the time evolution of 
the stress profile

• P-wave term
• S-wave term

Converge to zero

Long time limit
෤𝑢𝑟 = 𝛩P 1 − 𝛩S ෤𝑢𝑟
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𝑡∗ = 200.5𝑡∗ = 5.5𝑡∗ = 3.5

Convergence 

Convergence 
to 0

for 𝑡 → ∞

For each reflection at the boundary
• number of waves increases
• sizes of the waves decrease



Summary

Future work
• Application to elliptic or spherical elastic media

Derivation of the stress propagation 
in a finite elastic disk

Purpose

• Contains P-, S-, and surface 
waves

• Converges to static solution

Result

Success to derive analytical solution

• After S-wave arrives,
(static)+(P-wave)

+(S-wave)


