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Introduction: fracture

Fracture

Widely observed
In many situations

Understanding leads to S

- Improved efficiency Mining machine -

- Stabilization of grain size . Pepper mill
Applicable to civil eng.,
earthquakes, etc.

!

To understand fracture phenomena,
we need to know what happens inside the system.




Introduction: fracture under quasi-static condition

Brizilian test

e Strength test in which
loads are applied to concrete
 Under quasi-static loads,
fracture occurs
on the load axis

How is the stress distributed
in the system?

load



Introduction: static solution
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Fracture under dynamic loading

Shock propagation

Wave phenomena
- Rapid wave propagation
inside the system
- Amplification by superposition
of reflected and traveling waves

!

Different from under static load

This study
Stress propagation
in elastic media

Analysis of impact propagation
inside an object is important




What we solve in this study

Previous study

semi-infinite space

e P- S-, and surface waves
* Convergence to static sol.

This study

Elastic disk (finite size) Py

Motivation

—

Can we obtain a solution?




Formulation of linearized elastodynamics

Star.tlng point: | p: density, u: displacement,
Navier-Cauchy equation v: Poisson ratio,

02 1+4+v G: sh dul
5 V(v - shear modulus
PazU= Vu+G1_v (V-u)

Constitutive relation Poa(f, Posio)
1 @ [ o ¢
O-aﬁ = /166([)’61/)/ + ZGEaﬁ <8 = E (Vu + (Vu)T)> : =~

Initial condition fort < 0
u=2~0
Boundary condition atr = a
Orr = _P(H)@)(t): Org = 0




Formulation of linearized elastodynamics

SNtar.tmgCDOmI;fi " Introduction of
a(;/zler- aucny eqllla 'fn + two potentials: ¢, A
pa 2u Vzu_I_Gl_vV(V_u) u=|7q§+V><A

- Wave equations (d'Alembertian)
DL¢ — O, DTA = (

Laplace transform I, (r): modified Bessel function

ST of the first kind
LIp](s) = Z A (s) cos(mB) Iy, <_) 2 G
— VL) vy /——: speed of P-wave
1-vp

_ ST
L[A](s) = ; by (s) sin(m@) I, (U_T) U = \/%: speed of S—wave

- a,,,(s) and b,,,(s): determined by the boundary condition




Formulation of linearized elastodynamics

Inverse Laplace transform
¢ =L zam(s) COS(mH)I ] er am(S) COS(mH)I < L) eStds

A= ;bm(s)sin(me)zm . ]: fB ; b, (s) sin(mé) I, < ) eStds
Conversion to contour integration Cy A G

Final result:
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Result: displacement and principal stress difference
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Result: three different regimes

— 1.0e+01
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Three different regimes

(D) No wave arrives.
No stress

(2 Only P-wave arrives.

t =1.105

(3 S-wave also arrives.
Solution contains both P- and S-waves.




Result: snapshots
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P-wave due to reflection of P-wave

S-wave \

P-wave

Surface wave S-wave due to reflection of P-wave




Result: principal stress difference
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Long time limit

i, = 0p(1 —w@S)a,(,““) r*,0,t") + 05iY (r*, 0)

+ Z Z [@pﬁ%‘) (r*,a),*n,n) + 951'17(,72) (r*,a),”fn,n)] cos(mB)cos(wmnt™)

m=0,2,4, n=1
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(D) Evaluated from
the final value theorem
tll_)lg Oap(T,t) = ll_r)% sL[aaﬁ](r, S)
(2 Consistent with
the static solution

|

* P-wave term
e S-wave term Check the time evolution of
Converge to zero the stress profile




Convergence
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For each reflection at the boundary
e number of waves increases
 sijzes of the waves decrease

Convergence
to0
fort - o




Summary

Purpose lg

Derivation of the stress propagation
in a finite elastic disk

Result

Success to derive analytical solution

 Contains P-, S-, and surface  After S-wave arrives,
waves (static)+(P-wave)
 Converges to static solution +(S-wave)

Future work
* Application to elliptic or spherical elastic media




