

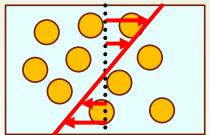
Discontinuous shear thickening of a moderately dense inertial suspension of hydrodynamically interacting frictionless soft particles

- 1 Satoshi Takada¹ 2 Kazuhiro Hara¹
- 3 Hisao Hayakawa²

¹Tokyo Univ. of Agri. & Tech. ²YITP, Kyoto Univ.

T4-08B-05, STATPHYS28, August 8th, 2023 (Univ. Tokyo) S. Takada, K. Hara, & H. Hayakawa, arXiv:2207.05752 S. Takada, K. Hara, & H. Hayakawa, arXiv:2207.05348

Introduction



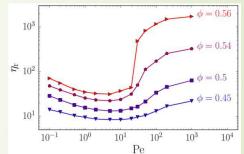
Viscosity $\eta(\varphi) \equiv \sigma(\varphi)/\dot{\gamma}$: characterizes noneq. transport

Dilute case (Einstein, 1906):
$$\eta_s(\varphi)/\eta_0 = 1 + (5/2)\varphi$$
 $(\varphi \le 0.03)$

solvent viscosity: η_0 shear rate: $\dot{\gamma}$

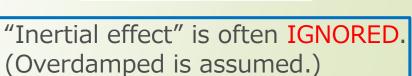
Dense case (near jamming): $\eta_{\rm s}(\varphi)/\eta_0 = (1 - \varphi/\varphi_{\rm m})^{-2}$ (empirical)

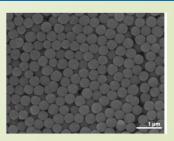
- Shear rate dependent viscosity (non-Newtonian fluid)
 - Shear thickening (thinning): Viscosity becomes large (small) as $\dot{\gamma}$ increases.



Discontinuous shear thickening (DST) can occur. (many mechanisms are proposed.)

 ■ If "ineria" is not ignored, system is called as "inertial suspensions" (a model of aerosols or colloid)

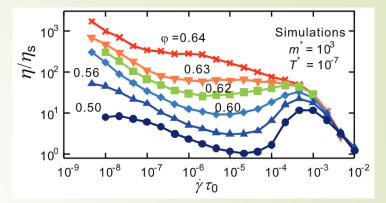




3

System: frictionless, Stokes' drag

- - Thinning \rightarrow thickening \rightarrow thinning for $\varphi \lesssim 0.60$
 - No thickening for $\varphi \gtrsim 0.63$
 - * Only contact contribution is considered.

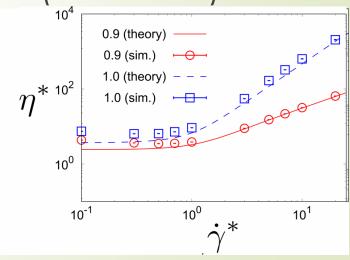


Dilute to moderately dense inertial suspension (hard-core)

Hayakawa & Takada, PTEP (2019), Takada, Hayakawa, Santos, & Garzó, PRE (2020)

- DST-like behavior for dilute systems (≅ ignited-quenched transition)
- ▶ Change to CST-like behavior at $\varphi \simeq 0.0176$
- Agreement for $\phi \lesssim 0.5$

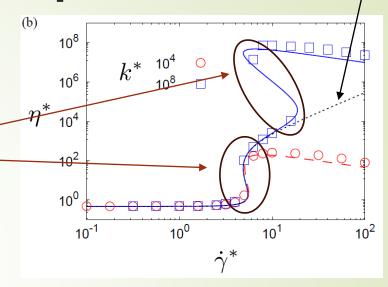
Mpemba effect (hotter can become colder) Prof. Santos's talk) 2023/8/8 Statphys28 @Univ. Tokyo

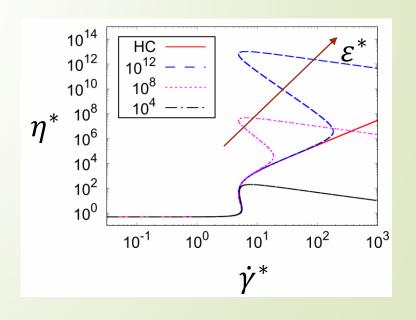


DST = Discontinuous Shear Thickening
CST = Continuous Shear Thickening

Previous studies on inertial suspension

- Dilute inertial suspension (soft-core)
 ③ Sugimoto & Takada, JPSJ (2020)
 - DST-like behaviors can occur TWICE!!
 - Kinetic theory is also developed. (Good agreement with simulations.)
 - Origin of two DSTs:
 - 1st DST: occurs at the same γ̇*
 as hard-core (same mechanism)
 ⇒ disappears as φ: Λ
 - 2nd DST: occurs depending on the softness of particles
 - ⇒ Softness (hardness) induced DST





Our question:

Does the second DST in dilute systems survive for dense systems?

Approach:

Both numerical to theoretical

- Numerical: Langevin simulation
- Theoretical (for 1): (Kinetic theory of inertial suspension)

Only Sto			ces' drag	Hydro.
		Hard-core	Soft-core	
Sim.	Dilute	Hayakawa & Takada, PTEP (2019)	Sugimoto & Takada, JPSJ (2020)	
Theory &	Mod. dense	Hayakawa, Takada, & Garzó, PRE (2017), Takada, Hayakawa, Santos, & Garzó, PRE (2020)	Our study 1	Our Study 2
Sim.	Dense		Kawasaki, Ikeda, & Berthier, EPL (2014)	Mari et al., PNAS (2015)

2023/8/8 Statphys28 @Univ. Tokyo

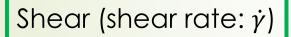
Model and setup

6

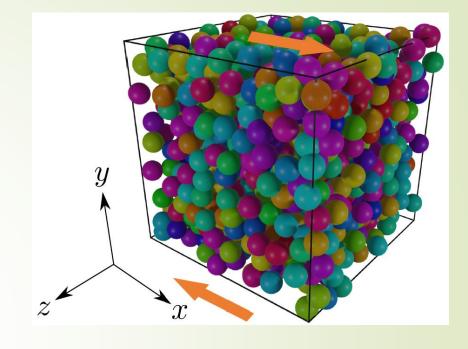
- System = Particle + Solvent
- Particle: monodisperse (mass m, diameter d)

$$\frac{d\mathbf{r}_{i}}{dt} = \frac{\mathbf{p}_{i}}{m} + \dot{\gamma}y_{i}\hat{\mathbf{e}}_{x}$$

$$\frac{d\mathbf{p}_{i}}{dt} = \sum_{j\neq i}\mathbf{F}_{ij}^{(el)} + \mathbf{F}_{i}^{H} + \boldsymbol{\xi}_{i}(t)$$



Hydrodynamic interaction from the solvent: **two models**



Interparticle interaction

= harmonic potential

$$F_{ij}^{(\text{el})} = -\frac{\partial U(r_{ij})}{\partial r_i}$$
, $U(r_{ij}) = \frac{\varepsilon}{2} \left(1 - \frac{r_{ij}}{d}\right)^2 \Theta\left(1 - \frac{r_{ij}}{d}\right)$

Noise term (satisfies fluctuation-dissipation theorem)

Solvent (fluid): viscosity η_0 , temperature $T_{\rm env}$ are kept constant.

2023/8/8 Statphys28 @Univ. Tokyo

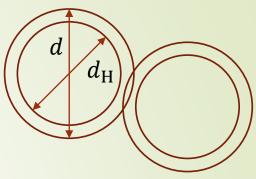
We consider two cases for hydrodynamic interaction:

1. Scalar resistance model: $F_i^{\rm H} = -\zeta p_i$ Only Stokes' drag ($\zeta = 3\pi d\eta_0/m$) Theoretical treatment is available. Enskog kinetic equation for the inertial suspension

2. Stokes' + lubrication model: $F_i^{\rm H} = -\sum_j \overleftarrow{\zeta_{ij}} p_j$ $\overleftarrow{\zeta_{ij}}$: non-diagonal, diverge at $r \to d$ "Roughness parameter" (dimple) is introduced. $\delta \equiv \frac{d-d_{\rm H}}{d_{\rm H}} \sim 1 \sim 10\%$: Magnitude of dimple (\$\mathcal{C}\$ Mari et al., J. Rheol. 58, 1693 (2014); Pradipto & Hayakawa, Soft Matter 16, 945 (2020), etc.)

(Dimensionless) control parameters:

- ① Packing fraction: φ ② Shear rate: $\dot{\gamma}^* \equiv \dot{\gamma}/\zeta$
- ③ Particle hardness: $\varepsilon^* \equiv \frac{\varepsilon}{m\sigma^2\zeta^2}$ ④ Envir. temp.: $\xi_{\rm env} \equiv \sqrt{\frac{T_{\rm env}}{m}} \frac{1}{\zeta\sigma}$
- 5 Magnitude of dimple: δ (only for 2^{nd} case)



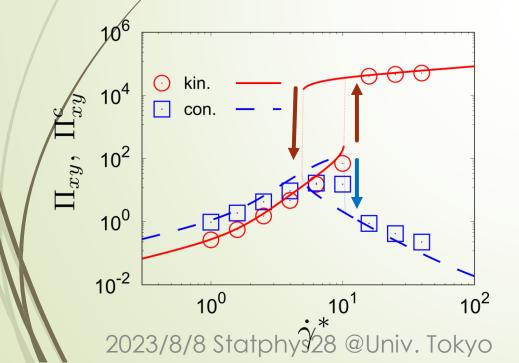
d: collision diameter d_H : lubrication diameter

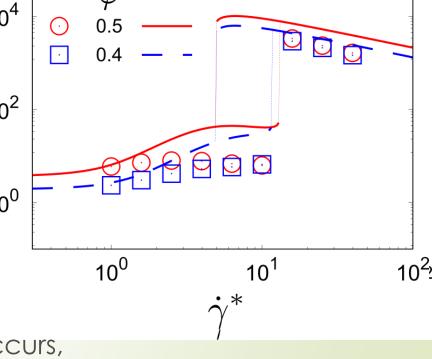
$$\begin{aligned} &\zeta_{ij,\alpha\beta} \\ &= \begin{cases} \frac{3\pi d\eta_0}{m} \delta_{\alpha\beta} + \sum_{k\neq i} \frac{1}{m} A_{ik,\alpha\beta}^{(1,1)} \Theta(r_{\rm c} - r_{ik}) \ (i=j) \\ -\frac{1}{m} A_{ij,\alpha\beta}^{(1,1)} \Theta(r_{\rm c} - r_{ij}) \end{cases} & (i\neq j) \\ A_{ij,\alpha\beta}^{(1,1)} \text{: function of } \widehat{\boldsymbol{k}} \equiv \boldsymbol{r}_{ij}/|\boldsymbol{r}_{ij}| \\ & (\boldsymbol{\circlearrowleft} \text{ Kim & Karrila, "Microhydrodynamics"}) \\ & r_{\rm c} \equiv d_{\rm H} + \lambda \text{: cutoff length } (\lambda = 0.25d) \end{aligned}$$

Results 1: Scalar model

Parameters: $\varphi = 0.10, 0.20, 0.30$ $\varepsilon^* = 10^4, \xi_{\rm env} = 1.0$

- (2nd) DST-like behavior survives even for finite density φ . (\Leftrightarrow CST-like for hard-core system)
- **Shear thinning** in high shear regime η^* 10²
- → (Kinetic theory reproduces the sim. results.)

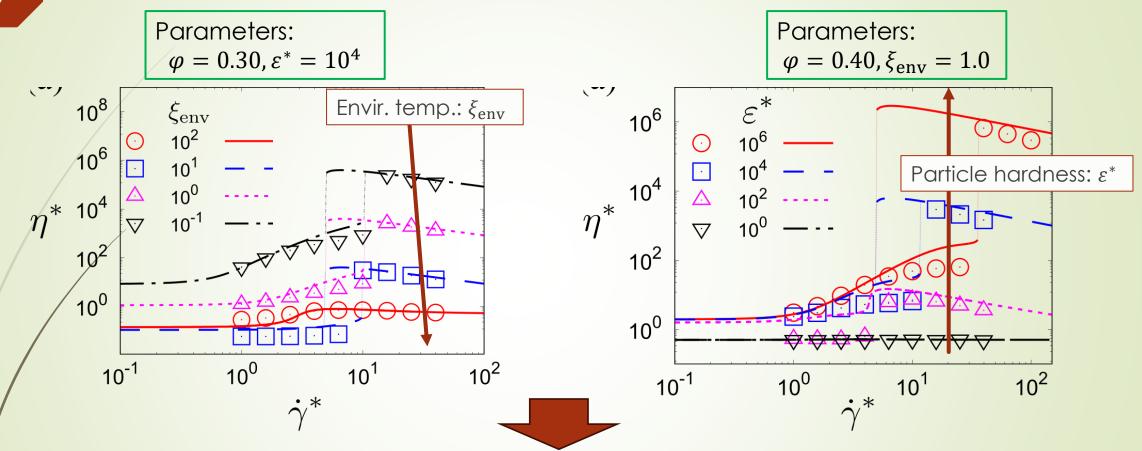




After the DST occurs,
Kinetic contribution >> Contact contribution

$$\left(P_{xy}^{k} = \frac{1}{V} \sum_{i} m v_{i,x} v_{i,y} \gg P_{xy}^{c} = \frac{1}{V} \sum_{i} \sum_{j \neq i} x_{ij} f_{ij,y}\right)$$

⇒ Inertia plays a crucial role for DST!! (= cannot be ignored) Viscosity vs. shear rate for various sets of parameters



We can evaluate the parameters' space where the DST occurs.

Question:

Does this DST survive when the lubrication forces exist?

Results 2: Stokes' + lubrication model

Answer is Yes.

Scaled viscosity $\tilde{\eta} \equiv \eta/\eta_1$ against the Peclet number $\text{Pe} \equiv \frac{3\pi\eta_0 d^3}{4T_{\text{env}}}\dot{\gamma}$ shows DST-like behavior.

$$\eta \equiv P_{xy}/\dot{\gamma}, \eta_1 = \eta_0(1 + 2.5\varphi + 4\varphi^2 + 42\varphi^3)$$
:

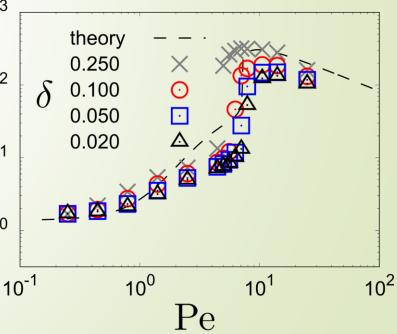
 η_1 : Empirical expression of

the apparent viscosity in the low shear limit

 $\varphi = 0.30$ $\varepsilon^* = 10^4$, $\xi_{\rm env} = 1.0$

Parameters:

- Even for small δ (small dimple),
 - **DST** occurs at $Pe \simeq 10$.
 - ⇔ DST occurs at Pe ~ 20 for frictional Brownian suspension @ Mari et al., PNAS 112, 15326 (2015)
- ► For larger δ , tends to the previous model $_{10^0}$



Disc.: Estimation of quantities for model 2

Aerosol

 $d \sim 10^{-6} \text{ m}, \rho \sim 1 \text{ g/cm}^3, E \sim 10 \text{ GPa} \Rightarrow m \sim 10^{-14} \text{ kg}$

Viscosity of air: $\eta_0 \sim 10^{-5} \, \text{Pa} \cdot \text{s}$

DST takes place at $\dot{\gamma}_{\rm c} \sim 10^4 \, 1/{\rm s}$

 \Rightarrow shear speed 10^2 m/s if L = 1 cm

Colloid

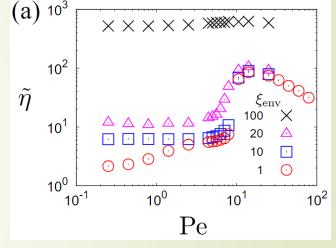
 $d \sim 2 \times 10^{-6} \text{ m}, \rho \sim 1 \text{ g/cm}^3, E \sim 1 \text{ GPa}$

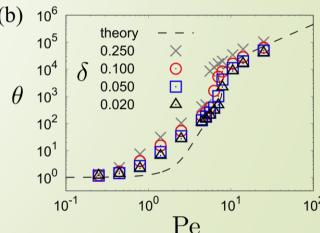
 $\Rightarrow m \sim 10^{-15} \text{ kg}$

Viscosity of water: $\eta_0 \sim 10^{-3} \, \mathrm{Pa} \cdot \mathrm{s}$

Room temperature (300K): $\xi_{\rm env} \sim 2 \times 10^{-4}$

► Kinetic temperature becomes 10² times larger.
 Is it possible to achieve this?
 ⇒ This will open for discussion.





Summary

- Softness induced DST-like behaviors can exist for frictionless system.
- This DST survives even for finite densities.
- Scalar model
 DST-like behaviors
 Good agreement between sim. and theory.
- Lubrication model

 DST-like behaviors survive

 even for small roughness parameter

Future work

- Long range interaction (inclusion of Lotne-Prager tensor)
- Verifiability in experiments

