2022-11-01 @YITP

DEMON DRIVEN BY GEOMETRICAL PHASE

Based on H Hayakawa and R Yoshii, arXiv:2205.15193 (2022).

(H Hayakawa, VMM Paasonen, R Yoshii, arXiv:2112.12370 (2021).)

Ryosuke Yoshii (Sanyo-Onoda City University)

Collaborator Hisao Hayakawa (YITP)

(Ville M. M. Paasonen)

Introduction: Thouless pumping

Classical pump

Mean bias = $0 \Rightarrow$ mean current = 0

Topological pump

Mean current can flow w/ bias voltages

Mean current!

Thouless, 1983

Geometrical interpretation

Non-trivial curvature in parameter space

Gauss-Bonnet type argument

Current ~ integration of the curvature inside trajectory Berry-Sinitsyn-Nemenman(BSN) curvature

N. A. Sinitsyn and I. Nemenman PRL 99, 220408 (2007).

Connection with thermodynamics

Entropy production depends on the trajectory

T. Sagawa and H. Hayakawa PRE 84, 051110 (2011).

Vector potential in thermodynamics

K. Tomita and H. Tomita PTP **51**, 6 (1974).

Related topics

Brandner-Saito (PRL 2020) : single-bath
Hino-Hayakawa (PRR2021): 2-baths
Ito-Dechant (PRX2020)

Experimentally realizable system Quantum dot system

Quantum dot + reservoirs

Fermion with the Coulomb interaction

Quantum effect? Many body interaction? Fermi statistics?

Geometrical effect

Work? Efficiency? Entropy production?

Ŭ

20

Formalism: Master equation

Time evolution of the density matrix ρ

$$\frac{d\rho}{d\theta} = \hat{\mathscr{K}}\rho \qquad \hat{\mathscr{K}}: \text{ linear operator acting on }\rho$$
(CPTP property is satisfied)

 θ : time $\hat{\mathscr{K}}(\theta)$: modulated in time

Recasting the density matrix into the vector form

 $\frac{d}{d\theta}|\hat{\rho}\rangle = \hat{\mathscr{K}}|\hat{\rho}\rangle \qquad |r_i(\theta)\rangle\rangle: \text{ right eigenstate of } \hat{\mathscr{K}}$

 $\langle \langle \ell_i(\theta) |$: left eigenstate of $\hat{\mathscr{K}}$ ε_i : eigenvalues of $\hat{\mathscr{K}}$

Geometrical state

$$\begin{split} |\rho(\theta)\rangle\rangle &= |r_{0}(\theta)\rangle\rangle - \sum_{i\neq 0} \int_{0}^{\theta} d\phi e^{\int_{\phi}^{\theta} d\chi e^{-i}\varepsilon_{i}(\chi)} \mathscr{A}_{\mu} \frac{d\Lambda^{\mu}}{d\phi} |r_{i}(\theta)\rangle\rangle \\ \mathscr{A}_{\mu} &= \langle \langle \mathscr{C}_{i}(\phi) | \frac{\partial}{d\Lambda^{\mu}} |r_{0}(\phi)\rangle \rangle \qquad \Lambda: \text{ parameters} \\ \mathscr{F}_{\mu\nu}^{i} &\equiv \frac{\partial \mathscr{A}_{\nu}^{i}}{\partial\Lambda_{\mu}} - \frac{\partial \mathscr{A}_{\mu}^{i}}{\partial\Lambda_{\nu}} \end{split}$$

Geometrical state

Geometrical state

Application to Impurity Anderson Model

 $\hat{d}^{\dagger}_{\sigma}(\hat{d}_{\sigma})$: creation and annihilation operator in dot (spin σ)

$$\hat{H}^{r} = \sum_{\alpha,k,\sigma} \epsilon_{k} \hat{a}^{\dagger}_{\alpha,k,\sigma} \hat{a}_{\alpha,k,\sigma}$$

 $\hat{a}_{\alpha,k,\sigma}^{\dagger}$ ($\hat{a}_{\alpha,k,\sigma}$): creation and annihilation operator in leads

(spin σ , wave number k, $\alpha = \text{left or right}$)

$$\begin{split} \hat{H}^{\text{int}} &= \sum_{\alpha,k,\sigma} V_{\alpha} \hat{d}_{\sigma}^{\dagger} \hat{a}_{\alpha,k,\sigma} + \text{h.c.}, \\ & (V_L = V_R \text{ for simplicity}) \end{split}$$

Modulating parameters

- Temperature is difficult to be controlled
- Parameter in quantum dot must be tuned to extract work

Modulating parameters

- Temperature is difficult to be controlled
- Parameter in quantum dot must be tuned to subtract work

 $\int Modulating \text{ parameters } U, \mu_L, \mu_R$ $U = U_0(1 + \lambda), \lambda = \cos \theta, \quad \mu_L = \mu \sin \theta, \quad \mu_R = \mu \sin(\theta + \delta)$

Time evolution of relative entropy

Relative entropy: $S^{\text{HS}}(\rho(\theta) || \rho^{\text{SS}}(\theta)) = \text{Tr}\rho(\theta) [\ln \rho(\theta) - \ln \rho^{\text{SS}}(\theta)]$ Initial decay toward quasi steady state θ : time

Initial relaxation \rightarrow negative ΔS

$$\Delta S = -S^{\text{HS}}(\rho(2\pi) || \rho^{\text{SS}}(2\pi))$$
$$+S^{\text{HS}}(\rho^{\text{SS}}(0) || \rho^{\text{SS}}(0))$$
$$2\pi : \text{one-cycle}$$

Interpretation of the results

Negative work

Extracted from the geometrical phase

"Geometrical demon"

Cf. Maxwell demon utilizes information

Relative entropy decrease in the CPTP process

State cannot relax to a simple "steady state" under a modulation => Non-adiabatic effect.

Remaining issues (on going)

First and Second laws of thermodynamics?

The cost is not considered

(Interaction inside the system is modulated)

Joule heating is generated

(Second law would be maintained)

SUMMARY

- Quasi steady state is realized under parameter modulation $|\rho(\theta)\rangle$: quasi local in time
- Work can be extracted by utilizing the geometrical phase "Geometrical Demon"
- Relative entropy can be decreased by geometrical effect Initial relaxation process
- Extracted Work exponentially decays

One needs to wait to initialize the state

• For details, please see

H. Hayakawa and R. Yoshii, arXiv:2205.15193 (2022).

H. Hayakawa, VMM Paasonen, R. Yoshii, arXiv:2112.12370 (2021).