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Introduction: Thouless pumping

Classical pump
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Mean bias = 0  mean current = 0⇒

Topological pump
Mean current can flow w/ bias voltages

⟨Vbias⟩time average = 0

Mean current!

Thouless, 1983



Experimental implementation
Quantum dot system
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Cold atom system S. Nakajima, et.al., Nat. Phys., 12, 296 (2016).

M. Switkes, et.al., Science, 283, 1905 (1999).Quantum dot turnstile

When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
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is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
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Topological Thouless pumping of
ultracold fermions
Shuta Nakajima1*, Takafumi Tomita1, Shintaro Taie1, Tomohiro Ichinose1, Hideki Ozawa1, Lei Wang2,
Matthias Troyer2 and Yoshiro Takahashi1

An electron gas in a one-dimensional periodic potential can be
transportedeven in theabsenceofavoltagebias if thepotential
is slowly and periodically modulated in time. Remarkably, the
transferred charge per cycle is sensitive only to the topology of
the path in parameter space. Although this so-called Thouless
charge pump was first proposed more than thirty years ago1, it
has not yet been realized. Here we report the demonstration of
topological Thouless pumping using ultracold fermionic atoms
in a dynamically controlled optical superlattice. We observe a
shift of the atomic cloud as a result of pumping, and extract the
topological invariance of the pumping process from this shift.
We demonstrate the topological nature of the Thouless pump
by varying the topology of the pumping path and verify that
the topological pump indeed works in the quantum regime by
varying the speed and temperature.

Topology manifests itself in physics in a variety of ways2–4, with
the integer quantumHall effect (IQHE) being one of the best-known
examples in condensedmatter systems. There, theHall conductance
of a two-dimensional electron gas is quantized very precisely in
units of fundamental constants5. As discussed in the celebrated
Thouless–Kohmoto–Nightingale–den Nijs paper6, this quantized
value is given by a topological invariant, the sum of the Chern
numbers of the occupied energy bands.

In 1983, Thouless considered a seemingly different phenomenon
of quantum transport of an electron gas in an infinite one-
dimensional periodic potential, driven in a periodic cycle1. This
seems to be similar to the famous Archimedes screw7, which
pumps water via a rotating spiral tube. However, whereas the
Archimedes screw follows classical physics and the pumped amount
of water can be changed continuously by tilting the screw, the
charge pumped by the Thouless pump is a topological quantum
number and not affected by a smooth change of parameters1.
Interestingly, this quantization of pumped charge shares the same
topological origin as the IQHE. The charge pumped per cycle
can be expressed by the Chern number defined over a (1+ 1)-
dimensional periodic Brillouin zone formed by quasimomentum k
and time t . Although several single-electron pumping experiments
have been implemented in nanoscale devices, such as quantum
dots with modulated gate voltages8–10 or surface acoustic waves
to create a potential periodic in time11, the topological Thouless
pump, which should have the spatial periodicity to define the Bloch
wavefunction as well as the temporal periodicity, has not been
realized in electron systems.

In this Letter, we report a realization of Thouless’ topological
charge pump by exploiting the controllability of ultracold atoms
in an optical superlattice. Differently from recent realizations of
topological bands in two (spatial or synthetic) dimensions12–17,
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Figure 1 | The Rice–Mele model. a, Schematic of the Rice–Mele model. b, A
pumping cycle sketched (qualitatively) in δ–∆ space. c. Schematic of the
continuous Rice–Mele (cRM) pumping sequence. The pink shaded packet
indicates the wavefunction of a particular atom initially localized at the unit
cell i. The wavefunction shifts to right as the pumping proceeds and the
atom moves to unit cell i+ 1 after one pumping cycle. The blue dashed
curve and the green arrow indicate the harmonic confinement (not in scale)
and an initial hole, respectively.

our experiment explores the topology of a (1+ 1)-dimensional
adiabatic process, in which a dynamically controllable one-
dimensional optical superlattice is implemented following the
proposal of ref. 18. Topological pumping is seen as a shift of
the centre of mass (CoM) of an atomic cloud measured with
in situ imaging. We extract the Chern number of the pumping
procedure from the average shift of the CoM per pumping
cycle. The topological nature of the pump is revealed by the
clear dependence on the topology of the pumping trajectories
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Figure 2 | Observation of cRM pumping and sliding lattice pumping. a,b, In situ absorption images on the CCD before and after 10 cRM pumpings,
respectively. c, One-dimensional optical densities (integrated along the x axis) before pumping (red circles, same data as a) and after 10 cRM pumping
(blue diamonds, same data as b). d, The centre of mass (CoM) of the atomic cloud after up to ten pumping cycles. Red circles and blue open diamonds
indicate the CoM shift of the sliding lattice and the cRM pumping lattice, respectively. Error bars denote the standard deviation of five
independent measurements.

in parameter space as to whether the trajectory is enclosing the
degenerate point or not. Our work introduces a new experimental
platform to study topological quantum phenomena in adiabatic
driven systems.

In our experiments, an ultracold Fermi gas of ytterbium atoms
171Yb is prepared (see Methods) and loaded into a dynamically
controlled optical superlattice. Specifically, we construct a stationary
lattice (short lattice) with a period of 266 nm and a dynamical
interferometric lattice (long lattice) with a period of 532 nm whose
phase is stabilized and controlled by a Michelson interferometer
(see Methods). As a result, these laser beams create the
required18 time-dependent one-dimensional optical superlattice of
the form

V (z , t)=−VS(t)cos2
(
2πz
d

)
−VL(t)cos2

(πz
d −φ(t)

)
(1)

where d = 532 nm is the lattice constant of the superlattice, VS
is the depth of the short lattice, VL the depth of the long lattice,
and φ is the phase difference between the two lattices. In our
experiments,VS andVL are controlled by the respective laser powers
and φ by changing the optical path difference between the two
interfering beams with a piezo-transducer (PZT)-mounted mirror,
which enables us to sweep φ up to ∼11π, corresponding to more
than ten pumping cycles. In the following, we use the lattice constant
d as the unit of length and the recoil energy ER=h2/(8md2) as the
unit of energy, where h denotes Planck’s constant andm is the atomic
mass of 174Yb (see Methods).

We load 171Yb atoms into an array of one-dimensional optical
superlattices, ensuring that they occupy the lowest energy band
(see Supplementary Information 4), and slowly sweep φ over time.
The lattice potential returns to its initial configuration whenever
φ changes by π, thus completing a pumping cycle. Because the
lattice potential is periodic both in space and time, one can define
energy bands, the Bloch wavefunction |ψk(t)〉 = eikz |uk(t)〉, and

corresponding topological invariants such as the Chern number ν
in a k–t Brillouin zone:

ν= 1
2π

∫ T

0
dt

∫ π/d

−π/d
dk$(k, t) (2)

where $(k, t)= i(〈∂t uk|∂kuk〉− 〈∂kuk|∂t uk〉) is the Berry curvature
(see Methods) and T the pumping period. We have ensured that
the bandgap never closes during the whole pumping procedure,
so ideally the atoms stay in the lowest band during the adiabatic
pumping process. The phase sweep breaks time-reversal symmetry
and the energy bands can acquire a non-zero Chern number ν.
The shift of the CoM of the atomic cloud in such a topologically
nontrivial band after one pumping cycle is simply given by νd .

The ability to tune all parameters of the lattice potential (1)
independently in a dynamic way offers the opportunity to realize
various pumping protocols. In the absence of the static short
lattice, V (z , t) describes the simple sliding lattice which Thouless
originally proposed1. Including theVS term, one realizes the double-
well lattice illustrated in Fig. 1. A pictorial understanding of
this alternative pumping process is provided by the tight-binding
Rice–Mele model19,20,

Ĥ=
∑

i

(
−(J+δ)â†i b̂i −(J −δ)â†i b̂i+1+h.c.+∆(â†i âi − b̂†i b̂i)

)
(3)

where âi (â†i ) and b̂i (b̂†i ) are fermionic annihilation (creation)
operators in the two sublattices of the ith unit cell, J ± δ is the
tunnelling amplitude within and between unit cells, and ∆ denotes
a staggered on-site energy offset, as shown in Fig. 1a. We ignore
the spin degree of freedom because we can neglect the interaction
between the two spin components owing to a very small s-wave
scattering length21.

Figure 1c shows the schematics of our ‘continuous Rice–Mele’
(cRM) pumping sequence. Sweeping the phase linearly in time
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λ2

λ1

N. A. Sinitsyn and I. Nemenman PRL 99, 220408 (2007).

Geometrical interpretation

Non-trivial curvature in parameter space

Gauss-Bonnet type argument

Current ~ integration of the curvature inside trajectory
Berry-Sinitsyn-Nemenman(BSN) curvature



Connection with thermodynamics
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T. Sagawa and H. Hayakawa PRE 84, 051110 (2011).

Entropy production depends on the trajectory

λ2

λ1

λ2

λ1

− =

λ2

λ1Nonzero
Vector potential in thermodynamics 

•Brandner-Saito (PRL 2020) : single-bath
•Hino-Hayakawa (PRR2021): 2-baths 
•Ito-Dechant (PRX2020)

Related topics
K. Tomita and H. Tomita PTP 51, 6 (1974).
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Quantum dot system

Experimentally realizable system

Quantum dot + reservoirs

When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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Fermion with the Coulomb interaction

Quantum effect?
Many body interaction?
Fermi statistics?

Geometrical effect

Work? Efficiency? Entropy production?



Formalism: Master equation

Time evolution of the density matrix ρ

7

dρ
dθ

= �̂�ρ : linear operator acting on �̂� ρ

(CPTP property is satisfied)

: right eigenstate of |ri(θ)⟩⟩ �̂�

: modulated in time�̂�(θ)

: left eigenstate of ⟨⟨ℓi(θ) | �̂�

: eigenvalues of εi �̂�

: timeθ

Recasting the density matrix into the vector form

d
dθ

| ̂ρ⟩ = �̂� | ̂ρ⟩



Geometrical state

|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ)𝒜μ
dΛμ

dϕ
|ri(θ)⟩⟩

ℱi
μν ≡

∂𝒜i
ν

∂Λμ
−

∂𝒜i
μ

∂Λν

𝒜μ = ⟨⟨ℓi(ϕ) |
∂

dΛμ
|r0(ϕ)⟩⟩ : parametersΛ



|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ)𝒜μ
dΛμ

dϕ
|ri(θ)⟩⟩

ℱi
μν ≡

∂𝒜i
ν

∂Λμ
−

∂𝒜i
μ

∂Λν

𝒜μ = ⟨⟨ℓi(ϕ) |
∂

dΛμ
|r0(ϕ)⟩⟩

Steady state
Exponential decay

Geometrical state

: parametersΛ



|ρ(θ)⟩⟩ = |r0(θ)⟩⟩ − ∑
i≠0

∫
θ

0
dϕe ∫θ

ϕ dχϵ−1εi(χ)𝒜μ
dΛμ

dϕ
|ri(θ)⟩⟩

ℱi
μν ≡

∂𝒜i
ν

∂Λμ
−

∂𝒜i
μ

∂Λν

𝒜μ = ⟨⟨ℓi(ϕ) |
∂

dΛμ
|r0(ϕ)⟩⟩

Quasi local in time
Only  contributesθ − ϵ ≤ ϕ ≤ θ

λ2

λ1

(λ1(θ), λ2(θ))

“quasi” steady state

Geometrical state

: parametersΛ

Steady state
Exponential decay
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Ĥr ĤrĤ
Ĥ int Ĥ int

( ̂n↑/↓ = ̂d†
↑/↓

̂d↑/↓)

: creation and annihilation operator in leadŝa†
α,k,σ ( ̂aα,k,σ)

Ĥ = ∑
σ

ϵ0
̂d†
σ

̂dσ + U ̂n↑ ̂n↓

Ĥr = ∑
α,k,σ

ϵk ̂a†
α,k,σ ̂aα,k,σ

Ĥ int = ∑
α,k,σ

Vα
̂d†
σ ̂aα,k,σ + h . c . ,

Ĥ tot = Ĥ + Ĥr + Ĥ int

: creation and annihilation operator in dot (spin )̂d†
σ ( ̂dσ) σ

(spin , wave number , )σ k α = left or right

Application to Impurity Anderson Model

(  for simplicity)VL = VR
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Modulating parameters

Ĥr ĤrĤ
Ĥ int Ĥ int

μL

μR
TR

TL

VL VR

Uϵ0

δ = 0 δ = π

: phase deferenceδ

• Temperature is difficult to be controlled 

• Parameter in quantum dot must be tuned to extract work
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Ĥr ĤrĤ
Ĥ int Ĥ int

μL

μR
TR

TL

VL VR

Uϵ0

Modulating parameters U, μL, μR

δ = 0 δ = π

U = U0(1 + λ), λ = cos θ, μL = μ sin θ, μR = μ sin(θ + δ)

Modulating parameters

: phase deferenceδ

• Temperature is difficult to be controlled 

• Parameter in quantum dot must be tuned to subtract work



Absorb and release of heat & work
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QA = ∮
𝒫μ + 𝒫μ

2
dΛμ, QR = ∮

𝒫μ − 𝒫μ

2
dΛμ, W = ∮ 𝒫μdΛμ,

Negative work

𝒫μ = Tr (ρ
∂H
∂Λμ )
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η
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δ

0
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η βU0 = 0.1 r =
0.9

Efficiency: η ≡
|W |
QA

=
|QA + QR |

QA
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δ βU0 = 0.1 r = 0.9

δ
QA |QR|
βU0 = 0.1 r = 0.9
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Time evolution of relative entropy
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Relative entropy: SHS(ρ(θ) | |ρSS(θ)) = Trρ(θ)[ln ρ(θ) − ln ρSS(θ)]
 : timeθ

Exp. Decay

Initial decay toward quasi steady state

ΔS = − SHS(ρ(2π) | |ρSS(2π))

4

6050403020100
θ

0

×10-8

8

6

2

4

H
S

Figure 2. Sequential plots of SHS(ρ̂(2nπ)||ρ̂SS(2nπ)) with
non-negative integers n = 0, 1, · · · . Ryosuke: This fig-
ure should be improved. First, the labels of vertical axes
should be SHS(ρ̂(2nπ)||ρ̂SS(2nπ)). Second. we should use the
figure to clarify the change of SHS.
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βμR
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-1-221
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(a) (b)

(c)

βμR

Figure 3. (a) Schematics of a contour of the integral of C1,
where the black solid line is the trajectory of the parameters.
The color scale at a θ expresses FµLµR

1 . (b) and (c) The
BSN curvature FµLµR

1 and FµLµR
3 at θ = 0 are plotted. The

parameters are set to be βµ = 0.1, βU0 = 0.1 and βε0 = 0.1
for all figures.

lutions of the elements ρd(θ), ρ↑(θ), ρ↓(θ) and ρe(θ) of
density matrix in Fig. S10. This figure clearly exhibits
that all components of the density matrix are positive
definite. Therefore, the dynamics keeps the property of
CPTP. These results are obtained by the BSN connec-
tion Ci(θ) in Eqs. (7) and (8), all of which are negative
definite as shown in Ref. [42].

Figure 3 (a) illustrates the contour of integral Eq. (10)
in the paramer space (µL(θ), µR(θ), θ), where λ(θ) is not
explicitly shown though it changes the configuration of
the curvature. The BSN curvature always exists, though
the magnitude of them decreases with θ. The BSN cur-
vatures at specific θs are plotted in Figs. 3 (b) and (c),
where the half-width of the peak or the dip are approx-
imately located at βεL and βεR ∼ 10. What are εL and
εR which are undefined?
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-2

Figure 4. Plots of ∆S against δ for r = 0.5 (solid line), 0.7
(dotted line), 0.9 (dashed line) with fixing βU0 = 0.1 (a) and
plots of ∆S against δ for βU0 = 0.3 (solid line), 0.5 (dotted
line), 0.7 (dashed line) with fixing r = 0.9 (b).

654321

0.40

6543210
δ

-0.02

0(a) (b)

δ

βQA

βQR

βW

0.41
0.42
0.43
0.44
0.45

0.39

-0.04

-0.06
0

fitting
simulation

Figure 5. Plot of the work done on the system in one-cycle
modulation against δ. We set βU0 = 0.1 and r = 0.9 (solid
line) and fitting by the sinusoidal function (dotted line) (a)
and plots of the work done on the system against δ in the ab-
sorption process (QA, dashed line) and release process (|QR|,
solid line) where βU0 = 0.1 and r = 0.9 and fittings by the
sinusoidal functions (dotted lines) (b).

Figure 4 (a) illustrates how ∆S depends on the pa-
rameter r and δ under the fixing βU0. As expected ∆S
is negative definite for all regions. As can be seen, the
decrement of ∆S is enhanced for larger r. Figure 4 (b)
is the plots of ∆S versus δ for various βU0 with fixing
r. In this range, the decrement ∆S is enhanced as βU0

increases.
The work W defined in Eq. (13) also becomes negative

as shown in Fig. 5. This indicates that we can extract
the work by the cyclic modulations of the parameters
in Anderson model without fine tuning. In Fig. 6 we
plot the efficiency η defined in Eq. (17). These results
are obtained from ∆S < 0 and, thus, we call the engine
geometrical Maxwell’s demon.

Concluding Remarks.- We have implemented
Maxwell’s demon by the modulations of the chemi-
cal potentials in the reservoirs and the repulsion U in
the system Hamiltonian under the isothermal condition.
We can extract the work of this engine automatically
with the increment of the relative entropy if we begin
with the nonequilibrium steady state. This is caused
by the BSN connection which prevents the system from
keeping the initial nonequilibrium steady state. Our
Maxwell’s demon does not need any observation of
states to increase the KL-divergence. In this sense,
our Maxwell’s demon is easily implemented in realistic
situations, and thus, we expect wide applications of this
demon. Nevertheless, we should note that the extract
work by geometrical Maxwell’s demon decreases with

 : one-cycle2π

0 1 2 3 4 5 6

0.00002

0.00004

0.00006

0.00008

0.00010

SH
S (ρ

(θ
)|

| ρ
SS

(θ
))

θ

+SHS(ρSS(0) | |ρSS(0))

Initial relaxation → negative ΔS



Interpretation of the results
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Negative work

Extracted from the geometrical phase

“Geometrical demon” Cf. Maxwell demon  
     utilizes information

State cannot relax to a simple “steady state” under a modulation 
=> Non-adiabatic effect. 

Relative entropy decrease in the CPTP process

No modulation With modulation



Remaining issues (on going)
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First and Second laws of thermodynamics?

(Interaction inside the system is modulated)
The cost is not considered

U U

U
U

Joule heating is generated
(Second law would be maintained)
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SUMMARY

• Work can be extracted by utilizing the geometrical phase 

• Relative entropy can be decreased by geometrical effect

• Extracted Work exponentially decays

• Quasi steady state is realized under parameter modulation
: quasi local in time|ρ(θ)⟩⟩

One needs to wait to initialize the state

“Geometrical Demon”

• For details, please see

H. Hayakawa, VMM Paasonen, R. Yoshii, arXiv:2112.12370 (2021).

H. Hayakawa and R. Yoshii, arXiv:2205.15193 (2022).

Initial relaxation process


