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Abstract

In this thesis, we numerically and theoretically study the transport phenom-
ena of cohesive granular particles.

First, we study spatial patterns of cohesive granular gases under a plane
shear. From the results of three-dimensional molecular dynamics (MD) sim-
ulations, we find various spatial patterns depending on the density, the shear
rate, and the dissipation rate. We also find that the velocity distribution
function (VDF) near the interface between the dense region and the gas di-
lute region in the dense-plate coexistence phase deviates from the Gaussian
function. Introducing a stochastic model and its corresponding Kramers
equation, we have obtained its perturbative VDF, which reproduces the
semi-quantitative behavior of the VDF observed in the MD simulations.

Next, we develop the kinetic theory of dilute cohesive granular gases
in which the attractive part is described by a square well potential. We
derive a set of hydrodynamic equations from the kinetic theory including
the dissipation rate and the transport coefficients. We check the validity of
our theory by performing the direct simulation Monte Carlo.
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Chapter 1

Introduction

We are surrounded by a plenty of granular materials which behave as un-
usual solids, liquids, and gases [1]. To understand complex behavior of such
systems is important in both physics and industry. Granular meterials are
characterized by the repulsive force and the dissipative force, i. e., the en-
ergy dissipation during collisions of particles. Because a granular particle is
composed of many molecules, there are some excitations of internal vibra-
tions, radiation of sounds, and deformations. Such processes are the origin
of dissipations [2–11].

Let us consider a granular gas system without any external forces. The
kinetic temperature of this system decreases because of inelastic collisions,
where the time evolution of the kinetic temperature is known to obey Haff’s
law if the system is homogeneous [12]. However, this homogeneous state
cannot be maintained as time goes on, because clusters of dense region ap-
pear as shown in Fig. 2.1 [13–18]. Such inhomogeneity of granular gases can
be understood by granular hydrodynamics [19–29]. Esipov and Pöschel [30]
and Noije and Ernst [31] have found that the tail of the velocity distribution
function (VDF) deriates from Gaussian for homogeneous cooling system.
Such deviations have also been reported for the vibrated system [31–33],
sheared system [34], and falling systems [35, 36], and these deviations are
usually expressed by expansions of Sonine polynomials [37, 38]. There are
some papers to determine the transport coefficients for this system. The
most successful tool is the kinetic theory for inelastic hard core system. One
can derive the transport coefficients with the aid of Chapman-Enskog ex-
pansion [39]. The earliest application of the kinetic theory to dilute granular
gases using inelastic Boltzmann equation [40] calculated the stress tensor,
and later one derived the transport coefficients [41–43], in which the devia-
tion of VDF from the Maxwellian was ignored. In the precise treatment of
later literature, of course, the kinetic theory includes the deviation of VDF
from the Maxwellian [31,44–46]. Brey et al. [44] have adopted the homoge-
neous cooling state as the zeroth order of the Chapman-Enskog expansion.
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The kinetic theory has also been applied for the moderately dense gases
using inelastic Enskog equation [47]. It should be noted that there exists
an alternative method to derive the transport coefficients in terms of Grad’s
moment method with the aid of Hilbert expansion of the distribution func-
tion [48–50], in terms of an anisotropic Maxwellian distribution function [51],
or in terms of BGK model [52]. Sela and Goldhirsch [53] and Ramı́rez et
al. [54] have shown that Grad method can cover results with those by the
Chapman-Enskog method. As Mitarai and Nakanishi [55] and Chialvo and
Sundaresan [56] showed, Enskog theory [47] gives precise transport coeffi-
cients if the density is lower than the Alder transition point, but it fails to
predict correct behavior of the coefficients above the Alder point. Recently,
Suzuki and Hayakawa [57] have developed a new theory for sheared gran-
ular liquids even near the jamming point. They perturbatively derived a
steady-state distribution function which depends on the stress tensor in the
limit of the small inelasticity and weakly shear condition. Their obtained
shear viscosity is consistent with the result of the molecular dynamics (MD)
simulation. It should be noted that the shear viscosity for sheared system
is, in general, different from that for homogeneous system even in the dilute
limit in contrast to elastic cases, because the base states for two situations
are different in inelastic cases [58,59].

The attractive interaction between particles plays an important role for
fine powders such as aerosols, volcanic ashes, flour, and toner particles.
Such cohesive forces can cause a liquid-gas phase transition, a variety of
cluster formation, and the appearance of a solid-like state below the jamming
point. We also indicate that water among grains exists in many situations,
and attractive interaction between fine powders becomes important. Thus,
the study of cohesive granular materials is important for both physics and
industry to treat real granular materials. Once there exists the attractive
interaction between grains, grains tend to form clusters as the result of
coalescence processes. The earliest treatment of the coalescence processes
is Smoluchowski equation, which describe the time evolution of the number
of particles of size. One example of an application of the equation is to
explain the size distribution of Saturn’s ring [60,61]. The interaction between
cohesive particles or wet particles is also studied [62–65], which is discussed
in chapter 3.

In this thesis, we try to characterize nonequilibrium pattern formation
of cohesive fine powders under a plane shear by the three-dimensional MD
simulations. We also try to analyze the time evolution of the granular tem-
perature and derive the transport coefficients for dilute cohesive granular
gases in freely cooling processes. The organization of this paper is as fol-
lows. In the next Chapter, we briefly summarize the results for dry granular
gases. In chapter 3, we show various examples to treat the attractive force
between particles. In chapter 4, we introduce a hydrodynamic description of
cohesive granular particles. In chapter 5, we introduce numerical methods
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for MD simulations for soft core particles and hard core particles, and direct
simulation Monte Carlo (DSMC) method in details. In chapters 6 and 7,
the main parts of this paper, are devoted to show the results of our simula-
tion and derivation of the transport coefficients for dilute cohesive granular
particles in terms of the kinetic theory of inelastic Boltzmann equation. In
chapter 8, we summarize our results. In Appendix A, we briefly examine
the pattern formation of the dissipative Lennard-Jones (LJ) system under
a sheared flat boundary condition. In Appendix B, we illustrate the exis-
tence of Coulombic friction near the interface of the plate-gases coexistence
phase. In Appendix C, we demonstrate that the viscous heating term near
the interface is always positive. In Appendix D, we present a perturbative
solution of the Kramers equation. In Appendix E, we show the detailed cal-
culation for each moment of the VDF. In Appendix F, we show the detailed
calculation of the VDF. In Appendix G, we explain collision geometries for
core collisions and grazing collisions to determine the velocity change dur-
ing collisions in details. In Appendix H, we briefly explain the procedure to
obtain the transport coefficients by using the Chapman-Enskog theory. In
Appendices I and J, we calculate the second moment of the collision integral
and two Sonine coefficients in terms of the kinetic theory, respectively. In
Appendix K, we calculate the explicit expressions of the transport coeffi-
cients in the high and low temperature limit. In Appendix L, we calculate
the Omega integrals and compare the results by the kinetic theory and those
by the event-driven MD simulation.
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Chapter 2

Inelastic Boltzmann equation
for hard core potential

In this chapter, we review the kinetic theory of inelastic Boltzmann equation
for hard core potential and the transport coefficients. Next, we explain the
structure formation from the stability analysis of the linearized hydrody-
namic equations.

2.1 Chapman-Enskog method

Boltzmann equation is the oldest equation in nonequilibrium statistical me-
chanics. Its quantitative validity in describing molecule gases has already
been examined in many times. Inelastic Boltzmann equation has been in-
troduced implicitly by Ogawa [66], and later explicitly by Savage and Jef-
frey [40] for dilute granular gases. Let us consider the inelastic Boltzmann
equation: (

∂

∂t
+ v1 ·∇

)
f(r,v1, t) = I(f, f), (2.1)

where f(r,v1, t) is the distribution function for the position r and the ve-
locity v1, and I(f, f) is the collision integral

I(f, f) =d2
∫
dv2

∫
dk̂Θ(−v12 · k̂)|v12 · k̂|

×
[
1

e2
f(r,v′′

1 , t)f(r,v
′′
2 , t)− f(r,v1, t)f(r,v2, t)

]
. (2.2)

Here we have introduced the step function Θ(x) = 1 for x ≥ 0 and Θ(x) = 0
otherwise. We also write the relationship between the pre-collisional veloci-
ties (v′′

1 , v
′′
2) and the post-collisional velocities (v1, v2)

v1 = v′′
1 −

1 + e

2
(v′′

12 · k̂)k̂, v2 = v′′
2 +

1 + e

2
(v′′

12 · k̂)k̂ (2.3)
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with the restitution coefficient e, which is defined by the ratio of the post-
collisional relative speed v12 = |v1 − v2| to the pre-collisional relative speed
v′′
12 = |v′′

1 − v′′
2 |. We note that the factor 1/e2 in the first term in the

integrand in Eq. (2.2) is the result from the Jacobian and the collision rule
(2.3) for each collision.

2.1.1 Homogeneous cooling state

In this section, let us determine the VDF f(v, t) in freely cooling hard core
granular gases based on the inelastic Boltzmann equation (2.1). First, we
expand the distribution function in terms of Sonine polynomials [31, 38, 45,
46,67] as

f (0)(v, t) = fM(V )

[
1 +

∞∑
ℓ=1

aℓS
(1/2)
ℓ

(
mV 2

2T (t)

)]
, (2.4)

where V = |V | = |v − U | is the local velocity fluctuation from the flow
velocity U(r, t). fM(V ) = n(m/2πT )3/2 exp(−mV 2/2T ) is the Maxwellian

at the temperature T and the number density n, and S
(1/2)
ℓ (x) is the Sonine

polynomial:

S
(j)
ℓ (x) =

ℓ∑
k=0

(−1)kΓ(j + ℓ+ 1)

Γ(j + k + 1)(ℓ− k)!k!
xk (2.5)

with the Gamma function Γ(x). The time evolution of the granular temper-
ature obtained by the product of the Boltzmann equation (2.1) with mv21/2
and integrating over v1, is written as

dT

dt
= −ζ(0)T, (2.6)

where we have introduced the cooling rate for the homogeneous gas

ζ(0) =
2

3
nd2
√

2T

m
M2. (2.7)

Here,M2 is the second moment of the dimensionless collision integral

M2 = −
∫
dc1c

2
1Ĩ(f̃

(0), f̃ (0)), (2.8)

where we have introduced the dimensionless velocity c1 = v1/vT with the
thermal velocity vT =

√
2T (t)/m, the dimensionless collision integral Ĩ(f̃ (0), f̃ (0)) =

(v2T /n
2d2)I(f (0), f (0)), and the dimensionless distribution function f̃ (0)(c) =

(v3T /n)f
(0)(v, t). After some algebra of Eq. (2.8) with the aid of Eq. (2.3),

M2 can be rewritten as [31,46]

M2 = −
1

2

∫
dc1

∫
dc2

∫
dk̂Θ(−c12 · k̂)|c12 · k̂|f̃ (0)(c1)f̃ (0)(c2)∆[c21 + c22]

(2.9)
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where ∆ψ(ci) ≡ ψ(c′i)− ψ(ci). It should be noted that the density keeps a
constant and the flow velocity is zero in the homogeneous state. Let us deter-
mine the explicit form ofM2 under a certain approximation. Many papers
assume that the zeroth order distribution function can be well reproduced by
the truncation up to the second order Sonine polynomials [31, 38, 44, 46, 67]
as

f̃ (0) = ϕ(c)
[
1 + a2S

(1/2)
2 (c2)

]
, (2.10)

with ϕ(c) = π−3/2 exp(−c2), where a1 is automatically zero because the first
order moment is absorbed in the definition of the zeroth velocity distribution
function. It should be noted that there are some papers studying the effect of
the truncation by considering the distribution function up to the third order
[68–70]. From now on, we use the truncated distribution function (2.10) as
well as the linearization on a2. Let us determine a2 in Eq. (2.10) by using the
moments of the dimensionless collision integrals. When we use the truncated
distribution function (2.10), the n-th moment Mp = −

∫
dc1c

p
1Ĩ(f̃

(0), f̃ (0))
(p ∈ N) as {

M2 =
√
2π(1− e2)(1 + 3

16a2),

M4 =
√
2π(T1 + a2T2),

(2.11)

where the coefficients T1 and T2 are, respectively, given by

T1 = (1− e2)
(
9

2
+ e2

)
, (2.12)

T2 =
3

32
(1− e2)(69 + 10e2) + 2(1 + e). (2.13)

Here,M4 is related toM2 and the fourth moment ⟨c4⟩ as

4

3
M2⟨c4⟩ =M4. (2.14)

Substituting Eqs. (2.11) into Eq. (2.14) with ⟨c4⟩ = (15/4)(1+a2), we obtain
the explicit form of a2 as

a2 =
16(1− e)(1− 2e2)

81− 17e+ 30e2(1− e)
. (2.15)

Substituting Eqs. (2.7), (2.11) and (2.15) into Eq. (2.6), we obtain the time
evolution of the temperature as

T (t) =
T0(

1 + t
τ

)2 (2.16)

with

τ−1 ≡ 1

3
nd2
√

2T0
m
M2. (2.17)
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2.1.2 Hydrodynamic equations

Next, let us derive the transport coefficients which appear in a set of hy-
drodynamic equations. Multiplying the Boltzmann equations (2.1) by 1, v1,
and mv21/2 and integrating over v1, we obtain the hydrodynamic equations

∂n

∂t
+∇ · (nU) = 0, (2.18)

∂U

∂t
+U ·∇U +

1

mn
∇ · P = 0, (2.19)

∂T

∂t
+U ·∇T +

2

3n
(P : ∇U +∇ · q) + ζT = 0, (2.20)

where n(r, t) is the density field, U(r, t) is the flow velocity, and T (r, t) is
the granular temperature. The pressure tensor P , the heat flux q, and the
cooling rate ζ are, respectively, defined as

Pij ≡
∫
dvDij(V )f(r,v, t) + nTδij , (2.21)

q ≡
∫
dvS(V )f(r,v, t), (2.22)

ζ ≡ − m

3nT

∫
dvv2I(f, f), (2.23)

where Dij(V ) ≡ m(ViVj − V 2δij/3) and S(V ) ≡ (mV 2/2 − 5T/2)V . We
adopt the constitutive equations at the Navier-Stokes order

P = pδij − η
(
∇iUj +∇jUi −

2

3
δij∇ ·U

)
, (2.24)

q = −κ∇T − µ∇n, (2.25)

where p is the hydrostatic pressure, η is the shear viscosity, κ is the thermal
conductivity, and µ is the coefficient proportional to the density gradient.

To obtain the transport coefficients, we adopt the Chapman-Enskog
method [39, 46, 67]. Here, we expand the distribution function around Eq.
(2.10) as

f = f (0) + δf (1) + · · · (2.26)

by a small parameter δ corresponding to the gradients of the fields. Similarly,
the time derivative of the distribution function is expanded as

∂

∂t
=
∂(0)

∂t
+ δ

∂(1)

∂t
+ · · · . (2.27)

We, thus, rewrite the Boltzmann equation (2.1) as(
∂(0)

∂t
+ δ

∂(1)

∂t
+ · · ·+ δv1 ·∇

)(
f (0) + δf (1) + · · ·

)
= I

[(
f (0) + δf (1) + · · ·

)
,
(
f (0) + δf (1) + · · ·

)]
. (2.28)
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The equation at the zeroth order of Eq. (7.39) is reduced to

∂(0)

∂t
f (0) = I

(
f (0), f (0)

)
. (2.29)

From Eqs (2.18)–(2.20), the zeroth order hydrodynamic equations are, re-
spectively, given by

∂(0)

∂t
n = 0,

∂(0)

∂t
U = 0,

∂(0)

∂t
T = −ζ(0)T, (2.30)

which are equivalent to those obtained in the previous subsection for the
homogeneous cooling state. The zeroth order of the pressure tensor and the
heat flux are, respectively, given by

P
(0)
ij = nTδij , q(0) = 0. (2.31)

The first-order Boltzmann equation becomes

∂(0)

∂t
f (1) +

(
∂(1)

∂t
+ v1 ·∇

)
f (0) = I

(
f (0), f (1)

)
+ I

(
f (1), f (0)

)
. (2.32)

The corresponding first-order hydrodynamic equations are, respectively, given
by

∂(1)

∂t
n = −∇ · (nU),

∂(1)

∂t
U = −U ·∇U − 1

mn
∇(nT ),

∂(1)

∂t
T = −U ·∇T − 2

3
T∇ ·U − ζ(1)T, (2.33)

where the first-order dissipation rate ζ(1) is defined by

ζ(1) = − 2m

3nT

∫
dvv2I

(
f (0), f (1)

)
. (2.34)

We note that ζ(1) becomes zero because of the parity of the integral (2.34)
[44, 46, 67]. We assume that the distribution function f (0) depends on time
and space only via its moments: the density n, the average velocity U and
the temperature T as f (0) = f (0)[v|n,U , T ]. Then we can rewrite the first-
order equation (2.32) as

∂(0)f (1)

∂t
+ J (1)

(
f (0), f (1)

)
− ζ(1)T ∂f

(0)

∂T

= f (0) (∇ ·U − V ·∇n) +
∂f (0)

∂T

(
2

3
T∇ ·U − V ·∇T

)
+
∂f (0)

∂V
·
(
(V ·∇)U − 1

mn
∇P

)
, (2.35)
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where
J (1)

(
f (0), f (1)

)
= −I

(
f (0), f (1)

)
− I

(
f (1), f (0)

)
. (2.36)

Equation (2.35) can be rewritten as

∂(0)f (1)

∂t
+ J (1)

(
f (0), f (1)

)
− ζ(1)T ∂f

(0)

∂T
= A ·∇ log T +B ·∇ log n+ Cij∇jUi, (2.37)

where the coefficients A, B, and Cij are, respectively, given by

A(V ) =
1

2
V

∂

∂V
·
(
V f (0)

)
− T

m

∂

∂V
f (0)

= V

[
T

m

(
mV 2

2T
− 1

)
1

V

∂

∂V
+

3

2

]
f (0), (2.38)

B(V ) = −V f (0) − T

m

∂

∂V
f (0)

= −V
(
T

m

1

V

∂

∂V
+ 1

)
f (0), (2.39)

Cij(V ) =
∂

∂Vi

(
Vjf

(0)
)
− 1

3
δij

∂

∂V
·
(
V f (0)

)
=

(
ViVj −

1

3
δijV

2

)
1

V

∂f (0)

∂V
. (2.40)

From Eq. (H.1), f (1) is expected to have the form

f (1) = A ·∇ log T + B ·∇ log n+ Cij∇jUi. (2.41)

The relationship between the coefficients A, B, Cij and A, B, Cij are, re-
spectively, given by substituting the solution Eq. (2.41) into Eq. (H.1) as:

−T ∂

∂T

(
ζ(0)A

)
+ J (1)

(
f (0),A

)
=A, (2.42)

−ζ(0)T ∂B
∂T
− ζ(0)A+ J (1)

(
f (0),B

)
=B, (2.43)

−ζ(0)T ∂Cij
∂T

+ J (1)
(
f (0), Cij

)
=Cij , (2.44)

where we have used ζ(1) = 0 because the coefficient Cij is traceless. The
pressure tensor and the heat flux can be written as

P
(1)
ij =− η

(
∇iUj +∇jUi −

2

3
δij∇ ·U

)
, (2.45)

q(1) =− κ∇T − µ∇n. (2.46)
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Substituting f = f (0) + f (1) and Eq. (2.45) into Eq. (2.21), we obtain
the differential equation for the shear viscosity η with respect to T as

−ζ(0)T ∂η
∂T
− 2

5
nd2
√

2T

m
Ωe
ηη = nT, (2.47)

where Ωe
η is given by

Ωe
η =

∫
dc1

∫
dc2

∫
dk̂σ̃(χ, c12)(c12 · k̂)ϕ(c1)ϕ(c2)

×

[
1 +

∞∑
ℓ=1

aℓSℓ(c
2
1)

]
D̃ij(c2)∆

[
D̃ij(c1) + D̃ij(c2)

]
=−

√
2π(1 + e)(3− e)

(
1− 1

32
a2

)
(2.48)

with D̃ij = Dij/ε. By solving Eq. (2.47), we obtain the shear viscosity as

η =
15

2(1 + e)(13− e)d2

√
mT

π

[
1 +

3

8

4− 3e

13− e
a2

]
. (2.49)

Similarly, substituting Eq. (7.50) into Eq. (2.22), we obtain the differential
equations for the thermal conductivity κ and the coefficient µ with respect
to T as

∂

∂T

(
3ζ(0)κT

)
+

4

5
κnd2

√
2T

m
Ωe
κ = −15

2

nT

m
(1 + 2a2) , (2.50)

and

−3nζ(0) ∂µ
∂T
− 3κζ(0) − 4

5
n2d2

√
2

mT
Ωe
κµ = a2

15

2

nT

m
, (2.51)

respectively, where Ωe
κ is given by

Ωe
κ =

∫
dc1

∫
dc2

∫
dk̂σ̃(χ, c12)(c12 · k̂)ϕ(c1)ϕ(c2)

×

[
1 +

∞∑
ℓ=1

aℓSℓ(c
2
1)

]
S̃(c2) ·∆

[
S̃(c1) + S̃(c2)

]
=−
√
2π(1 + e)

(
49− 33e

8
+

19− 3e

256
a2

)
(2.52)

with S̃ = S
√
m/ε3. We obtain the thermal conductivity and the coefficient

µ as

κ =
75

2(1 + e)(9 + 7e)d2

√
T

πm

[
1 +

1

32

797 + 211e

9 + 7e
a2

]
, (2.53)

µ =
750(1− e)

(1 + e)(9 + 7e)(19− 3e)nd2

√
T

πm

×
[
1 +

50201− 30971e− 7253e2 + 4407e3

80(1− e)(19− 3e)(9 + 7e)
a2

]
, (2.54)
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respectively. Brey et al. [71] have numerically shown that these results
(2.49), (2.53), and (2.54) are consistent with those by the Green-Kubo re-
lations. It is also noted that Brilliantov and Pöschel [46] have checked the
magnitude of an (n ≥ 2) as a function of the restitution coefficient, and
obtained that an (n ≥ 3) is much smaller than a2, which ensures that the
truncation up to a2 order is reasonable.

2.2 Structure formation

In Sec. 2.1, we have explained Haff’s law for the time evolution of the granu-
lar temperature in a homogeneous cooling system. However, it is known that
homogeneous system is unstable because granular particles tend to align as
time goes on because of inelastic collisions [13, 14,18,46]. In the first stage,
the system is uniform and homogeneous. Later, the system is still uniform,
while correlations of the velocities grow with time, and finally the system
becomes spatially inhomogeneous.

Figure 2.1: A typical time evolution of dry granular gases [13]. There appear
clusters of dense region.

Figure 2.1 shows a typical time evolution of the system after the homoge-
neous state becomes unstable. This structure formation can be understood
by the alignment of particles as depicted in Fig. 2.2, i. e. the normal relative
speed decreases as a result of an inelastic collision while the tangential speed
is conserved in the collision. To understand this instability quantitatively,
hydrodynamic description is useful. The linear stability analysis [72, 73]
shows that two modes become unstable, one mode is the shear mode and
the other is the heat mode. This illustrates that the long wave shear mode
of the linearized hydrodynamic equations are always unstable as shown in
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Fig. 2.3. The hydrodynamic description for sheared granular materials is
also studied [24–29], in which Saitoh and Hayakawa [24,25] have performed
weakly nonlinear analysis and derived the amplitude equation to investigate
the instability of the uniformly sheared state.

Figure 2.2: A schematic picture of an inelastic collision. Two particles tend
to align after the collision because of inelasticity.
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Figure 2.3: Real parts of eigenvalues of a set of hydrodynamic equations.
Shear (the red solid line) and heat (the blue dashed line) modes have positive
eigenvalues for the long wave length. This figure is drawn based on the
calculation corresponding to Fig. 25.3 in Ref. [46].
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Chapter 3

Physical properties of
cohesive granular particles

In this chapter, let us review physical properties of cohesive granular parti-
cles. First, we briefly explain the properties of cohesive granular particles,
and then those of wet granular particles. Both granular systems have at-
tractive interactions, while the origins are different.

3.1 Dry cohesive granular particles

The interaction between contacting granular particles usually consists of the
repulsive force and the dissipative force proportional to the relative speed.
For fine powders such as aerosols, volcanic ashes, flours, and toner particles,
however, cohesive force cannot be ignored [75–85]. The origin of this cohesive
force for neutral powders is van der Waals force [62]. The positions of the
electrons around the nuclear protons cause electric dipoles, which generate
an attractive force between two adjacent particles. The simplest expression
of this force is the Lennard-Jones (LJ) potential

U(r) = −C
r6

+
D

r12
, (3.1)

where r is the relative distance between two particles, and C and D are
the fitting parameters, respectively. When the LJ molecules are quenched
below the coexistence curve of gas-liquid phases [86–91], a phase ordering
process proceeds after nucleation takes place [92–94]. Müller and Luding [95]
and Murphy and Subramaniam [96] have studied the homogeneous cooling
state for particles having an inelastic hard core with attractive potential.
Murphy and Subramaniam have adopted the system having a hard core
potential associated with attractive part

Φ(r) = −Θ(d0 − r)
ARs

6r
, (3.2)
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where A and Rs are the effective Hamaker constant and the effective radius
of curvature of the particle surface, respectively, and d0 is the cutoff length.
They have obtained that the time evolution of the kinetic energy as⟨

∂Ekin(t)

∂t

⟩
= −m

2
ωTg

[
1− e2 exp

(
− Ha

4Hacrit

)]
, (3.3)

where m is the mass of the particles, e is the restitution coefficient, Tg is the

granular temperature, ω = 16π1/2d2gcT
1/2
g is the collision frequency with

the diameter d and the radial distribution function at contact gc, Ha =
4Φ(d0)/mv

2 with the relative speed v, and Hacrit = −e2/(1− e2). Equation
(3.3) obeys Haff’s law in the initial stage and decrease faster as time goes on,
then approaches Haff’s law for e = 0. Müller and Luding have also obtained
the similar time evolution of the kinetic energy as⟨

∂Ekin(t)

∂t

⟩
= −m

2
ωTg(1− e2)

[
2− exp

(
Ha

2

)]
, (3.4)

which also obeys Haff’s law in the initial stage. However, these papers have
not discussed the transport coefficients.

There are some papers to study the aggregation and fragmentation pro-
cesses induced by collisions. The simplest approach to treat the aggregation
process is Smoluchowski equation:

dnk
dt

=
1

2

∑
i+j=k

Cijninj −
∞∑
i=1

Cijnink, (3.5)

where nk is the number of particles of size k, Cij is the kinetic coefficients.
For specific forms of Cij , Eq. (3.5) is known to be solved analytically.

Recently, Brilliantov et al. [60] have applied the kinetic theory to a sys-
tem including aggregation and breakup as well as inelastic scatterings. They
have numerically and analytically solved a rate equation for the cluster size
and succeeded to explain the size distribution of dusts in Saturn’s ring.

3.2 Wet granular particles

There is another origin of the cohesive force, which is the capillary force
for wet granular particles because of the existence of liquids on granular
surface [63–65,97]. It is known that there are various states of wet particles:
pendular state, funicular state, capillary state, and slurry state depending
on the amount of liquids in the system as in Table 3.1 [65]. For the case of
capillary state, the formation and the rupture of a capillary bridge coexist
as in Fig. 3.1. The magnitude of this force is given by

F = 2πRγ cos θ
1 + dc/4R

1− dc/2R
≈ 2πRγ cos θ (3.6)
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for dc ≪ 4R, where R is the radius of particles, γ is the liquid surface
tension, θ is the macroscopic contact angle, and dc is the vertical distance
of the contact lines of a capillary bridge [63,98]. This process is irreversible,
which is different from that for fine powders. The Johnson-Kendall-Roberts
theory is usually used for the description of the microscopic surface energy
for the contact of cohesive particles [99,100].

Table 3.1: A various kind of states depending on the amount of the liquid.
This table is depicted based on Table 2 in Ref. [65].

state schematic picture physical description

dry no cohesion

pendular liquid bridge

funicular liquid bridge + liquid-filled pore

capillary liquid-filled pores

slurry no cohesive interaction

Luding [101] proposed a linear irreversible model for describing the wet
interaction as

F =


k1δ (k2(δ − δ0) ≥ k1δ)
k2(δ − δ0) (k1δ > k2(δ − δ0) > −kcδ)
−kcδ (−kcδ ≥ k2(δ − δ0))

. (3.7)

He and his workers [102] have studied the rheology of cohesive granular
materials using this model.

Ulrich et al. [103,104] have numerically studied clustering phenomena for
wet granular particles without any external forces as in Fig. 3.2. They have
phenomenologically derived the time evolution of the granular temperature
in the early stage as

3

2

dTg
dt

= −1

2
fcoll∆E, (3.8)
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Figure 3.1: A schematic picture of a capillary bridge.

where ∆E is the energy dissipation per one collision and

fcoll = 8πR2gcn

√
Tg
πm

. (3.9)

Equations (3.8) and (3.9) show the time evolution of the temperature as

Tg(t) =
T 0
g

(1− t/t0)2
(3.10)

with the initial granular temperature T 0
g and the characteristic time scale

t0 =

√
9πmT 0

g

8πR2gc∆E
. (3.11)

They have also demonstrated that the aggregation processes are self-similar
and satisfies a scaling law in the late stage.

Royer and his workers [105,106] have experimentally studied a free falling
process of wet granular systems. They have obtained the size distribution
of the culster and the phase diagram of pattern formation of freely falling
particles with respect to the cohesive force and the restitution coefficient.
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Figure 3.2: A typical pattern of wet granular particles obtained after a freely
cooling process without any external forces.
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Chapter 4

Hydrodynamic description of
cohesive granular particles

In this chapter, let us introduce the hydrodynamic description of cohesive
granular particles by K. Saitoh, S. Takada, and H. Hayakawa, “Hydrody-
namic instabilities in shear flows of dry cohesive granular particles” Soft
Matter, 11, 6371 (2015) [107]. Note that this is one of the reference papers
by the present author. In their paper, they have proposed an extended dy-
namic van der Waals model originally proposed by A. Onuki [108, 109] to
describe hydrodynamic behaviors of a collection of cohesive granular par-
ticles. Then, they have studied hydrodynamic instabilities in shear flows
of cohesive granular particles with the aid of the dynamic van der Waals
model. First, they have introduced a continuum model of cohesive gran-
ular particles, where they have modified the dynamic van der Waals the-
ory [108,109] to include the energy dissipation caused by inelastic collisions
between granular particles. Then, they have numerically solved the model
under a plane shear, where they have adopted the Lees-Edwards boundary
condition [110–112]. They have also analyzed the linear stability of homo-
geneous state to explain observed spatial structures in the presence of a
shear rate and inelasticity. Finally, they have discussed and concluded their
results.

4.1 Model

In this section, let us explain a continuum model of cohesive granular materi-
als, where the dynamic van der Waals theory for multiphase fluids [108,109]
is extended to include the dissipation of energy. First, they have intro-
duced a set of hydrodynamic equations of cohesive granular particles and
explained their model of constitutive relations. Second, they adopt the
transport coefficients in the hydrodynamic equations predicted by the ki-
netic theory of granular gases. Third, they have nondimensionalized the
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hydrodynamic equations and obtained their homogeneous solution. Fourth,
they have solved the hydrodynamic equations numerically. Fifth, they have
demonstrated that the neutral curve for the stability of the homogeneous
state is determined by the thermodynamic instability.

4.1.1 Hydrodynamic equations

Let us introduce hydrodynamic fields as the mass density, ρ = mn, ve-
locity field, ũi, and granular temperature, T , where m, n, and i = x, y, z
are the particle mass, the number density, and the coordinate, respectively.
Dimensionless hydrodynamic fields are introduced as the volume fraction,
ϕ = v0n, dimensionless velocity field, ui = (tm/d)ũi, and dimensionless gran-
ular temperature, θ = T/ε, respectively. Then, the nondimensionalized hy-
drodynamic equations (the continuity equation, the equation of momentum
conservation, and the equation of granular temperature) are nondimension-
alized as

Dϕ
Dt

= −ϕ∇iui, (4.1)

ϕ
Dui
Dt

= ∇jσij , (4.2)

dm
2
ϕ
Dθ
Dt

= σij∇iuj −∇iqi −
dm
2
ϕθζ, (4.3)

respectively, where we have adopted Einstein’s convention for the dimension-
less coordinates (i, j = x, y, z) and have introduced the dimensionless mate-
rial derivative as D/Dt ≡ ∂/∂t + ui∇i with ∂/∂t = tm∂/∂t̃ and ∇i = d∇̃i.
The last term on the right-hand-side of Eq. (4.3) represents the energy dis-
sipation in the bulk caused by inelastic collisions, where ζ is a dissipation
rate.

4.1.2 Constitutive relations

Next, they have discussed the constitutive relations for the stress tensor,
σij , and the heat flux, qi. The stress tensor is divided into the viscous and
reversible parts as

σij = τij − πij , (4.4)

where the viscous part is defined as

τij = η (∇iuj +∇jui) + δij

(
ξ − 2

dm
η

)
∇kuk (4.5)

(k = x, y, z) with the shear viscosity, η, and bulk viscosity, ξ. In the dynamic
van der Waals theory [108,109], the reversible part can be written as

πij = (p+ p1)δij +M∇in∇jn, (4.6)
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where the static pressure is given by the van der Waals equation of state,

p =
nT

1− v0n
− εv0n2, (4.7)

with the particle volume, v0, and well-depth of the attractive potential for
cohesive granular particles, ε. In Eq. (4.6), the diagonal part, p1, and higher
order gradient, M∇in∇jn, with the coupling constant, M , represent the
increase of energy due to the existence of interfaces between two different
phases. In their paper, they have adopted the model used in Refs. [108,109]
for the diagonal part, i.e.

p1 = −
M

2
|∇n|2 −Mn∇2n, (4.8)

where the coupling constant is assumed to be proportional to the tempera-
ture asM = 2d2v0T with the particle diameter, d, measured by the range of
square-well potential 1. It should be noted that the coupling term can be de-
rived from a microscopic model for thermodynamic interfaces [97], but they
phenomenologically used this expression, because the microscopic derivation
for cohesive granular particles, so far, does not exist.

The heat flux is given by

qi = −κ∇iT − µ∇in, (4.9)

where the first term on the right-hand-side represents Fourier’s law with
the thermal conductivity, κ. The second term on the right-hand-side of
Eq. (4.9), which does not exist in usual fluids, is derived from the kinetic
theory of granular gases. The physical origin of this term can be explained
as follows: Inelastic collisions in dense regions decrease the kinetic energy of
granular particles so that the granular temperature tends to be lower than
that in dilute regions [37,42–44,46,47,49,113–116].

4.1.3 Transport coefficients and the dissipation rate

Transport coefficients and the dissipation rate of moderately dense dry gran-
ular particles are well described by the kinetic theory [37, 42–44, 46, 47, 49,
113–116]. However, it is still a challenging task to derive those for cohesive
granular particles, where our attempt to develop a kinetic theory of cohesive
granular gases is reported in Chapter 7. In their paper, they only studied
moderately dense systems, where the mean volume fraction of granular par-
ticles is much lower than 0.5 (but is sufficiently dense to be regarded as a

1The complete form of the diagonal part is given by p̃1 = {(nM ′ − M)/2}|∇̃in|2 −
nM∇̃2

in − nT (∇̃in)∇̃i(M/T ) with M ′ = ∂M/∂n, where the surface tension is given by
ς =

∫∞
−∞ M (dneq/dr)

2 dr with the equilibrium density profile, neq(r). If the coefficient
depends only on the temperature, the diagonal part is reduced to the one used in this
paper [108,109].
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finite density system). In addition, they assumed that the granular par-
ticles are nearly elastic and are driven by a small shear rate to keep the
low granular temperature. Therefore, they used the transport coefficients
and the dissipation rate derived from the kinetic theory of inelastic hard-
core potentials, where the diameter, d, represents the interaction range of
the square-well potential. The nondimensionalized transport coefficients for
three-dimensional hard core granular gases are listed in Table 4 in Ref. [107].

4.1.4 Homogeneous solution

It is readily found that the dimensionless hydrodynamic equations (4.1)–
(4.3) have a homogeneous solution, ϕ = ϕ0, θ = θ0, and u = u0 ≡ (sy, 0, 0),
corresponding to a uniform shear flow, where ϕ0, θ0, and u0 are a homo-
geneous volume fraction, homogeneous temperature, and uniformly sheared
velocity field, respectively. From Eq. (4.3), the homogeneous temperature
is found to be

θ0 =

{
15fη(ϕ0)

πdm(3h1 + 32)ϕ20χ(ϕ0)

}
s2

1− e2
. (4.10)

Note that a finite value of the homogeneous temperature represents the
balance between the viscous heating and the dissipation of energy, where
the dimensionless shear rate and inelasticity are scaled as s2 ∼ 1− e2.

4.2 Numerical simulations

In this section, the dimensionless hydrodynamic equations (4.1)–(4.3) are
numerically solved under a plane shear. Let us explain their numerical
setup in Sec. 4.2.1 and show our numerical results in Sec. 4.2.2.

4.2.1 Setup

They prepared a periodic L× L× L cubic box with the dimensionless sys-
tem size, L/d = 50, and divided it into N = 125000 (= 503) small cells
with the identical volume, d3. Next, they randomly distributed the volume
fraction, dimensionless temperature, and dimensionless velocity field in each
cell around the homogeneous solution, i.e. ϕ0, θ0, and u0 = (sy, 0, 0), respec-
tively, where the amplitudes of fluctuations are less than 10% of the mean
values.

To apply a plane shear to the system, they used the Lees-Edwards bound-
ary condition. They moved the upper and lower image-cells in the opposite
directions along the x-axis so that the system is sheared by the scaled shear
rate, s = tmγ̇. Note that the external shear is applied only at the boundaries
and there is no external force in the bulk.
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4.2.2 Transient dynamics and steady states

Depending on the mean volume fraction, ϕ0, dimensionless shear rate, s,
and inelasticity, 1− e2, the system exhibits various transient dynamics and
different spatial structures in steady states. Figure 4.1 displays the time
evolution of an isosurface, where the shear rate is fixed to be s = 3× 10−4.
In this figure, the mean volume fraction and the inelasticity are given by
ϕ0 = 0.9ϕiso and 1−e2 = 3.0×10−7, respectively. Initially, the isosurface has
a random structure in space. As time goes on, the density contrast starts
to grow and the domains merge with each other to make a large cluster.
If the mean volume fraction is relatively low, the cluster is isolated in the
bulk so that we observe a spheroidal or a droplet like structure in a steady
state. On the other hand, if the mean volume fraction is relatively high, the
cluster is elongated along the x-axis by the external shear and we observe
either a cylindrical structure or a plate structure in the steady state.

Figure 4.1: A typical time evolution of the system from top left to top
right, bottom left, and bottom right. The mean volume fraction is given by
ϕ0 = ϕiso. The dimensionless shear rate is fixed to s = 3 × 10−4, and the
inelasticity is given by 1− e2 = 3× 10−7. This figure is drawn based on the
data of the simulation by Dr. Kuniyasu Saitoh, corresponding to Fig. 2 in
Ref. [107].
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They then have classified spatial structures of the isosurface based on
the dimensionless wave number, (kx, ky, kz), for the spatial undulation of
the isosurface. For example, kx = 0 if the isosurface is homogeneous along
the x-axis, while kx = ky = 0 if the isosurface is homogeneous along both
the x- and y-axes, etc. Clearly, the homogeneous state is characterized by
kx = ky = kz = 0. They have obtained (a) a droplet (kx = ky = kz ̸= 0),
(b) a cylinder (kx = 0, ky = kz ̸= 0), (c) a plate (kx = kz = 0, ky ̸= 0),
(d) a transverse-cylinder (kx = ky ̸= 0, kz = 0), and (e) a transverse-plate
(kx = ky = 0, kz ̸= 0) structure. Here, they also introduced another case
which does not belong to any of them as (f) an irregular pattern.

Next, they have mapped their numerical results onto phase diagrams
of the dimensionless shear rate, s, and inelasticity, 1 − e2 (see Fig. 4 in
Ref. [107]). Both the spheroidal and cylindrical structures (droplet and
cylinder) can be observed in relatively low volume fractions, while the plate
structures (plate and transverse-plate) appear in higher volume fractions.
In these figures, the initial homogeneous state is stable if the applied shear
is large or the inelasticity is small, where the borders between stable and
unstable regions are well described by the solid lines obtained from their
linear stability analysis in the next section. If the system is in the unstable
region far from the solid line, i.e. in the highly nonlinear regime, the structure
in the steady state tends to be irregular and strongly depends on the initial
condition.

4.3 Linear stability analysis

They analyzed the linear stability of the homogeneous state to explain the
dependence of observed spatial structures on the control parameters, i.e. ϕ0,
s, and 1− e2.

First, they linearized the dimensionless hydrodynamic equations (4.1)–
(4.3) against the small fluctuations ϕ̂, θ̂, and û = (ûx, ûy, ûz). Thus, the
Fourier transforms of the linearized hydrodynamic equations are written as(

∂

∂t
− skx

∂

∂ky

)
φk = Lφk, (4.11)

where φk = (ϕk, θk, uxk, uyk, uzk)
T is a transverse vector of the Fourier

coefficients and L is a time-independent 5× 5 matrix.
Next, they introduced a growth rate of the Fourier coefficients as φ̂k(t) ∝

eλt so that the linearized hydrodynamic equation (4.11) is reduced to an
eigenvalue problem, (

L+ skx
∂

∂ky

)
φk = λφk. (4.12)

They perturbatively solved the eigenvalue problem (4.12) by expanding the
eigenvalues, eigenvectors, and matrix into the powers of the wave number,
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k = |k|. In their perturbative calculations, the shear rate and inelasticity
are scaled as s ∼ O(k2) and 1 − e2 ∼ O(k4), respectively, so that the
homogeneous temperature, θ0 ∼ s2/(1 − e2), remains as finite. Then, they
found that the eigenvalue for the most unstable mode is given by λ = λ(3)

with

λ(3) ≃ −
2κ0pϕ
dmϕ0f2

k2, (4.13)

where they have truncated the expansion of λ(3) at k2 and have introduced
pϕ = ∂p/∂ϕ and a coefficient, f =

√
a0p̄ϕ + ϕ0p̄θ with p̄ϕ = pϕ/ϕ0 and

p̄θ = pθ/ϕ0. Therefore, the eigenvalue is positive if

pϕ =
∂p

∂ϕ
< 0, (4.14)

i.e. the hydrodynamic instability is triggered if the system is thermody-
namically unstable. Note that the other factor in Eq. (4.13) is negative,
−2κ0k2/dmϕ0f2 < 0. The neutral curve, i.e. pϕ = 0, is given by the van der
Waals equation of state, Eq. (4.7), and the homogeneous granular tempera-
ture, Eq. (4.10), where the dimensionless critical shear rate for the neutral
stability is found to be

scr =

√
2πdmϕ30(1− ϕ0)2χ(ϕ0) {3h1(e) + 32} (1− e2)

15fη(ϕ0)
. (4.15)

The solid lines in the phase diagrams (Fig. 4.2) are given by Eq. (4.15) which
well describe the results of the MD presented in Ref. [117]. Note that there
is no fitting parameter in Eq. (4.15).

Their perturbative calculation also agrees with the numerical solution of
the eigenvalue problem, Eq. (4.12). Figure 4.2 is a stability diagram plotted
against the shear rate, s, and inelasticity, 1− e2, where the solid line is the
neutral curve, Eq. (4.15). They have confirmed a good agreement between
their perturbative calculation and the numerical result.

4.4 Discussion

Though the neutral curve, Eq. (4.15), is given by the stability criterion,
Eq. (4.13), the eigenvalue, λ(3) ∼ k2, is isotropic in the Fourier space. In
other words, the isotropic eigenvalue cannot distinguish the observed spatial
structures. On the other hand, they also found the anisotropic eigenvalue,
λ(4) = sexey − η̄0k2, where its stability criterion corresponds to the shear-
induced instability for usual (dry) granular shear flows [24]. Therefore, the
thermodynamic instability, pϕ < 0, and the shear-induced instability com-
pete with each other, where the latter also depends on the system size, L,
through the wave numbers. We find that the isotropic eigenvalue is always
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Figure 4.2: Phase diagrams of the spatial structures in the steady states
plotted against the dimensionless shear rate, s, and inelasticity, 1− e2. The
mean volume fraction is fixed to ϕ0 = ϕiso. The red (blue) region shows
that the homogeneous state is stable (unstable). This figure is reproduced
by courtesy of Dr. Kuniyasu Saitoh, corresponding to Fig. 6 in Ref. [107].

30



larger than the anisotropic one, i.e. λ(3) > λ(4), because their system size,
L = 50d, is too small to observe the shear-induced instability for the range
of control parameters studied in this paper. In future, further systematic
studies of the pattern selection for larger systems will be needed as well as
the weakly nonlinear analysis for the amplitude equation [24,27,28].

It should be noted that the temperature increases with time if there is
no dissipation of energy. Thus, the homogeneous solution is linearly sta-
ble in the absence of inelastic collisions [118]. In our model, however, the
mean temperature converges to a finite value in the steady state because
the viscous heating is canceled by the energy dissipation. Therefore, the
hydrodynamic instability presented in this paper is one of consequences of
the dissipative nature of granular materials. We also stress that the thermo-
dynamic instability, pϕ < 0, can be achieved only if the interaction between
the particles is attractive. In addition, the stability analyses of dry granular
shear flows show that the hydrodynamic instability is induced only by the
layering mode (kx = 0), while the non-layering mode (kx ̸= 0) is always
linearly stable [24, 25, 27, 28]. Therefore, spatial undulations in the sheared
direction (x-axis), e.g. droplets, transverse-cylinders, and irregular patterns,
do not exist in dry granular systems. Thus, their results are also specific to
cohesive granular materials.
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Chapter 5

Numerical method

In this chapter, let us briefly explain numerical methods to analyze our
system. In the next section, we summarize the MD method for soft core
particles. Section 5.2 is devoted to the explanation of the MD for hard core
particles. In Sec. 5.3, we explain the outline of the method for the DSMC.

5.1 The method of molecular dynamics simulation
of soft core particles

In this section, let us explain the methodology of the MD simulations for
soft particles [119,120]. First, we explain an integration scheme of Newton’s
equation. Let us consider the time evolution of the system is given by
Newton equation, 

dri
dt

=
pi

mi
dpi

dt
= Fi

, (5.1)

where ri and pi are, respectively, the position and the momentum of particles
i, m is the mass, and Fi is the force acting on i.

There are many methods to solve Eq. (5.1) such as Leap-Frog method,
Verlet method, and Adams-Bashforth method. In this thesis, we perform
the MD simulation by using the velocity Verlet method

ri(t+∆t) = ri(t) + vi(t) +
Fi(t)

2mi
∆t2

vi(t+∆t) = vi(t) +
Fi(t) + Fi(t+∆t)

2mi
∆t

. (5.2)

This method is known that the accuracy is ∆t2. It should be noted that
the velocity Verlet method is not symplectic integration scheme while the
computational cost is lighter than other methods.
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5.2 Outline of the algorithm of event-driven molec-
ular dynamics

When the interaction between particles contains a hard core part, the du-
ration of a collision is infinitisimal. The trajectories of such particles are
represented by polygonal lines, which have discontinuities in their differ-
entiation. Therefore, we cannot use the method introduced in Sec. 5.1.
We need to solve Newton’s equation by a different algorithm, known as the
event-driven MD, to find a pair of particles of the earliest collision [121,122].
It is known that the event-driven MD is more efficient than the MD for soft
particles. Then, we need to replace LJ potential introduced in Eq. (5.1) by
a hard core potential surrounded by a square well potential. If we adopt
such a model, we need to use the algorithm for the event-driven MD for the
corresponding potential.

Figure 5.1: A schematic view of a collision geometry, where k̂ is the unit
vector parallel to rij = ri − rj .

Let us consider a system of particles having the hard core surrounded by
a square well potential. The position change caused by a collision between
i-th and j-th particles satisfies the relation

|ri + vi∆t− (rj + vj∆t)| =

{
d (core)

λd (outer edge)
. (5.3)

The collision geometry for this collision is represented by Fig. 5.1. According
to the parameters, the collision time can be calculated as follows:

1. For (vij · k̂) < 0

(a) in the case of rij < λd

i. when (vij · k̂)2 − v2ij(r2ij − d2) > 0 is satisfied, the collision
interval is given by

∆tij =
−(vij · k̂)−

√
(vij · k̂)2 − v2ij(r2ij − d2)

v2ij
. (5.4)
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ii. when (vij · k̂)2 − v2ij(r2ij − d2) < 0 is satisfied, the collision
interval is given by

∆tij =
−(vij · k̂) +

√
(vij · k̂)2 − v2ij(r2ij − λ2d2)

v2ij
. (5.5)

(b) in the case of rij > λd

i. when (vij · k̂)2 − v2ij(r2ij − λ2d2) > 0 is satisfied, the collision
interval is given by

∆tij =
−(vij · k̂)−

√
(vij · k̂)2 − v2ij(r2ij − λ2d2)

v2ij
. (5.6)

ii. when (vij · k̂)2− v2ij(r2ij −λ2d2) < 0 is satisfied, Eq. (5.3) has
no solutions. Thus, there is no collision, i. e. ∆tij =∞.

2. For (vij · k̂) > 0

(a) in the case of rij < λd the collision interval is given by

∆tij =
−(vij · k̂) +

√
(vij · k̂)2 − v2ij(r2ij − λ2d2)

v2ij
. (5.7)

(b) in the case of rij > λd, Eq. (5.3) has no solutions. Thus there is
no collision, i. e. ∆tij =∞.

Correspondingly, the change of the relative velocity during each collision
type is given as in Fig. 5.2.

(a) for a core collision (rij = d)

∆vij = −2(vij · k̂)k̂, (5.8)

(b) for a well enter collision (rij = λd)

∆vij = −

[
(vij · k̂) +

√
(vij · k̂)2 +

4ε

m

]
k̂, (5.9)

(c) for a well escape collision (rij = λd)

∆vij = −

[
(vij · k̂)−

√
(vij · k̂)2 −

4ε

m

]
k̂, (5.10)
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(d) for a bounce collision (rij = λd)

∆vij = −
2

λ2
(vij · k̂)k̂. (5.11)

The iteration of event-driven MD is as follows: (i) We calculate ∆tij for all
candidates of collisions and determine the earliest one ∆t ← ∆tij . (ii) We
update the time t+∆t as

rk(t+∆t)← r∗ + vk∆t. (5.12)

(iii) We update the velocities of the collision pair as

vi(t+∆t)← v∗
i +

1

2
∆vij , vj(t+∆t)← v∗

j −
1

2
∆vij . (5.13)

From the repeat of these processes, we can trace the time evolution of hard
core potential.

5.3 The method of direct simulation Monte Carlo

We usually use the DSMC to evaluate the transport coefficients for a system
described by the Boltzmann equation instead of using the MD simulation,
which was originally introduced by Bird [123] to study rarefied gas [124–127]
and later has been extended to dilute inelastic gases [21, 128] and to dense
inelastic gases [129,130]. This is because we should keep the system almost
uniform.

In this section, we briefly summarize the DSMC procedure [123,125–127,
131], which is a numerical technique to obtain the solution of the Boltzmann
equation at t + ∆t from that at t. For small ∆t, the velocity distribution
function at t+∆t is given by

f(v, t+∆t) = f(v, t) +
∂f(v, t)

∂t
∆t. (5.14)

Substituting the Boltzmann equation (7.17) into this, we obtain

f(v, t+∆t) = (1−∆tD +∆tJ) f(v, t)

= (1 + ∆tJ) (1−∆tD) f(v, t) +O
(
∆t2

)
, (5.15)

where we have introduced Df = v ·∇f and Jf = I(f, f) for simplicity.
Equation (5.15) shows that the time evolution of the VDF can be separated
into two parts: advective process and collision process. According to this
separation, DSMC iteration is as follows: (i) We determine the time step ∆t
smaller than L/vmax, where L is the system size and vmax is the maximum
speed among the particles, which is evaluated as vmax = 5vT with the ther-
mal velocity vT. In this paper, we adopt ∆t = 0.2L/vmax. (ii) We move the
particles during ∆t without any collisions as

r∗i = ri(t) + vi∆t, (5.16)
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Figure 5.2: Schematic description of collisions for event-driven MD. Here,

C
(1)
ij = r2ij − d2 and C

(2)
ij = r2ij − λ2d2. This figure is drawn based on Fig. 1

in Ref. [121].
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which corresponds to update the VDF f∗(v, t) = (1−∆tD) f(v, t). (iii)
We update the velocities of the particles due to collisions. We randomly
determine the collision without taking into account the actual positions of
the particles. The square of the collision parameter, b2, is chosen in the range
0 < b2 < λ2d2 at random. A pair of colliding particles changes the velocities
according to rule in Eqs. (7.19) and (7.20) for a hard core collisions and
Eqs. (7.19) and (7.21) for a grazing collision. Here, the number of collisions
Nc is evaluated as π(λd)2N2vmax∆t, which is proportional to the total cross
section, the maximum speed, and the time step ∆t. This process corresponds
to obtain f(v, t+∆t) = (1 + ∆tJ) f∗(v, t). (iv) We update the time t+∆t
as {

ri(t+∆t)← r∗i
vi(t+∆t)← v∗

i

. (5.17)

DSMC is known to be equivalent to the Boltzmann equation in the dilute
limit. Montanero and Santos [132] have extended the DSMC method to
Enskog equation (Enskog Simulation Monte Carlo) for moderately dense
gases, in which they have considered the collisional parts of the pressure
tensor and the heat flux, which are ingnored for a dilute system. Brey et
al. [133] have extended DSMC method to dilute granular systems, in which
collisions are inelastic. They have obtained a consistent results with the
prediction of the kinetic theory.
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Chapter 6

Simulation of cohesive fine
powders under a plane shear

Abstract

Three-dimensional MD simulations of cohesive dissipative powders under a
plane shear are performed. We find the various phases depending on the
dimensionless shear rate and the dissipation rate as well as the density.
We also find that the shape of clusters depends on the initial condition of
velocities of particles when the dissipation is large. Our simple stochastic
model reproduces the non-Gaussian velocity distribution function appearing
in the coexistence phase of a gas and a plate.

6.1 Introduction

In this chapter we try to characterize nonequilibrium pattern formation
of cohesive fine powders under the plane shear by the three-dimensional
MD simulations of the dissipative Lennard-Jones (LJ) molecules under the
Lees-Edwards boundary condition [110]. In our previous paper [134] we
mainly focused on the effect of dissipation on the pattern formation in Sllod
dynamics [135,136]. In this study, we systematically study it by scanning a
large area of parameter space to draw the phase diagrams with respect to
the density, the dimensionless shear rate, and the dissipation rate without
the influence of Sllod dynamics.

The organization of this chapter is as follows. In the next section we
introduce our model and setup for this study. Section 6.3, the main part of
this paper, is devoted to exhibiting the results of our simulation. In Sec. 6.3.1
we show the phase diagrams for several densities, each of which has various
distinct steady phases. We find that the system has a quasi-particle-hole
symmetry. We also find that the steady states depend on the initial condition
of velocities of particles when the dissipation is large. In Sec. 6.3.2 we
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analyze the velocity distribution function and try to reproduce it by solving
the Kramers equation with Coulombic friction under the shear. In Secs. 6.4
and 6.5 we discuss and summarize our results, respectively. In Appendix
A we study the pattern formation of the dissipative LJ system under the
physical boundary condition. In Appendix B we illustrate the existence of
Coulombic friction near the interface of the plate-gases coexistence phase. In
Appendix C we demonstrate that the viscous heating term near the interface
is always positive. In Appendix D we present a perturbative solution of the
Kramers equation. In Appendix E we show the detailed calculations for each
moment. In Appendix F we show the detailed calculations of the velocity
distribution function.

6.2 Simulation Model and Setup

In this section, we explain our model and setup of the MD simulation for
cohesive fine powders under a plane shear. We introduce our model of
cohesive fine powders and explain our numerical setup.

6.2.1 Model

We assume that the interaction between two cohesive fine powders can be
described by the LJ potential and an inelastic force caused by collisions with
finite relative speeds. The explicit expression of the LJ potential is given by

ULJ(rij) = 4εΘ(σc − rij)

[(
σ

rij

)12

−
(
σ

rij

)6
]

(6.1)

with a step function Θ(r) = 1 and 0 for r > 0 and r ≤ 0, respectively,
where ε, σ, and rij are the well depth, the diameter of the repulsive core,
and the distance between the particles i and j, respectively. Here we have
introduced the cutoff length rc = 3σ to save the computational cost, i.e.,
ULJ(r) = 0 for r ≥ rc. To model the inelastic interaction, we introduce a
viscous force between two colliding particles as

F vis(rij ,vij) = −ζΘ(σ − rij)(vij · r̂ij)r̂ij , (6.2)

where ζ, r̂ij ≡ rij/rij , and vij = vi−vj are the dissipation rate, a unit vector
parallel to rij = ri − rj , and the relative velocity between the particles,
respectively. Here rα and vα (α = i, j) are, respectively, the position
and velocity of the particle. It should be noted that the range of inelastic
interaction is only limited within the distance σ. From Eqs. (6.1) and (6.2)
the force acting on the ith particle is given by

Fi = −
∑
j ̸=i

∇iU
LJ(rij) +

∑
j ̸=i

F vis(rij ,vij). (6.3)
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Our LJ model has advantage of knowing the detailed properties in equilib-
rium [86–91]. The normal restitution coefficient e, defined as the ratio of
post-collisional speed to pre-collisional speed, depends on both the dissipa-
tion rate ζ and incident speed. For instance, the particles are nearly elastic,
i.e., the restitution coefficient e = 0.994 for the case of ζ =

√
mε/σ2 and the

incident speed
√
ε/m, where m is the mass of each colliding particle. Fig-

ure 6.1 plots the restitution coefficient against the dimensionless dissipation
rate ζ∗ = ζ

√
mε/σ2, where the incident speeds are given by 4

√
ε/πm and

4
√

3ε/2πm. We restrict the dissipation rate to small values in the range
0 < ζ∗ ≤ 3.2. Note that small and not too large inelasticity is necessary to
reproduce a steady coexistence phase between a dense and a dilute region,
which will be analyzed in detail in this study. In this study we use three di-
mensionless parameters to characterize a system: the dimensionless density
n∗ = nσ3Nσ3/L3, the shear rate γ̇∗ = γ̇

√
mσ2/ε, and the dissipation rate

ζ∗ = ζ
√
mε/σ2. It should be noted that the well depth ε is absorbed in the

dimensionless shear rate and the dissipation rate. Thus, we may regard the
control of two independent parameters as the change of the well depth.

Figure 6.1: The relationship between the dimensionless dissipation rate ζ∗

and the coefficient of restitution e when the pre-collisional relative velocities
(solid and dashed lines) are given by 4

√
ε/πm and 4

√
3ε/2πm, respectively.

6.2.2 Setup

Figure 6.2 is a snapshot of our MD simulations for a uniformly sheared state,
where we randomly distribute N = 104 particles in a cubic periodic box and
control the number density n by adjusting the linear system size L. We first
equilibrate the system by performing the MD simulations with the Weeks-
Chandler-Andersen potential [137, 138] during a time interval 100

√
mσ2/ε.

We set the instance of the end of the initial equilibration process as the origin
of the time for later discussion. Then we replace the interaction between
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particles by the truncated LJ potential 6.1 with the dissipation force 6.2
under the Lees-Edwards boundary condition. As shown in Appendix A, the
results under the Lees-Edwards boundary condition are almost equivalent to
those under the flat boundary. The time evolution of position ri = (xi, yi, zi)
is given by Newton’s equation of motion md2ri/dt

2 = Fi.

Figure 6.2: A snapshot of our simulation in a uniformly sheared state. We
apply a plane shear in xy plane, that is, we choose y-axis as the shear
direction and z-axis as the velocity gradient direction.

6.3 Results

In this sectionwe present the results of our MD simulations. In Sec. 6.3.1
we draw phase diagrams of the spatial structures of cohesive fine powders.
In Sec. 6.3.2 we present the results of velocity distribution functions and
reproduce it by solving a phenomenological model.

6.3.1 Phase diagram

Figure 6.3 displays typical patters formed by the particles in their steady
states, which are characterized by the dimensionless parameters n∗, γ̇∗, and
ζ∗ as listed in Table 6.1. Figure 6.4 shows phase diagrams in the steady states
for (a) n∗ = 0.0904, (b) n∗ = 0.156, (c) n∗ = 0.305, and (d) n∗ = 0.723.
Three of these phases, those in Figs. 6.3(a), 6.3(d), and 6.3(g), are similar to
those observed in a quasi-two-dimensional case with Sllod dynamics [134]. If
the shear is dominant, the system remains in a uniformly sheared phase [Fig.
6.3(a)]. However, if the viscous heating by the shear is comparable to the
energy dissipation, we find that a spherical droplet, a dense cylinder, and a
dense plate coexist for extremely dilute (n∗ = 0.0904), dilute (n∗ = 0.156),
and moderately dense (n∗ = 0.305) gases, respectively [Fig. 6.3(b)–6.3(d)].
These three coexistence phases are realized by the competition between the
equilibrium phase transition and the dynamic instability caused by inelastic
collisions. Furthermore, if the energy dissipation is dominant, there are
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no gas particles in steady states [Fig. 6.3(e)–6.3(g)]. For an extremely-high-
density case (n∗ = 0.723), we observe an inverse cylinder, where the vacancy
forms a hole passing through the dense region along the y-axis [Fig. 6.3(h)],
and an inverse droplet, where the shape of the vacancy is spherical [Fig.
6.3(i)]. In our simulation, the role of particles in a dilute system corresponds
to that of vacancies in a dense system. Thus, the system has a quasi-particle-
hole symmetry.

Moreover, the shape of clusters depends on the initial condition of the
velocities of particles, even though a set of parameters such as the density,
the shear rate, the dissipation rate, and the variance of the initial velocity
distribution function is identical when the dissipation is strong. We observe
a dense plate parallel to the xy-plane [Fig. 6.5(a)], a dense plate parallel to
the yz-plane [Fig. 6.5(b)], and a dense cylinder parallel to the y-axis [Fig.
6.5(c)] under the identical set of parameters. This initial velocity dependence
appears in the region far from the coexistence phases, where the system
evolves from aggregates of many clusters (see Fig. 6.6).

Table 6.1: The dimensionless parameters used in Fig. 6.3.

Phase n∗ γ̇∗ ζ∗

(a) 0.305 10−1 10−2

(b) 0.0904 10−0.5 100.5

(c) 0.156 10−0.5 100

(d) 0.305 10−0.2 100.2

(e) 0.0904 10−2 10−1

(f) 0.156 10−1 10−0.75

(g) 0.305 10−1 10−1

(h) 0.723 10−2 10−1

(i) 0.723 10−2 10−2

6.3.2 Velocity distribution function

We also measure the velocity distribution function (VDF) P (ui) (i = x, y, z),
where ui is the velocity fluctuation around the mean velocity field v̄i averaged
over time and different samples in the steady state. For simplicity, we focus
only on the following three phases: the uniformly sheared phase [Fig. 6.3(a)],
the dense-plate coexistence phase [Fig. 6.3(d)], and the dense-plate cluster
phase [Fig. 6.3(g)]. In this paper we use the width z = σ for bins in the z-
direction, while the bin sizes in both the x and y-directions are L to evaluate
the VDF from our MD simulations as in Fig. 6.7. It is remarkable that the
VDF is almost an isotropic Gaussian function for the phases corresponding
to Figs. 6.3(a) and 6.3(g) as well as deep inside both the dense and the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6.3: (Color online) Steady patterns made of the particles under the
plane shear: (a) uniformly sheared phase, (b) coexistence of a spherical-
droplet and gas, (c) coexistence of a dense-cylinder and gas, (d) coexistence
of a dense-plate and gases, (e) an isolated spherical-droplet, (f) an isolated
dense-cylinder, (g) an isolated dense-plate, (h) an inverse cylinder, and (i)
an inverse droplet, where the corresponding dimensionless parameters n∗,
γ̇∗, and ζ∗ for (a)–(i) are listed in Table 6.1. We note that gas particles in
(b), (c) and (d) are drawn smaller than the real size for visibility.
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Figure 6.4: (Color online) Phase diagrams for various densities, where the
dimensionless densities are given by (a) n∗ = 0.0463, (b) 0.156, (c) 0.305,
(d) 0.305 for 10−0.5 ≤ γ̇∗ ≤ 10−0.1, and (e) 0.723, respectively. The spatial
patterns corresponding to Fig. 6.3(a)–(i) are represented by red filled circles
[Fig. 6.3(a)], blue open circles [Fig. 6.3(b)], blue filled upper triangles [Fig.
6.3(c)], blue open squares [Fig. 6.3(d)], black open diamond [Fig. 6.3(e)],
black open upper triangles [Fig. 6.3(f)], black filled squares [Fig. 6.3(g)],
black filled lower triangles [Fig. 6.3(h)], and black filled triangles [Fig. 6.3(i)],
respectively. The steady states represented by the cross marks show various
patterns depending on the initial velocities of particles.
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(a) (b)

(c)

Figure 6.5: (Color online) Typical examples of initial configuration depen-
dence when we start from the identical parameters (n∗ = 0.305, γ̇∗ = 10−3,
ζ∗ = 10−2): (a) a dense-plate cluster parallel to xy plane, (b) a dense-plate
cluster parallel to yz plane and (c) a dense-cylinder cluster parallel to x-axis.

(a) (b)

(c) (d)

Figure 6.6: (Color online) Time evolution of configurations for n∗ = 0.0904,
γ̇∗ = 10−1, ζ∗ = 100.5. (a) t∗ = 0, (b) 50, (c) 100, and (d) 550.
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gas regions in the coexistence phase in Fig. 6.3(d) [see Figs. 6.8(a)–6.8(d)].
This is because we are interested in weak shear and weak dissipation cases
without the influence of gravity. On the other hand, the VDF is nearly
equal to an anisotropic exponential function [35, 36] in the vicinity of the
interface between the dense and the gas regions in the coexistence phase
corresponding to Fig. 6.3(d) as in Figs. 6.8(e)–6.8(g). We now explain the
non-Gaussian feature near the interface by a simple stochastic model of a
tracer particle subjected to Coulombic friction (the justification to use such
a model is explained in Appendix B). Let us consider a situation in which a
gas particle hits and slides on the wall formed by the particles in the dense
region (see Fig. 6.9). Because the velocity gradient in the gas region is
almost constant as shown in Fig. 6.10, we may assume that a tracer particle
in the gas near the interface is affected by a plane shear. Moreover, the
tracer particle on a dense region may be influenced by Coulombic friction
(see Appendix B). When we assume that the collisional force among gas
particles can be written as the Gaussian random noise ξ, the equations of
motion of a tracer particle at the position r may be given by

dr

dt
=

p

m
+ γ̇zêy, (6.4)

dp

dt
= −µF0

p

|p|
− γ̇pzêy + ξ, (6.5)

where p is a peculiar momentum, which is defined by Eq. (6.4). Here we
have introduced the friction constant µ0 and the effective force F0, which
is a function of the activation energy ∆E from the most stable trapped
configuration of the solid crystal (see Fig. 6.9). Here ξ is assumed to satisfy

⟨ξα(t)⟩ = 0,
⟨
ξα(t)ξβ(t

′)
⟩
= 2Dδα,βδ(t− t′), (6.6)

where ⟨· · · ⟩ is the average over the distribution of the random variable ξ
and D is the diffusion coefficient in the momentum space, which satisfies the
fluctuation-dissipation relation D = µF0

√
mT/(d+ 1) in the d-dimensional

system with a temperature T . A set of Langevin equations (6.4) and (6.5)
can be converted into the Kramers equation [139–143]

∂f

∂t
=

{
− ∂

∂r
·
( p

m
+ γ̇zêy

)
+

∂

∂p
·
(
γ̇pzêy + µF0

p

|p|
+D

∂

∂p

)}
f, (6.7)

where f = f(r,p, t) is the probability distribution function of the tracer
particle.

If we multiply Eq. (6.7) by p2 and integrate over p, we immediately
obtain

∂

∂t

⟨
p2
⟩
= − ∂

∂r
·
⟨
p2p
⟩

m
− γ̇z ∂

∂y

⟨
p2
⟩
− 2γ̇ ⟨pypz⟩ − 2µF0 ⟨p⟩+ 2D, (6.8)

46



Figure 6.7: (Color online) A snapshot of our simulation for the plate-gases
coexistence phase. Solid lines refer to the edges of a bin. The binwise velocity
distribution function is calculated in each bin, whose width is ∆z = σ.
In addition, we introduce a new coordinate (y′, z′), and θ, which is the
angle between y′ and y-direction (in the counterclockwise direction) for later
analysis.

where p = (p2y+p
2
z)

1/2. Because the third term on the right hand side (RHS)
of Eq. (6.8) represents the viscous heating which is always positive as shown
in Eq. (C.2) and the fourth term is the loss of the energy due to friction,
the balance among the third, the fourth and the fifth terms on RHS of Eq.
(6.8) produces a steady state. It should be noted that the first and the
second terms on RHS do not contribute to the energy balance equation for
the whole system.

Here, we only consider the steady distribution, i.e. ∂f/∂t = 0. Thus,
Eq. (6.7) is reduced to

p

m
·∇f + γ̇z

∂

∂y
f − γ̇pz

∂

∂py
f − µF0

∂

∂p
·
(

p

|p|
f

)
−D∆pf = 0, (6.9)

where ∆p = ∂2/∂p2y + ∂2/∂p2z. If there is neither a shear nor a density
gradient, we find that Eq. (6.9) has the steady solution obeying an exponen-
tial distribution, i.e. f(p) = (κ2/2π) exp[−κp], where we have introduced
κ ≡ µF0/D. We adopt the perturbative expression for f in terms of ϵ ≡ σ/λ,
which is the ratio of the diameter σ to the interface width λ, and the di-
mensionless shear rate γ̇∗ as (see the derivation in Appendix D)

f(p, θ) = f (0,0)(p, θ) + ϵf (0,1)(p, θ) + γ̇∗f (1,0)(p, θ). (6.10)

We also adopt the expansions

f (i,j)(p, θ) =

∞∑
n=1

f (i,j)n sin(nθ), (6.11)
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Figure 6.8: (Color online) Velocity distribution functions for various phases:
(a) VDFs in the phase Fig. 6.3(a), (b) VDFs in the phase Fig. 6.3(g), (c)
VDFs in the dense region of the phase Fig. 6.3(d), (d) VDFs in the dilute
region of the phase Fig. 6.3(d), (e) VDF of x-direction in the interface of the
phase Fig. 6.3(d), (f) VDF of y-direction in the interface of the phase Fig.
6.3(d), and (g) VDF of z-direction in the interface of the phase Fig. 6.3(d).
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Figure 6.9: A schematic picture of the configuration of a gas particle (gray)
and particles in the dense region (white). We assume that the wall particles
are composed in a face-centered cubic lattice. We calculate the interaction
energy between the gas particle and the wall particles whose distance is less
than the cut-off length.

Figure 6.10: (Color online) The density and velocity profiles (in the y-
direction) in the plate-gases coexistence phase (n∗ = 0.305, γ̇∗ = 10−0.2,
ζ∗ = 100.2), where v̄∗y(z) = v̄y(z)

√
m/σε.
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with (i, j) = (0, 1) and (1, 0), where θ is the angle between p and y-axis (in
the counterclockwise direction, see Fig. 6.7). Then, we can solve Eq. (6.9)
perturbatively as

f(p, θ) = f (0,0)(p) + ϵf
(0,1)
1 (p) sin θ + γ̇∗f

(1,0)
2 (p) sin 2θ, (6.12)

where f (0,0), f
(0,1)
1 and f

(1,0)
2 are, respectively, given by

f (0,0)(p) =
κ2

2π
exp (−κp) , (6.13)

f
(0,1)
1 (p) = − A

6πκ
p
(
3 + κp+ κ2p2

)
exp (−κp) , (6.14)

f
(1,0)
2 (p) = − κ2

8πDt0
p2 exp (−κp) . (6.15)

Here, we have introduced t0 = (mσ2/ε)1/2 and A given by Eq. (D.10). It
should be noted that the other terms except for those in Eqs. (6.12)–(6.15)
automatically disappear within the linear approximation as in Eq (6.10).

The second, the third and the fourth moments in y′ and z′-directions
after the rotation by the angle of θ in the counterclockwise direction are,
respectively, given by⟨

p2y′,z′
⟩
=

3

κ2

(
1∓ 5γ̇

2Dκ2
sin 2(θ − ψ)

)
, (6.16)⟨

p3y′
⟩
= −765ϵA

κ6
sin(θ − ψ), (6.17)⟨

p3z′
⟩
= −765ϵA

κ6
cos(θ − ψ), (6.18)⟨

p4y′,z′
⟩
=

45

κ4

(
1∓ 7γ̇

Dκ2
sin 2(θ − ψ)

)
, (6.19)

as shown in Appendix E, where
⟨
pny′,z′

⟩
with n = 2 or 4 represents

⟨
pny′
⟩
for

a minus sign and
⟨
pnz′
⟩
for a plus sign, respectively. To reproduce the node

of the third moment in MD, we phenomenologically introduce the angle ψ
and replace θ by θ − ψ in Eqs. (6.16)–(6.19). Here, we choose ψ = 2π/9 to
fit the node position of the third moment. We have not identified the reason
why the direction of the node is deviated from the direction at which VDF
becomes isotropic.

Now, let us compare Eqs. (6.16)–(6.19) with MD for a set of parameters
(n∗, γ̇∗, ζ∗) = (0.305, 10−0.2, 100.2). From the density profile (Fig. 6.10) and
the fitting to the second moment and the amplitude of the third moment,
we obtain ϵ ≃ 0.20, µ ≃ 1.3/

√
mε, D = 5.2

√
mε3/σ, and A ≃ 0.088/m2ε2.

It is surprised that Eqs. (6.16)–(6.19) can approximately reproduce the sim-
ulation results as in Fig. 6.11 except for the node positions of the second
and the fourth moments.
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Figure 6.11: (Color online) The second, the third and the fourth moments
obtained by MD for ρ∗ = 0.305, γ̇∗ = 10−0.2, ζ∗ = 100.2 (circle: y′-direction,
upper triangle: z′-direction) and those obtained by Eqs. (6.16)–(6.19) (solid
line: y′-direction, dashed line: z′-direction).

For the explicit form of VDF, at first, we convert f(p, θ) to f(py, pz) as
in Appendix F:

f(py, pz) =
κ2

2π
exp (−κp)

[
1 +

ϵA

3κ3
(
3 + κp+ κ2p2

)
(py sinψ − pz cosψ)

+
γ̇

4D

{
(p2y − p2z) sin 2ψ − 2pypz cos 2ψ

}]
.

(6.20)

We obtain the peculiar velocity distribution function in each direction by
integrating Eq. (6.20) with respect to uz or uy as

P (uy) =
mκ2

2π

∫ ∞

−∞
duz exp (−mκu)

×
[
1 +

mϵA

3κ3
(
3 +mκu+m2κ2u2

)
uy sinψ +

m2γ̇

4D
(u2y − u2z) sin 2ψ

]
,

(6.21)
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P (uz) =
mκ2

2π

∫ ∞

−∞
duy exp (−mκu)

×
[
1− mϵA

3κ3
(
3 +mκu+m2κ2u2

)
uz cosψ +

m2γ̇

4D
(u2y − u2z) sin 2ψ

]
,

(6.22)

where u = (u2y + u2z)
1/2. These expressions semi-quantitatively reproduce

VDF observed in our MD as in Fig. 6.12.
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Figure 6.12: (Color online) VDFs in y-direction (left, cross) and z-direction
(right, cross) obtained by our MD. The dashed lines in the left and right
figures are the results of Eqs. (6.21) and (6.22), respectively.

6.4 Discussion

Let us discuss our results. In Sec. 6.3.1, we do not discuss the time evo-
lution of the granular temperature Tg = (m/3N)

∑N
i=1 |vi − V |2, where

V = V (r, t) is the ensemble average velocity field [144, 145]. The granular
temperature abruptly decreases to zero in the cluster phases Fig. 6.3(e)–(i)
when a big cluster which absorbs all gas particles appears [146]. To clarify
the mechanism of abrupt change of the temperature during clusterings, we
will need to study the more detailed dynamics.

In Fig. 6.8, the VDF in a uniformly sheared phase is almost Gaussian.
This result seems to be inconsistent with the results for ordinary gases un-
der a uniform shear flow [147], which showed that the VDF differs from
Gaussian even in a uniformly sheared phase. In this study, however, we
only restrict our interest to small inelastic and weakly sheared cases. This
situation validates small deviation from Gaussian.

6.5 Conclusion

We studied cohesive fine powders under a plane shear by controlling the den-
sity, the dimensionless shear rate and the dissipation rate. Depending on
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these parameters, we found the existence of various distinct steady phases
as in Fig. 6.3, and we have drawn the phase diagrams for several densities
as in Fig. 6.4. In addition, the shape of clusters depends on the initial con-
dition of velocities of particles as in Fig. 6.5, when the dissipation is strong.
We also found that there is a quasi particle-hole symmetry for the shape of
clusters in steady states with respect to the density.

We found that the velocity distribution functions near the interface be-
tween the dense region and the gas-like dilute region in the dense-plate
coexistence phase deviate from the Gaussian as in Fig. 6.8. Introducing a
stochastic model and its corresponding the Kramers equation (6.7), we ob-
tain its perturbative VDFs as in Eqs. (6.21) and (6.22), which reproduce the
semi-quantitative behavior of VDF observed in MD as in Fig. 6.12. This
result suggests that the motion of a gas particle near the interface is sub-
jected to Coulombic friction force whose origin is the activation energy in
the dense region.
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Chapter 7

Kinetic theory for dilute
cohesive granular gases with
a square well potential

Abstract

We develop the kinetic theory of dilute cohesive granular gases in which the
attractive part is described by a square well potential. We derive the hydro-
dynamic equations from the kinetic theory with the microscopic expressions
for the dissipation rate and the transport coefficients. We check the validity
of our theory by performing the DSMC.

7.1 Introduction

As stated in introduction, chapters 3 and 4 as well as the previous chapter
6, the physics of cohesive granular materials is an important research sub-
ject. On the other hand, we do not have any systematic theoretical analysis
starting from a microscopic basic equation in describing such systems even
for our previous studies so far. Therefore, we need to develop the kinetic
theory relying on the inelastic Boltzmann equation to describe the hydrody-
namic behavior of cohesive dilute granular gases. In this chapter, we analyze
modified Haff’s law and derive the transport coefficients for the dilute cohe-
sive granular gases in freely cooling processes. For this purpose, we extend
the kinetic theory for the inelastic hard core system to the nearly elastic
granular gases having the square well potential.

The organization of this chapter is as follows. In the next section, we
evaluate the scattering angle for a two-body collision process as a function of
the impact parameter and the relative velocity of the colliding pair of parti-
cles by solving the Newton equation. In Sec. 7.3 we extend the kinetic theory
for hard core granular gases to the gases having the square well potential to
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derive the transport coefficients in a set of the hydrodynamic equations. In
Sec. 7.4, we compare them with those obtained by the DSMC. In Secs. 7.5
and 7.6, we discuss and summarize our results, respectively. In Appendix
G, we explain collision geometries for core collisions and grazing collisions
to determine the velocity change during collisions in details. In Appendix
H, we briefly explain the procedure to obtain the transport coefficients by
using the Chapman-Enskog theory. In Appendices I and J, we calculate the
second moment of the collision integral and two Sonine coefficients in terms
of the kinetic theory, respectively. In Appendix K, we calculate the explicit
expressions of the transport coefficients in the high and low temperature
limit.

7.2 Scattering angle for the square well potential

Let us calculate the scattering angle for monodisperse smooth inelastic hard
spheres having the square well potential whose mass is m [39, 74, 148–151].
Here, the hard core potential associated with the square well attractive part
for the relative distance r between two spheres is given by

U(r) =


∞ (r ≤ d)
−ε (d < r ≤ λd)
0 (r > λd)

, (7.1)

where ε and λ are, respectively, the well depth and the well width ratio.
We assume that collisions are inelastic only if particles hit the core (r = d)
characterized by the restitution coefficient e.

Figure 7.1: A schematic view of a collision process. The dotted line repre-
sents the outer edge of the attractive potential.

Let us consider a scattering process in which two particles approach
from far away with relative velocity v and leave with the relative velocity
v′ after the scattering as depicted by Fig. 7.1 in the frame that the target
is stationary. The incident angle θ between v and the normal unit vector k̂
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at the closest distance r = rmin between colliding particles is given by

θ = b

∫ u0

0

du√
1− b2u2 − 4

mv2
U(1/u)

, (7.2)

where u ≡ 1/r. Here, u0 ≡ 1/rmin is the smaller one between 1/d and the
positive solution that the denominator of Eq. (7.2) is equal to zero [152,153],
and k̂ = r12/r12 is a unit vector parallel to r12 = r1 − r2 with the positions
r1 and r2 for particles 1 and 2, and r12 = |r12|. We have also introduced
the impact parameter b for the incident process. Because the scattering is
inelastic, in general, the impact parameter b′ after the scattering and the
angle θ′ between k̂ and v′ differ from b and θ, respectively (Fig. 7.1). Let
us consider the case for b > λd, where Eq. (7.2) reduces to

θ = b

∫ 1/b

0

du√
1− b2u2

=
π

2
(7.3)

under the condition u0 = 1/d. Because the particles do not collide, θ′ = θ,
the scattering angle χ is given by

χ = π − 2θ = 0, sin
χ

2
= 0. (7.4)

Next, we consider the case for b ≤ λd in which Eq. (7.2) can be rewritten
as

θ =b

∫ 1/λd

0

du√
1− b2u2

+ b

∫ u0

1/λd

du√
1− b2u2 + 4ε

mv2

=arcsin

(
b

λd

)
+ b

∫ u0

1/λd

du√
ν2 − b2u2

, (7.5)

where we have introduced ν as

ν ≡
√

1 +
4ε

mv2
, (7.6)

and u0 = min (1/d, ν/b) with the introduction of a function min(x, y) to
select the smaller one between x and y. We note that ν is related to the
refractive index [152, 153]. For b ≥ νd, u0 is given by u0 = ν/b and this
collision is called a grazing collision [148–150]. From Eq. (7.5), we rewrite θ
as

θ =
π

2
+ arcsin

(
b

λd

)
− arcsin

(
b

νλd

)
. (7.7)

Because the particle does not hit the core, θ′ = θ, the scattering angle χ is
given by

χ = χ(0) = π − 2θ = 2arcsin

(
b

νλd

)
− 2 arcsin

(
b

λd

)
. (7.8)
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Equation (7.8), thus, can be rewritten as

sin
χ

2
= sin

[
arcsin

(
b

νλd

)
− arcsin

(
b

λd

)]
. (7.9)

Note that this collision does not exist for λ < ν.

Table 7.1: Parameters corresponding to Fig. 7.2.
(a) hard core (b) grazing (c) no-collision
(inelastic) (elastic)

b b/d < min(ν, λ) min(ν, λ) ≤ b/d < λ b/d ≥ λ

sin
χ

2
Eq.(7.16) Eq.(7.9) Eq.(7.4)

For b < νd, u0 is given by u0 = 1/d, and then the particles hit the core
of the potential. From Eq. (7.5), we obtain θ:

θ = arcsin

(
b

λd

)
+ arcsin

(
b

νd

)
− arcsin

(
b

νλd

)
. (7.10)

In this case, the collision is inelastic, and thus, θ′ is not equal to θ. From
the conservation of the angular momentum bv = b′v′, θ′ is given by

θ′ =arcsin

(
b′

λd

)
+ arcsin

(
b′

ν ′d

)
− arcsin

(
b′

ν ′λd

)
=arcsin

(
b

λd

)
+ arcsin

(
b

νd

)
− arcsin

(
b

νλd

)
+ ϵ

(
bν2√

λ2d2 − b2
+

b√
ν2d2b2

− b√
λ2ν2d2 − b2

)
cos2Θ+O(ϵ2),

(7.11)

where we have introduced Θ as

cosΘ ≡
√
ν2d2 − b2
νd

(7.12)

(see Appendix G for the derivation) and ϵ ≡ 1 − e. Thus, we obtain the
scattering angle χ as

χ = π − θ − θ′ = χ(0) + ϵχ(1) +O(ϵ2) (7.13)

with

χ(0) = π − 2 arcsin

(
b

λd

)
− 2 arcsin

(
b

νd

)
+ 2arcsin

(
b

νλd

)
, (7.14)

χ(1) = −
[

bν2√
λ2d2 − b2

+
b√

ν2d2 − b2
− b√

λ2ν2d2 − b2

]
cos2Θ. (7.15)
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We can rewrite Eq. (7.13) as

sin
χ

2
= sin

χ(0)

2
+

1

2
ϵχ(1) cos

χ(0)

2
+O(ϵ2). (7.16)

These results are consistent with the previous study in the elastic limit
(e→ 1) [148]. We regard the grazing collision as a combination of (ii) enter-
ing and (iii) leaving processes from the well [148]. We ignore the trapping
process by the attractive potential in the elastic limit (i. e. ϵ → 0) because
colliding particles against hard cores have positive energies and the most
of rebounding particles have still positive energies. In other words, if the
trapping process is relevant, the inelastic Boltzmann equation is no longer
valid. Thus, through the analysis of the inelastic Boltzmann equation we will
discuss whether it can be used even for weakly inelastic cohesive granular
gases. We summarize the above results in Fig. 7.2 and Table 7.1.

Figure 7.2: Schematic views of dynamic processes between two adjacent
particles. There exist three types: (a) collisions via the hard core potential
(inelastic), (b) grazing collisions (elastic), and (c) no-collisions.

7.3 kinetic theory and hydrodynamic equations

If we consider a dilute and weakly inelastic homogeneous granular gas, we
may use the inelastic Boltzmann equation(

∂

∂t
+ v1 ·∇

)
f(r,v1, t) = I(f, f), (7.17)
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where I(f, f) is the collision integral

I(f, f) =

∫
dv2

∫
dk̂Θ(min(λ, ν)− b̃)|v12 · k̂|

×
[
χeσ(χ, v

′′
12)f(r,v

′′
1 , t)f(r,v

′′
2 , t)− σ(χ, v12)f(r,v1, t)f(r,v2, t)

]
+

∫
dv2

∫
dk̂Θ(b̃−min(λ, ν))|v12 · k̂|

×
[
σ(χ, v′′12)f(r,v

′′
1 , t)f(r,v

′′
2 , t)− σ(χ, v12)f(r,v1, t)f(r,v2, t)

]
.

(7.18)

Here we have introduced the step function Θ(x) = 1 for x > 0 and Θ(x) = 0
otherwise. Here v12 = |v12| with v12 = v1−v2 with the velocity vi (i = 1, 2)
for i-th particle, σ(χ, v12) is the collision cross section between i-th and j-th
particles, and b̃ = b/d is a dimensionless collision parameter. The factor
χe is related to the Jacobian of the transformation between pre-collisional
velocities v′′

1 ,v
′′
2 and the velocities after collision v1,v2 [38, 45, 46, 67]. The

first and second terms on the right-hand-side of Eq. (7.18) correspond to
inelastic and elastic collisions, respectively. For the sake of later discussion,
we explicitly write the relationship between (v′′

1 ,v
′′
2) and (v1,v2)

v1 = v′′
1 +

1

2
∆v, v2 = v′′

2 −
1

2
∆v, (7.19)

with

∆v = −2
(
1− 1

2
ϵν2

cos2Θ

cos2 θ

)
(v′′

12 · k̂)k̂ +O(ϵ2) (7.20)

for inelastic hard core collisions and

∆v = −2(v′′
12 · k̂)k̂ (7.21)

for elastic grazing collisions (see Appendix G for the derivation). From Eq.
(7.20), the explicit form of the factor χe is given by

χe = 1 + 2ϵν2
cos2Θ

cos2 θ
+O(ϵ2) (7.22)

for inelastic hard core collisions. It should be noted that Eq. (7.22) is con-
sistent with 1/e2 for inelastic hard core potential [38,45,46,67], because this
can be expanded as 1/e2 = 1 + 2ϵ+O(ϵ2) in the nearly elastic limit and ν
and Θ reduce to ν → 1 and Θ→ θ, respectively, in the hard core limit from
Eqs. (7.6) and (7.12).

7.3.1 Homogeneous freely cooling

In this subsection, let us determine the velocity distribution function f(v, t)
in freely cooling granular gases based on the Boltzmann equation (7.17).
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First, we expand the distribution function in terms of Sonine polynomials
[?, 38, 45,46,67] as

f (0)(v, t) = fM(V )

[
1 +

∞∑
ℓ=1

aℓSℓ

(
mV 2

2T (t)

)]
, (7.23)

where V = |V | = |v − U | is the local velocity fluctuation from the flow
velocity U(r, t), fM(V ) = n(m/2πT )3/2 exp(−mV 2/2T ) is the Maxwellian

at the temperature T and the number density n, and Sℓ(x) ≡ S
(1/2)
ℓ (x) is

the Sonine polynomial:

S
(j)
ℓ (x) =

ℓ∑
k=0

(−1)kΓ(j + ℓ+ 1)

Γ(j + k + 1)(ℓ− k)!k!
xk (7.24)

with the Gamma function Γ(x). The time evolution of the granular temper-
ature, obtained by the product of the Boltzmann equation with mv21/2 and
integrating over v1, is written as

dT

dt
= −ζ(0)T, (7.25)

where we have introduced the cooling rate for the homogeneous gas

ζ(0) =
2

3
nd2
√

2T

m
M2. (7.26)

Here,M2 is the second moment of the dimensionless collision integral

M2 = −
∫
dc1c

2
1Ĩ(f̃

(0), f̃ (0)), (7.27)

where we have introduced the dimensionless velocity c1 = v1/vT (t) with
the thermal velocity vT (t) =

√
2T (t)/m, the dimensionless collision inte-

gral Ĩ(f̃ (0), f̃ (0)) = (v2T /n
2d2)I(f (0), f (0)), and the dimensionless distribu-

tion function f̃ (0)(c) = (v3T /n)f
(0)(v, t). After some manipulation of Eq.

(7.27),M2 can be rewritten as [31,46]

M2 =−
1

2

∫
dc1

∫
dc2

∫
dk̂|c12 · k̂|σ̃(χ, c12)

× f̃ (0)(c1)f̃ (0)(c2)∆[c21 + c22] (7.28)

with σ̃(χ, c12) = σ(χ, v12)/d
2 and ϕ(c) = π−3/2 exp(−c2), and ∆ψ(ci) ≡

ψ(c′i) − ψ(ci). It should be noted that the density keeps constant and the
flow velocity is zero in the homogeneous state.
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7.3.2 Hydrodynamic equations

In this subsection, let us derive the transport coefficients which appear in a
set of hydrodynamic equations. Multiplying the Boltzmann equation (7.17)
by 1, v1 and mv21/2 and integrating over v1, we obtain the hydrodynamic
equations

∂n

∂t
+∇ · (nU) = 0, (7.29)

∂U

∂t
+U ·∇U +

1

mn
∇ · P = 0, (7.30)

∂T

∂t
+U ·∇T +

2

3n
(P : ∇U +∇ · q) + ζT = 0, (7.31)

where n(r, t) is the density field, U(r, t) is the flow velocity, and T (r, t) is
the granular temperature. The pressure tensor P , the heat flux q, and the
cooling rate ζ are, respectively, defined as

Pij ≡
∫
dvDij(V )f(r,v, t) + nTδij , (7.32)

q ≡
∫
dvS(V )f(r,v, t), (7.33)

ζ ≡ − m

3nT

∫
dvv2I(f, f), (7.34)

where Dij(V ) ≡ m(ViVj − V 2δij/3) and S(V ) ≡ (mV 2/2 − 5T/2)V . We
adopt the constitutive equations at the Navier-Stokes order

P = pδij − η
(
∇iUj +∇jUi −

2

3
δij∇ ·U

)
, (7.35)

q = −κ∇T − µ∇n, (7.36)

where p is the hydrostatic pressure, η is the shear viscosity, κ is the thermal
conductivity, and µ is the coefficient proportional to the density gradient.

To obtain the transport coefficients, we adopt the Chapman-Enskog
method [39, 46, 67]. Here, we expand the distribution function around Eq.
(7.23) as

f = f (0) + δf (1) + · · · (7.37)

by a small parameter δ corresponding to the gradients of the fields. Similarly,
the time derivative of the distribution function is expanded as

∂

∂t
=
∂(0)

∂t
+ δ

∂(1)

∂t
+ · · · . (7.38)

We, thus, rewrite the Boltzmann equation (7.17) as(
∂(0)

∂t
+ δ

∂(1)

∂t
+ · · ·+ δv1 ·∇

)(
f (0) + δf (1) + · · ·

)
= I

[(
f (0) + δf (1) + · · ·

)
,
(
f (0) + δf (1) + · · ·

)]
. (7.39)
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The equation at the zeroth order of Eq. (7.39) is reduced to

∂(0)

∂t
f (0) = I

(
f (0), f (0)

)
. (7.40)

From Eqs (7.29)–(7.31), the zeroth order hydrodynamic equations are, re-
spectively, given by

∂(0)

∂t
n = 0,

∂(0)

∂t
U = 0,

∂(0)

∂t
T = −ζ(0)T, (7.41)

which are equivalent to those obtained in the previous subsection for the
homogeneous cooling state. The zeroth order of the pressure tensor and the
heat flux are, respectively, given by

P
(0)
ij = nTδij , q(0) = 0. (7.42)

The first-order Boltzmann equation becomes

∂(0)

∂t
f (1) +

(
∂(1)

∂t
+ v1 ·∇

)
f (0)

= I
(
f (0), f (1)

)
+ I

(
f (1), f (0)

)
. (7.43)

The corresponding first-order hydrodynamic equations are, respectively, given
by

∂(1)

∂t
n = −∇ · (nU),

∂(1)

∂t
U = −U ·∇U − 1

mn
∇(nT ),

∂(1)

∂t
T = −U ·∇T − 2

3
T∇ ·U − ζ(1)T, (7.44)

where the first-order dissipation rate ζ(1) is defined by

ζ(1) = − 2m

3nT

∫
dvv2I

(
f (0), f (1)

)
. (7.45)

We note that ζ(1) becomes zero because of the parity of the integral (7.45)
[44, 46, 67]. We assume that the distribution function f (0) depends on time
and space only via its moments: the density n, the average velocity U and
the temperature T as f (0) = f (0)[v|n,U , T ]. Then we can rewrite the first-
order equation (7.43) as

∂(0)f (1)

∂t
+ J (1)

(
f (0), f (1)

)
− ζ(1)T ∂f

(0)

∂T

= f (0) (∇ ·U − V ·∇n) +
∂f (0)

∂T

(
2

3
T∇ ·U − V ·∇T

)
+
∂f (0)

∂V
·
(
(V ·∇)U − 1

mn
∇P

)
, (7.46)
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where
J (1)

(
f (0), f (1)

)
= −I

(
f (0), f (1)

)
− I

(
f (1), f (0)

)
. (7.47)

From the form of the first-order equation (7.43), the solution of this equation
is expected to have the form

f (1) = A ·∇ log T + B ·∇ log n+ Cij∇jUi, (7.48)

where the explicit forms of the coefficients A, B, and Cij are given in Ap-
pendix H as Eqs. (H.19), (H.20), and (H.12), respectively. The pressure
tensor and the heat flux can be written as

P
(1)
ij =− η

(
∇iUj +∇jUi −

2

3
δij∇ ·U

)
, (7.49)

q(1) =− κ∇T − µ∇n. (7.50)

Substituting f = f (0) + f (1) and Eq. (7.49) into Eq. (7.32), we obtain
the differential equation for the shear viscosity η with respect to T as

−ζ(0)T ∂η
∂T
− 2

5
nd2
√

2T

m
Ωe
ηη = nT, (7.51)

where Ωe
η is given by

Ωe
η =

∫
dc1

∫
dc2

∫
dk̂σ̃(χ, c12)(c12 · k̂)ϕ(c1)ϕ(c2)

×

[
1 +

∞∑
ℓ=1

aℓSℓ(c
2
1)

]
D̃ij(c2)∆

[
D̃ij(c1) + D̃ij(c2)

]
(7.52)

with D̃ij = Dij/ε. Similarly, substituting Eq. (7.50) into Eq. (7.33), we
obtain the differential equations for the thermal conductivity κ and the
coefficient µ with respect to T as

∂

∂T

(
3ζ(0)κT

)
+

4

5
κnd2

√
2T

m
Ωe
κ = −15

2

nT

m
(1 + 2a2) , (7.53)

and

−3nζ(0) ∂µ
∂T
− 3κζ(0) − 4

5
n2d2

√
2

mT
Ωe
κµ = a2

15

2

nT

m
, (7.54)

respectively, where Ωe
κ is given by

Ωe
κ =

∫
dc1

∫
dc2

∫
dk̂σ̃(χ, c12)(c12 · k̂)ϕ(c1)ϕ(c2)

×

[
1 +

∞∑
ℓ=1

aℓSℓ(c
2
1)

]
S̃(c2) ·∆

[
S̃(c1) + S̃(c2)

]
(7.55)

with S̃ = S
√
m/ε3. It should be noted that Eqs. (7.51), (7.53), and (7.54)

are consistent with those in the previous study in the hard core limit [46].
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7.3.3 Transport coefficients for the granular gases having the
square well potential

In the previous subsection, we have presented the general framework for the
second moment (7.28) and the differential equations of the transport coef-
ficients (7.51), (7.53), and (7.54) in dilute granular cohesive granular gases
without specification of mutual interactions between grains. In this subsec-
tion, let us derive the explicit forms of them for the square well potential
outside and the hard core potential inside. Here, we assume that the zero-th
order distribution function can be well reproduced by the truncation up to
the third order Sonine polynomials [31,46,68–70] as

f̃ (0)(c) = ϕ(c)
[
1 + a2S2(c

2) + a3S3(c
2)
]
, (7.56)

where a1 is automatically zero because the first order moment is absorbed
in the definition of the zeroth velocity distribution function. In this paper,
we only consider the elastic limit ϵ→ 0. In addition, the coefficients a2 and
a3 can be, respectively, written as the series of ϵ as shown in Appendix I,{

a2 = a
(0)
2 + ϵa

(1)
2 +O(ϵ2)

a3 = a
(0)
3 + ϵa

(1)
3 +O(ϵ2)

, (7.57)

where the coefficients are given by

a
(0)
2 = a

(0)
3 = 0, a

(1)
2 =

N1

D
, a

(1)
3 =

N2

D
(7.58)
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with

N2 =2

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(5− c212) exp

(
−1

2
c212

)
×
∫ ∞

0
dc′12

∫ λ

0
db̃′ b̃′c′712(35− c′412) sin2 χ(0)′ exp

(
−1

2
c′212

)
−
∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(105− 14c212 − c412) exp

(
−1

2
c212

)
×
∫ ∞

0
dc′12

∫ λ

0
db̃′ b̃′c′712(7− c′212) sin2 χ(0)′ exp

(
−1

2
c′212

)
, (7.59)

N3 =4

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(105− 14c212 − c412) exp

(
−1

2
c212

)
×
∫ ∞

0
dc′12

∫ λ

0
db̃′ b̃′c′712 sin

2 χ(0)′ exp

(
−1

2
c′212

)
− 8

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(5− c212) exp

(
−1

2
c212

)
×
∫ ∞

0
dc′12

∫ λ

0
db̃′ b̃′c′712(7 + c′212) sin

2 χ(0)′ exp

(
−1

2
c′212

)
, (7.60)

D =

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712 sin

2 χ(0) exp

(
−1

2
c212

)
×
∫ ∞

0
dc′12

∫ λ

0
db̃′ b̃′c′712(35− c′412) sin2 χ(0)′ exp

(
−1

2
c′212

)
−
∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712(7− c212) sin2 χ(0) exp

(
−1

2
c212

)
×
∫ ∞

0
dc′12

∫ λ

0
db̃′ b̃′c′712(7 + c′212) sin

2 χ(0)′ exp

(
−1

2
c′212

)
. (7.61)

Here we have introduced the notation χ(0)′ = χ(0)(b̃′, c′12) for simplicity. To
obtain these expressions, we have ignored the terms proportional to a22, a

2
3,

and a2a3 because we are interested in nearly elastic situations. Therefore,
from Eq. (7.28), we obtain

M2 =M(0)
2 + ϵM(1)

2 +O(ϵ2), (7.62)

where

M(0)
2 = 0, (7.63)

M(1)
2 =

√
2π

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512 exp

(
−1

2
c212

)
(7.64)

with b̃max = min(ν(c12), λ). Substituting Eqs. (7.26) and (7.62) into Eq.
(7.25), we obtain the time evolution of the temperature as the solid line
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in Fig. 7.3, in which the number density, the restitution coefficient, the
potential width ratio, and the initial temperature are, respectively, nd3 =
0.05, e = 0.99, λ = 1.5d, and T = 10ε. When we start from the temperature
much higher than the well-depth, the decreases of the temperature obeys
Haff’s law for hard core systems in the initial stage [12]. As the temperature
approaches the well-depth, the rate of temperature decrease is larger than
Haff’s law. A similar result on the crossover from Haff’s law to a faster
decrease of the temperature has already been reported by Ref. [96].

Next, let us calculate the transport coefficients. Similar to the previous
case, with the dropping the contributions from a22, a

2
3, and a2a3, the coeffi-

cients Ωe
η and Ωe

κ defined in Eqs. (7.52) and (7.55) are, respectively, given
by (see Appendix J for the derivation){

Ωe
η = Ω

e(0)
η + ϵΩ

e(0)
η +O(ϵ2)

Ωe
κ = Ω

e(0)
κ + ϵΩ

e(0)
κ +O(ϵ2)

, (7.65)

with

Ωe(0)
η =−

√
2π

4

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712 sin

2 χ(0) exp

(
−1

2
c212

)
, (7.66)

Ωe(1)
η =− a(1)2

√
2π

128

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712

(
63− 18c212 + c412

)
sin2 χ(0) exp

(
−1

2
c212

)
− a(1)3

√
2π

1536

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712

(
693− 297c212 + 33c412 − c612

)
sin2 χ(0) exp

(
−1

2
c212

)
−
√
2π

4

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712χ

(1) sin 2χ(0) exp

(
−1

2
c212

)
+
√
2π

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c712

(
2

3
− sin2

χ(0)

2

)
exp

(
−1

2
c212

)
,

(7.67)

Ωe(0)
κ =−

√
2π

4

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712 sin

2 χ(0) exp

(
−1

2
c212

)
, (7.68)
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Ωe(1)
κ =a

(1)
2

√
2π

128

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712

(
63− 18c212 + c412

)
sin2 χ(0) exp

(
−1

2
c212

)
+ a

(1)
3

√
2π

1536

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712

(
693− 297c212 + 33c412 − c612

)
sin2 χ(0) exp

(
−1

2
c212

)
−
√
2π

4

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712χ

(1) sin 2χ(0) exp

(
−1

2
c212

)
+
√
2π

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c712 cos2

χ(0)

2
exp

(
−1

2
c212

)
+

√
2π

8

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512

(
25− 11c212

)
exp

(
−1

2
c212

)
.

(7.69)

It should be noted that the zeroth order of these quantities, Eqs. (7.66) and
(7.68), are the exactly same as the ones obtained by the previous study [148].

Let us perturbatively solve the differential equation of the shear viscosity
(7.51) with respect to the small parameter ϵ. We expand the shear viscosity
as

η = η(0) + ϵη(1) +O(ϵ2). (7.70)

From Eqs. (7.62), (7.65), and (7.70), we rewrite the differential equation of
the shear viscosity (7.51) as

− 2

3
nd2
√

2T

m

(
ϵM(1)

2 + · · ·
)
T
∂

∂T

(
η(0) + ϵη(1) + · · ·

)
− 2

5
nd2
√

2T

m

(
Ωe(0)
η + ϵΩe(0)

η + · · ·
)(

η(0) + ϵη(1) + · · ·
)

= nT. (7.71)

Solving the zeroth and first order of this equation, we obtain

η(0) = − 5

2d2

√
mT

2

1

Ω
e(0)
η

, (7.72)

η(1) = −

(
Ω
e(1)
η

Ω
e(0)
η

+
5

3

M(1)
2 T

Ω
e(0)
η

∂

∂T

)
η(0). (7.73)

Similarly, the thermal conductivity κ and the coefficient µ are, respectively,
given by

κ = κ(0) + ϵκ(1) +O(ϵ2), (7.74)

µ = µ(0) + ϵµ(1) +O(ϵ2) (7.75)

67



Figure 7.3: (Color online) The time evolution of the granular temperature
for nd3 = 0.05, λ = 1.5, and e = 0.99 obtained by the kinetic theory (blue
solid line) and that by the DSMC (red open circles), where t∗ = t

√
ε/m/d

and the initial temperature is set to be 10ε. The dotted line represents Haff’s
law for inelastic hard core spheres in which each particle has the diameter
d.

with

κ(0) = − 75

16d2

√
2T

m

1

Ω
e(0)
κ

, (7.76)

κ(1) = −Ω
e(1)
κ

Ω
e(0)
κ

κ(0) − 75

8d2

√
2T

m

a
(1)
2

Ω
e(0)
κ

− 5

2d2
1

√
TΩ

e(0)
κ

∂

∂T

(
M(1)

2 κ(0)T 3/2
)
,

(7.77)

µ(0) = 0, (7.78)

µ(1) = − 5

2n

M(1)
2 κ(0)T

Ω
e(0)
κ

− 75

8nd2

√
T 3

2m

a
(1)
2

Ω
e(0)
κ

. (7.79)

We note that the zeroth order terms of these transport coefficients, Eqs.
(7.72) and (7.76) are identical to those obtained by the previous studies [148].

We obtain the expressions of the transport coefficients as Eqs. (7.62),
(7.70), (7.74), and (7.75). The above procedure is not practically efficient
to perform the hydrodynamic simulation because we need to calculate the
double integrals at every step. To reduce the calculation cost, we compare
the results with high and low temperature expansions. From the calculation
in Appendix K, we can obtain the explicit expressions of the dissipation
rate and the transport coefficients as in Table 7.2. As a final remark in this
section, we note that our results up to a2 order in Eq. (7.56) are almost iden-
tical to those up to a3 in the elastic limit. This ensures that the expansion
around the Maxwellian gives well converged results by Eq. (7.56).
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Table 7.2: High temperature expansion of each quantity and low tempera-
ture expansion of the second moment up to first order of ε/T and ϵ.

M2 = 2
√
2πϵ

(
1 +

ε

T

)
(T →∞), M2 = 2

√
2πϵ

(
1 + λ2

ε

T

)
(T → 0)

Ωe
η = −4

√
2π

[
1 + ϵ

11

1280
− ε

T

λ− 1

96

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}]
,

Ωe
κ = −4

√
2π

[
1 + ϵ

1989

1280
− ε

T

λ− 1

96

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}]
,

η =
5

16d2

√
mT

π

[
1 + ϵ

1567

3840
+
ε

T

λ− 1

96

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}]
,

κ =
75

64d2

√
T

πm

[
1 + ϵ

539

1280
+
ε

T

λ− 1

96

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}]
,

µ = ϵ
1185

1024nd2

√
T 3

πm
.
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7.4 Comparison with the numerical results

To check the validity of the kinetic theory, we compare the transport coef-
ficients derived from the kinetic theory in the previous section with those
obtained by the DSMC, which is known as the accurate numerical method to
solve the Boltzmann equation [123–125,131]. We note that stochastic treat-
ment of collisions via DSMC ensures the system uniform, which is suitable
to measure the transport coefficients.

7.4.1 Cooling coefficient

In this subsection, we check the time evolution of the granular temperature
for homogeneous cooling state and the second moment M2. We prepare
monodisperse N particles in a cubic box with the linear system size L. We
distribute particles at random as an initial condition, where the initial ve-
locity distribution obeys Maxwellian with the temperature T = 10ε. Figure
7.3 shows the time evolution of the temperature obtained by the DSMC and
Eq. (7.25), in which the number of particles, the system size, the number
density, the potential width, and the restitution coefficient are, respectively,
N = 12, 500, L = 50d, nd3 = 0.05 λ = 1.5d, and e = 0.99. The time evo-
lution obtained by the kinetic theory fairly agrees with that by the DSMC.
Figure 7.4 shows the comparison of the second momentM2 obtained by the
kinetic theory with that by the DSMC, which is also consistent each other,
where M2 at high temperature limit is identical to that for the hard core
system with the diameter d.

Figure 7.4: (Color online) The granular temperature dependence of the sec-
ond momentM2 obtained by the DSMC (red open circles) and that by the
kinetic theory up to a3 order (blue solid line), where T ∗ is the dimension-
less temperature defined by T ∗ = T/ε. The dotted line represents M2 for
the hard core system with the diameter d. The dashed (dot-dashed) line
representsM2 obtained from the high (low) temperature expansion.
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7.4.2 Shear viscosity

Figure 7.5: (Color online) A schematic view of our setup to measure the
shear viscosity. The walls at y = L/2 (y = −L/2) move to positive (nega-
tive) z-direction, respectively.

Let us compare the result of the shear viscosity by the kinetic theory
with that by the DSMC in this subsection. The particles are distributed
at random and the velocity distribution satisfies Maxwellian at the initial
condition. Then, we apply the shear with the aid of the Lees-Edwards walls
at y = ±L/2, whose z-component is ±Vwall. In the initial stage, the energy
injection from shear is not balanced with the energy dissipation. Then, as
time goes on, the system reaches a nonequilibrium steady state. In this
stage, we calculate the shear viscosity defined by

η = − lim
t→∞

Pxy

γ̇
, (7.80)

where γ̇ is a bulk shear rate defined by the gradient of the flow veloc-
ity Uz and Pxy can be measured by the DSMC. To suppress the bound-
ary effects, we measure γ̇ in the range −L/4 ≤ y ≤ L/4, that is, γ̇ =
(Uz|y=L/4 − Uz|y=−L/4)/(L/2). Although the Newtonian shear viscosity
should be measured by a relaxation process from the initial perturbation
for the homogeneous cooling system [128, 154, 155], this method is hard
to reduce numerical errors. It is also noted that the Newtonian viscosity
is known to be identical to the steady state shear viscosity in the elastic
limit [58], which is the reason why we adopt the above setup. Figure 7.6
shows the comparison of the shear viscosity obtained by the kinetic theory
with that by the DSMC, in which the number of particles, the system size,
the number density, the potential width, and the restitution coefficient are,
respectively, L = 3, 000d, nd3 = 0.01 λ = 2.5d, and e = 0.99. Similar to the
case of M2, the shear viscosity obtained by the DSMC is identical to that
of the kinetic theory for the hard core system of the diameter d in the high
temperature limit. We cannot measure the shear viscosity below T ≃ 10−1ε
because the system is heat up by the shear even if we start from a lower
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temperature. The first order solution of the kinetic theory with respect to ϵ
also deviates from the zeroth order solution below this temperature, which
suggests that the hydrodynamic description is no longer valid in this regime.
This may correspond to the limitation of the inelastic Boltzmann equation,
where the trapping processes cannot be ignored even in the elastic limit.

Figure 7.6: (Color online) Granular temperature dependence of the shear
viscosity obtained by the DSMC (red open circles), that by the elastic ki-
netic theory (black solid squares in the previous study [148] and black dashed
line), and that by the kinetic theory (blue solid line), where η∗ is the di-
mensionless shear viscosity defined by η∗ = ηd2/

√
mε. The dotted line

represents the shear viscosity for the hard core system of the diameter d.
The dot-dashed line represents the shear viscosity obtained from the high
temperature expansion.

7.4.3 Thermal conductivity

Figure 7.7: (Color online) A schematic view of our setup to measure the
thermal conductivity. The temperature of the left (right) side wall is kept
at TL (TR).

Third, we compare the thermal conductivity by the kinetic theory with
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that by the DSMC. Although the heat flux contains the term proportional
to the density gradient, we ignore its contribution because the term disap-
pears in the elastic limit e → 1 as in Eq. (7.78). To obtain the thermal
conductivity from the DSMC, we solve the heat equation under a confined
geometry shown in Fig. 7.7, where the temperature at the left (right) wall
at y = −L/2 (y = L/2) keeps TL (TR) [156–158]. In the steady state, be-
cause hydrodynamic variables depend only on y, the heat equation (7.31) is
reduced to

2

3n

d

dy
qy = ζT, qy = −κ d

dy
T. (7.81)

Let us nondimensionalize the quantities using the mass m, the system size
L, and the well depth ε as

n =
n∗

L3
, y = Ly∗, T = εT ∗, (7.82)

p =
ε

L3
p∗, M2 =

(
d

L

)
M∗

2, κ′ =
1

m1/2L2
κ′∗. (7.83)

Thus, we rewrite the heat equation as

d2

dy∗2
θ = −3γ2θ−1/3 (7.84)

with θ = T ∗3/2 and γ2 = (1/
√
2)p∗2M∗

2/κ
′∗. By multiplying dθ/dy∗ in both

sides of Eq. (7.84) and integrating the equation from y∗ = 0 to y∗, we obtain

dθ

dy∗
= ± 1√

C − 9γ2θ2/3
, (7.85)

where C is given by C = θ′20 +9γ2θ
2/3
0 with θ0 = θ|y∗=0 and θ

′
0 = dθ/dy∗|y∗=0.

Here, we consider the system that the temperature at y = −L/2 is lower
than that at y = L/2, in which the plus sign is selected in Eq. (7.85). Under
this condition, the solution of Eq. (7.85) has the following form

y∗ =
θ
1/3
0

2γ

[
−Θ
√
β2 −Θ2 + β2 arctan

(
Θ√

β2 −Θ2

)

+
√
β2 − 1− β2 arctan

(
1√
β2 − 1

)]
, (7.86)

where β = {(θ′2/9γ2θ2/30 ) + 1}1/2 and Θ = (θ/θ0)
1/3.

To obtain κ′ from the DSMC, we numerically evaluate γ from the com-
parison of the temperature profile (7.86) with that by the DSMC in the
range −L/5 ≤ y ≤ L/10 as in Fig. 7.8. It should be noted that we omit the
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data near the walls to suppress the boundary effects. Using the estimated γ
and the simulation results θ0, θ

′
0, andM2 in the homogeneous freely cooling,

we estimate κ′ in terms of the DSMC. Here, the number of particles, the
system size, the number density, the potential width, and the restitution
coefficient are, respectively, L = 3, 000d, nd3 = 0.01 λ = 2.5d, and e = 0.99.
Figure 7.9 shows the results of the DSMC and the kinetic theory, which is
similar to that for η. The heat conductivity in the high temperature limit
of DSMC is identical to that for the hard core system of the diameter d as
indicated by the kinetic theory. We note that the profile of the temperature
described by Eq. (7.86) cannot be achieved below T ≃ 10−1ε. In addition,
the deviation between the zeroth and the first oder solutions with respect
to ϵ appear below T ≃ 10−1ε as in the case of the viscosity.

Figure 7.8: (Color online) The solution of the heat equation (blue solid line)
and the temperature profile obtained by the DSMC (red open circles). We
choose γ to fit the DSMC result in the range −L/5 ≤ y ≤ L/10.

7.5 Discussion

In this chapter, we have obtained the transport coefficients as a function of
the granular temperature. The transport coefficients in high temperature
limit are identical to those for the hard core system with the diameter d. Let
us consider this reason. As explained in Sec. 7.2, the collision is an inelastic
for b < min(νd, λd) and an elastic grazing collision for min(νd, λd) < b < λd.
The value of ν =

√
1 + 4ε/(mv2) converges to 1 in high temperature limit.

On the other hand, grazing collisions only change the directions of colliding
particles and the kinetic energy is kept unchanged. Therefore, the energy
change by collisions in high temperature limit is identical to that for the
hard core system of the diameter d.

Below T ≃ 10−1ε, the first order solutions of the transport coefficients
with respect to ϵ deviate from the zeroth order solutions. Moreover, the first
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Figure 7.9: (Color online) The temperature dependence of the thermal con-
ductivity obtained by the DSMC (red open circles), that by the elastic ki-
netic theory (black solid squares in the previous study [148] and black dashed
line), and that by the kinetic theory (blue solid line), where κ∗ is the dimen-
sionless thermal conductivity defined by κ∗ = κd2

√
m/ε. The dotted line

represents the thermal conductivity for the hard core system of the diameter
d.The dot-dashed line represents the shear viscosity obtained from the high
temperature expansion.

order solutions diverge as T−1 in the low temperature limit. This is because
ν diverges as

ν =

√
1 +

2ε

Tc212
∼ T−1/2 (7.87)

in the low temperature limit. This indicates that the hydrodynamic de-
scription in terms of the perturbation method is no longer valid for low
temperature, where the trapping process cannot be ignored.

Murphy and Subramaniam [96] studied the homogeneous cooling state
for a system of particles having an inelastic hard core associated with van
der Waals potential. They obtained that the time evolution of the granular
temperature obeys the Haff’s law in the initial stage and decreases faster
as time goes on, then approaches to the Haff’s law for e = 0. They con-
sidered that the particles aggregate after the collision when two particles
have small kinetic energy with compared to the potential well keeping the
potential contribution after the coalescence. Although we do not consider
the aggregation process, the time evolution of the granular temperature in
Fig. 7.3 is similar to their result. We will study the effects of aggregation to
complete our analysis in near future.

It should be noted that the diffusion coefficient can be evaluated by
Ω(1,1)∗ defined by Eq. (L.4) in Appendix L. The evaluation of the diffu-
sion coefficient by the event-driven MD is inconsistent with the theoretical
prediction, but this inconsistency comes from the acceleration of particles
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trapped in the well region for MD which is not included in the theory. We
will have to solve this problem by improving the theoretical treatment.

In this chapter, we have only focused on the dilute system, in which the
density dependence of the transport coefficients does not appear. To derive
the transport coefficients for denser systems is our future work.

7.6 Conclusion

In this chapter, we have developed the kinetic theory for dilute cohesive
granular gases having the square well potential to derive the hydrodynamic
equations using the Champan-Enskog theory for the inelastic Boltzmann
equation. We have obtained the second momentM2 of the collision integral
and the transport coefficients for this system. We have found that they are
identical to those for hard core gases at high temperature and the hydro-
dynamic description is no longer valid at low temperature. We have also
performed DSMC simulation to check the validity of the kinetic theory and
found that all results of DSMC are consistent with those obtained by the
kinetic theory.
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Chapter 8

Summary

In this thesis, we have studied transport phenomena of cohesive granular
particles numerically and theoretically. In chapter 6, we have studied the
spatial patterns under a plane shear by controlling the density, the dimen-
sionless shear rate, and the dissipation rate. We found the existence of
various distinct steady phases depending on these parameters. We have also
drawn the phase diagrams for several fixed densities. In addition, the shape
of clusters depends on the initial condition of velocities of particles, when the
dissipation is strong. We have also found that there is a quasi particle-hole
symmetry for the shape of clusters in steady states. We have found that
the VDF near the interface between the dense region and the gas region
in the dense-plate coexistence phase deviates from the Gaussian function.
Introducing a stochastic model and its corresponding Kramers equation, we
have obtained its perturbative VDF, which reproduces the semi-quantitative
behavior of the VDF observed in MD simulations. This result suggests that
the motion of a gas particle near the interface is subjected to Coulombic
friction force whose origin is the activation energy in the dense region.

In chapter 7, we have developed the kinetic theory based on the inelastic
Boltzmann equation for the cohesive granular particles. We have derived the
expression of the second moment of the collision integral and the transport
phenomena for a system of hard core particles having a square well potential.
We have found that the results are identical to those for hard core gases at
high temperature, but hydrodynamic description is no longer valid at low
temperature. We have also performed DSMC simulation and checked the
validity of the kinetic theory.

In this thesis, we do not consider the aggregation process among cohe-
sive grains, which cannot be ignored for low temperature regime as shown
in chapter 7. This effect will be treated to complete our analysis in near
future. In addition, we may need to consider the effect of a liquid-gas phase
transition as shown in chapter 4, which cannot be included in the framework
of the present kinetic theory. For a sheared system, we need to consider a
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different base state to construct a theory, in which shear thickening behav-
ior [159] is expected similar to a dry system. A extension to a moderately
dense case is also our future work. When the density is higher, we need to
construct a different theory, such as that by Ref. [57].
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Appendix A

Results of the physical
boundary condition

In this Appendix, we present the results of our simulations under the flat
boundary condition which is one of the typical physical boundaries to clarify
the influence of the boundary condition. We prepare flat walls at z = ±L/2,
moving at velocities ±γ̇L/2 in y-direction, respectively. When a particle
with a velocity (vx, vy, vz) hits the walls at z = ±L/2, the velocity is changed
as (vx,±γ̇L/2 − vy,−vz) after the collision, respectively. The phase dia-
gram of the system for the physical boundary for n∗ = 0.305 is presented
in Fig. A.1. We have obtained three steady phases such as the uniformly
sheared phase, the coexistence phase between dense-plate and gas regions,
and the dense-plate cluster phase. The phase diagram is almost same as
the corresponding one under the Lees-Edwards boundary condition (see
Figs. 6.4(d)). This can be understood as follows: if two particles at the
symmetric positions with respect to the origin of the system simultaneously
collide the walls at z = L/2 and −L/2, the pair of velocities after colli-
sions is same as that after passing across the boundaries at z = ±L/2 for
the system under the Lees-Edwards boundary condition. This is realized
after the averaging over the collisions. Thus, the flat boundary condition is
essentially equivalent to the Lees-Edwards boundary condition.
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Figure A.1: (Color online) Phase diagram under the flat boundary condi-
tion for n∗ = 0.305, uniformly sheared state (red filled circle, Fig. 6.3(a)),
coexistence of a dense-plate and gases (blue open square, Fig. 6.3(d)), and
an isolated dense-plate (black filled square, Fig. 6.3(g)).
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Appendix B

Calculation of Coulombic
friction constant

In this appendix, we try to illustrate the existence of Coulombic friction
force for the motion of a tracer particle near the interface. Let us consider
a situation that a gas particle hits and slides on the wall formed by the
particles in the dense region (see Fig. 6.9). If the kinetic energy of the gas
particle is less than the potential energy formed by the particles in the dense
region, it should be trapped in the potential well. Therefore, the motion of
the gas particle is restricted near the interface. In this case, we can write
the N -body distribution function near the interface ρ(Γ, t) by using the
distribution function in the equilibrium system as [136,160–162]

ρ(Γ, t) = ρeq(Γ) exp

[∫ t

0
dτΩ(−τ,Γ, γ̇l, ζ)

]
, (B.1)

where Γ = {ri,pi}Ni=1, ρeq(Γ) is the equilibrium distribution function at
time t = 0, and

Ω(t,Γ, γ̇, ζ) =− βγ̇V σyz(t,Γ, γ̇, ζ)
− 2βR(t,Γ, γ̇, ζ)− Λ(t,Γ, γ̇, ζ), (B.2)

with

σαβ(t,Γ, γ̇, ζ) =
∑
i

pi,αpi,βm
−
∑
j ̸=i

ri,α
∂ULJ(rij)

∂ri,β
+
∑
j ̸=i

ri,αF
vis
β (rij ,vij)

 ,

(B.3)

R(t,Γ, γ̇, ζ) =ζ
4

∑
i ̸=j

Θ(σ − rij)(vij · r̂ij)2, (B.4)
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Λ(t,Γ, γ̇, ζ) =− ζ

m

∑
i̸=j

Θ(σ − rij), (B.5)

F vis
β (rij ,vij) =− ζΘ(σ − rij)(vij · r̂ij)

rij,β
rij

. (B.6)

Here, we have introduced the inverse granular temperature β = 1/T and the
local shear rate γ̇l in the interface region. If the dissipation is small and the
shear rate is not large, we may assume that Ω(−t) ≃ −βγ̇V σmf

yz (−t), where
σmf
yz is the mean field yz component of the stress tensor. We also assume

that the stress tensor decays exponentially as σmf
yz (−t) ≃ σmf

yz (0) exp(−|t|/τ0)
[136], where τ0 is the relaxation time of the stress tensor. From these rela-
tionships, we may use the approximate expression

ρ(Γ, t) ≃
Nl∏
i=1

1

Zmf
exp

[
−β
(
Hmf −∆Ei

)]
exp

(
−βτ0γ̇lVlσmf

yz (0)
)
, (B.7)

where Hmf and ∆Ei, are respectively, the mean field Hamiltonian per par-
ticle in the interface and the energy fluctuation of the particle i which may
be the activation energy from the local trap. Here Nl and Vl are, respec-
tively, the number of particles and the volume in the interface region and
Zmf =

∫
drdp exp(−βHmf). There are two characteristic time scales γ̇−1

and γ̇−1
l corresponding to the uniform region and the interface between

dense and dilute regions. Because the time scale is obtained from the aver-
age over the distribution function (B.7) or the local mean field distribution,
the relationship between γ̇−1 and γ̇−1

l is expected to be

γ̇−1
l = γ̇−1 exp

[
β(∆E − τ0γ̇lVlσmf

yz (0))
]
, (B.8)

where we have eliminated the suffix i for the particle. This equation can be
rewritten as

σmf
yz (0) =

1

τ0γ̇lVl

(
∆E + T ln

γ̇l
γ̇

)
. (B.9)

Therefore, we may estimate Coulombic friction constant as

µ =
σmf
yz (0)

P
=

1

τ0γ̇lPVl

(
∆E + T ln

γ̇l
γ̇

)
, (B.10)

where P ≃ 0.90ε/σ3, Vl ≃ 4.3σ3, ∆E ≃ 3.5ε and γ̇l ≃ 0.83(ε/mσ2)1/2 at the
interface for a set of parameters (n∗, γ̇∗, ζ∗) = (0.305, 10−0.2, 100.2). In this
expression, we cannot determine the relaxation time τ0 from the simulation,
which is estimated to reproduce the average value of the second moment
with the aid of Eq. (6.16).
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Appendix C

Detailed calculation of the
viscous heating term

In this appendix, let us calculate the average of the viscous heating term by
using the distribution function near the interface. From Eq. (B.7), we can
rewrite the distribution function with the aid of Eq. (B.3) as

ρ(Γ, t) ≈ 1

Z

Nl∏
i=1

exp

[
−β
(

p2
i

2m
+ τ0γ̇lVl

pi,ypi,z
m

)]
, (C.1)

where Z =
∫ ∏Nl

i=1 dridpi exp[−β(p2
i /2m + τ0γ̇lVlpi,ypi,z/m)]. Then ⟨pypz⟩

is given by

⟨pypz⟩ =
∫
dΓpi,ypi,zρ(Γ, t)

∝
∫ ∞

−∞
dpi,y

∫ ∞

−∞
dpi,zpi,ypi,z exp

[
−β
(

p2
i

2m
+ τ0γ̇lVl

pi,ypi,z
m

)]
=

∫ ∞

0
dp

∫ 2π

0
dθp3 sin θ cos θ exp

[
−β
(
p2

2m
+
τ0γ̇lVl
m

p2 sin θ cos θ

)]
=− π

2

∫ ∞

0
dpp3 exp

(
−βp

2

2m

)
I1

(
βτ0γ̇lVl
2m

p2
)
, (C.2)

where I1(x) is the modified Bessel function of the first kind [?]. Because
I1(x) is positive for x > 0, Eq. (C.2) ensures that the viscous heating term
−γ̇ ⟨pypz⟩ is always positive near the interface.
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Appendix D

A perturbative solution of
the Kramers equation

In this appendix, let us solve the Kramers equation (6.9) perturbatively to
obtain the steady VDF. Later, we compare this solution with the result of
MD.

At first, we adopt the following three assumptions. The first assumption is
that the distribution function is independent of both x and y, the coordinates
horizontal to the interface. We also assume that the distribution function f
depends on z, vertical to the interface, through the density and the granular
temperature:

∂f

∂z
=
∂f

∂n

dn

dz
+
∂f

∂T

dT

dz
. (D.1)

Second, we assume that the changes of the density and the granular tem-
perature near the interface can be characterized by the interface width λ
as

dn

dz
≃ −n0

λ
,

dT

dz
≃ T0

λ
, (D.2)

where n0 = n(z0) = (nl + ng)/2, T0 = T (z0) = (Tl + Tg)/2. Here, nl and
Tl are the density and the granular temperature in the dense region, and ng
and Tg are those in the dilute region, respectively. Third, we also assume
that the interface width λ is much longer than the diameter of the particles
σ, i.e. ϵ ≡ σ/λ≪ 1. From these assumptions, ∂f/∂z may be rewritten as

∂f

∂z
≃ −ϵ

(
n0
σ

∂

∂n
− T0

σ

∂

∂T

)
f. (D.3)

To solve Eq. (6.9), we adopt the perturbative expression Eq. (6.10). Equa-
tion (6.9), thus, reduces to the following three equations: for the zeroth
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order,

−κ ∂

∂p
·
(

p

|p|
f (0,0)

)
−∆pf

(0,0) = 0, (D.4)

for the first order of ϵ,

− pz
mD

(
n0
σ

∂

∂n
− T0

σ

∂

∂T

)
f (0,0) − κ ∂

∂p
·
(

p

|p|
f (0,1)

)
−∆pf

(0,1) = 0, (D.5)

and for the first order of γ̇∗,

−pz
D

∂f (0,0)

∂py
− κ ∂

∂p
·
(

p

|p|
f (1,0)

)
−∆pf

(1,0) = 0. (D.6)

The solution of Eq. (D.4) is given by

f (0,0) = C1 exp(−κp) + C2 exp(−κp)Ei (κp) , (D.7)

where Ei(x) is the exponential integral Ei(x) ≡ −
∫∞
−x(e

−t/t)dt [163], and C1

and C2 are the normalization constants. Here, we set C2 = 0 because Ei(x)
becomes infinite at x = 0, and C1 = κ2/2π to satisfy the normalization
condition without the shear and the density gradient. Using Eq. (D.7),
Equations (D.5) and (D.6) can be represented in the polar coordinates as

A

(
p2 − 2

λ
p

)
f (0,0) sin θ

= κ

(
1

p
+

∂

∂p

)
f (0,1) +

(
∂2

∂p2
+

1

p

∂

∂p
+

1

p2
∂2

∂θ2

)
f (0,1), (D.8)

and

κ

2Dt0
pf (0,0) sin 2θ

= κ

(
1

p
+

∂

∂p

)
f (1,0) +

(
∂2

∂p2
+

1

p

∂

∂p
+

1

p2
∂2

∂θ2

)
f (1,0), (D.9)

where we have introduced A as

A =
n0

mσD

∂κ

∂n
− T0
mσD

∂κ

∂T
. (D.10)

To solve Eqs. (D.8) and (D.9), we adopt the expansions for f (i,j)(p, θ) =∑∞
n=1 f

(i,j)
n (p) sin(nθ) with (i, j) = (0, 1) and (1, 0) [143]. Equation (D.8)

for each n reduces to the following equations: for n = 1,

Aκ2

2π

(
p2 − 2

κ
p

)
exp(−κp)

= κ

(
1

p
+

∂

∂p

)
f
(0,1)
1 +

(
∂2

∂p2
+

1

p

∂

∂p
− 1

p2

)
f
(0,1)
1 , (D.11)
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and for n ̸= 1,

0 = κ

(
1

p
+

∂

∂p

)
f (0,1)n +

(
∂2

∂p2
+

1

p

∂

∂p
− n2

p2

)
f (0,1)n . (D.12)

The solutions of Eqs. (D.11) and (D.12) are, respectively, given by

f
(0,1)
1 =

C11

p
+ C12

1 + κp

κ2p

− A

6π

6 + 6κp+ 3κ2p2 + κ3p3 + κ4p4

κ3p
exp(−κp), (D.13)

and

f (0,1)n =Cn1(κp)
n exp(−κp)U(n, 2n+ 1, κp)

+ Cn2(κp)
n exp(−κp)L2n

−n(κp), (D.14)

for n ̸= 1, where U(a, b, x) and Lb
a(x) are, respectively, the confluent hyper-

geometric function and Laguerre’s bi-polynomial [163], and the normaliza-
tion constants Cn1 and Cn2 (n = 1, 2, · · · ) will be determined later. Sim-
ilarly, Equation (D.9) for each n reduces to the following equations: for
n = 2,

κ3

4πDt0
p exp(−κp)

= κ

(
1

p
+

∂

∂p

)
f
(1,0)
2 +

(
∂2

∂p2
+

1

p

∂

∂p
− 4

p2

)
f
(1,0)
2 , (D.15)

and for n ̸= 2,

0 = κ

(
1

p
+

∂

∂p

)
f (1,0)n +

(
∂2

∂p2
+

1

p

∂

∂p
− n2

p2

)
f (1,0)n . (D.16)

The solutions of Eqs. (D.15) and (D.16) are, respectively, given by

f
(1,0)
2 =C23

3− κp
p2

+ C24
6 + 4κp+ κ2p2

κ4p2
exp(−κp)

+
1

8πDt0

72 + 48κp+ 12κ2p2 − κ4p4

κ2p2
exp(−κp), (D.17)

and

f (1,0)n =Cn3(κp)
n exp(−κp)U(n, 2n+ 1, κp)

+ Cn4(κp)
n exp(−κp)L2n

−n(κp), (D.18)

for n ̸= 2, where the normalization constants Cn3 and Cn4 (n = 1, 2, · · · )
will be determined later.
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Here, let us determine the normalization constants Cn1, · · · , Cn4 (n =

1, 2, · · · ). The distributions f
(0,1)
n and f

(1,0)
n should be finite at p = 0 and

approach zero for large p. Therefore, we obtain

C11 = 0, C12 =
A

πκ
, C23 = 0, C24 = −

3κ2

2πDt0
,

Cn1 = 0, Cn2 = 0 (n ̸= 1),

Cn3 = 0, Cn4 = 0 (n ̸= 2). (D.19)

From these results, we obtain

f(p, θ) = f (0,0) + ϵf
(0,1)
1 sin θ + γ̇∗f

(1,0)
2 sin 2θ, (D.20)

where f (0,0), f
(0,1)
1 and f

(1,0)
2 are, respectively, given by

f (0,0)(p) =
κ2

2π
exp(−κp), (D.21)

f
(0,1)
1 (p) = − A

6πκ
p(3 + κp+ κ2p2) exp(−κp), (D.22)

f
(1,0)
2 (p) = − κ2

8πDt0
p2 exp(−κp). (D.23)
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Appendix E

Detailed calculations of
various moments

In this appendix, we calculate the n-th moments of py′ and pz′ using the
distribution function obtained in Appendix D. From the definition of the
moment, n-th moment of an arbitrary function G(p) is given by

⟨Gn⟩ =
∫
dpGn(p, φ)f(p, φ). (E.1)

We rotate the coordinate the coordinate (y, z) by θ counterclockwise and
introduce the new Cartesian coordinate (y′, z′) as in Fig. 6.7. From this
definition, we obtain the n-th moments of py′ , for n = 2,

⟨
p2y′
⟩
=

∫ ∞

0
dp

∫ 2π

0
dφp3 cos2(φ− θ)

×
[
f (0,0)(p) + ϵf

(0,1)
1 (p) sinφ+ γ̇∗f

(1,0)
2 (p) sin 2φ

]
=

3

κ2

(
1− 5γ̇

2Dκ2
sin 2θ

)
, (E.2)

for n = 3,

⟨
p3y′
⟩
=

∫ ∞

0
dp

∫ 2π

0
dφp4 cos3(φ− θ)

×
[
f (0,0)(p) + ϵf

(0,1)
1 (p) sinφ+ γ̇∗f

(1,0)
2 (p) sin 2φ

]
=− 765ϵA

κ7
sin θ, (E.3)

89



and for n = 4,

⟨
p4y′
⟩
=

∫ ∞

0
dp

∫ 2π

0
dφp5 cos4(φ− θ)

×
[
f (0,0)(p) + ϵf

(0,1)
1 (p) sinφ+ γ̇∗f

(1,0)
2 (p) sin 2φ

]
=
45

κ4

(
1− 7γ̇

Dκ2
sin 2θ

)
. (E.4)

Similarly, we can calculate the each moment of pz′ so that we obtain Eqs. (6.16)–
(6.19).
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Appendix F

Velocity distribution
function for each direction

In this appendix, we derive the velocity distribution function in the Carte-
sian coordinate (y, z) at first, and calculate the velocity distribution func-
tions in y and z-directions. The velocity distribution function in the polar
coordinates (p, θ) is given by Eq. (6.12), where we replace θ by θ − ψ as
in Eqs. (6.16)–(6.19), which can be converted into the form in Cartesian
coordinate as

f(py, pz) =
κ2

2π
exp(−κp)

[
1− ϵA

3κ3
p(3 + κp+ κ2p2) sin(θ − ψ)− γ̇

4D
p2 sin 2(θ − ψ)

]
=
κ2

2π
exp(−κp)

[
1 +

ϵA

3κ3
(3 + κp+ κ2p2)(py sinψ − pz cosψ)

+
γ̇

4D

{
(p2y − p2z) sin 2ψ − 2pypz cos 2ψ

}]
, (F.1)

where p =
√
p2y + p2z. Next, let us calculate the velocity distribution func-

tions in y and z directions. In this paper, we focus on the VDF for the
fluctuation velocity, which is defined by the deviation from the average ve-
locity. Therefore, we can replace py and pz by muy and muz in Eq. (F.1).
The velocity distribution function in y-direction, P (uy), is given by integrat-
ing Eq. (F.1) with respect to uz as

P (uy) =

∫ ∞

−∞
d(muz)f(muy,muz)

=
mκ2

2π

∫ ∞

−∞
duz exp (−mκu)

×
[
1 +

mϵA

3κ3
(
3 +mκu+m2κ2u2

)
uy sinψ +

m2γ̇

4D
(u2y − u2z) sin 2ψ

]
,

(F.2)
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where u =
√
u2y + u2z. Similarly, we can calculate the velocity distribution

function in z-direction P (pz) as

P (uz) =

∫ ∞

−∞
d(muy)f(muy,muz)

=
mκ2

2π

∫ ∞

−∞
duy exp (−mκu)

×
[
1− mϵA

3κ3
(
3 +mκu+m2κ2u2

)
uz cosψ +

m2γ̇

4D
(u2y − u2z) sin 2ψ

]
.

(F.3)
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Appendix G

Collision geometry for the
square well potential

Figure G.1: Collision geometry for a grazing collision. Two particles ap-
proach from O1 and leave for O2. The solid and dotted circles represent
the hard core (radius d) and the outer edge of the potential (radius λd),
respectively.

In this appendix, let us explain the collision geometry scattered by the
square well potential. First, we consider the case for a grazing collision as
in Fig. G.1 in the frame that the target is stationary. Let us consider the
process that two particles approach from far away with relative velocity v
from O1. When the incident particle enters the well at the point A, the
relative velocity changes because of the conservation of the energy and the
angular momentum, whose speed inside the well is given by νv. At the
point A, the relative velocity perpendicular to OA is conserved, that is,
v sinα = νv sinβ is satisfied [152]. The change of the velocity parallel to
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OA is given by

νv cosβ − v cosα = νv

√
1− 1

ν2
sin2 α− v cosα

=
(√

ν2 − sin2 α− cosα
)
v, (G.1)

which means that the velocity change ∆vA at the point A satisfies

∆vA = −
(√

ν2 − sin2 α− cosα
)
vr̂A (G.2)

with the unit vector r̂A = (cos(π − α), sin(π − α))T parallel to OA. We
note that the minus sign in Eq. (G.2) comes from the fact that the velocity
change is opposite direction to r̂A.

Similarly, the component of the velocity change parallel to OC at the

point C is given by (cosα−
√
ν2 − sin2 α)v, which means that the velocity

change ∆vC at the point C becomes

∆vC = −
(√

ν2 − sin2 α− cosα
)
vr̂C (G.3)

with the unit vector r̂C = (cos(π − 2θ + α), sin(π − 2θ + α))T.
From Eqs. (G.2) and (G.3), the velocity change ∆v during this grazing

collision becomes

∆v = ∆vA +∆vC

= −2
(√

ν2 − sin2 α− cosα
)

× v cos(θ − α)
(
cos(π − θ)
sin(π − θ)

)
. (G.4)

From Eq. (7.7) and α = arcsin(AE/OA) = arcsin(b/λd), the following rela-
tionships are satisfied:

cos(θ − α) = cos

(
π

2
− arcsin

b

νλd

)
=

b

νλd
, (G.5)

cos θ =sin

(
arcsin

b

νλd
− arcsin

b

λd

)
=sin

(
arcsin

b

νλd

)
cos

(
arcsin

b

λd

)
− cos

(
arcsin

b

νλd

)
sin

(
arcsin

b

λd

)
=

b

νλ2d2

(√
λ2d2 − b2 −

√
ν2λ2d2 − b2

)
, (G.6)
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and √
ν2 − sin2 α− cosα

=
1

λd

(√
ν2λ2d2 − b2 −

√
λ2d2 − b2

)
. (G.7)

From these equations, we can rewrite Eq. (G.4) as

∆v = 2v cos θ

(
cos(π − θ)
sin(π − θ)

)
= −2v cos(π − θ)

(
cos(π − θ)
sin(π − θ)

)
= −2(v · k̂)k̂, (G.8)

with the unit vector k̂ = (cos(π − θ), sin(π − θ))T.

Figure G.2: Collision geometry for a core collision. Two particles approach
from O1 and leave for O2.The solid and dotted lines represent the hard core
(radius d) and the outer edge of the potential (radius λd), respectively.

Next, let us consider the case for a hard core collision as in Fig. G.2.
In this case, an inelastic collision takes place at the point D. To calculate
the energy dissipation at the point D, we consider the angle Θ between
the relative velocity of the particle and OB. From AB = λd sin(θ − α),
BD = OB−OD = (λ cos(θ − α)− 1)d, we can write Θ as

tanΘ =
AD

BD
=

λ sin(θ − α)
λ cos(θ − α)− 1

. (G.9)
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From Eq. (7.10), cos(θ − α) and sin(θ − α) are, respectively, given by

cos(θ − α) = cos

(
arcsin

b

νd
− arcsin

b

νλd

)
=

1

ν2λd2

(√
ν2d2 − b2

√
ν2λ2d2 − b2 + b2

)
, (G.10)

sin(θ − α) = sin

(
arcsin

b

νd
− arcsin

b

νλd

)
=

1

ν2λd2

(√
ν2λ2d2 − b2 −

√
ν2d2 − b2

)
, (G.11)

and substituting Eqs. (G.10) and (G.11) into Eq. (G.9), we obtain

tanΘ =
b√

ν2d2 − b2
, (G.12)

or, equivalently, Eq. (7.12). From this, we can calculate the change ∆v2

after the collision at the point B as

∆v2 = −(1− e2)ν2v2 cos2Θ

= −(1− e2)v2
(
ν2 − b2

d2

)
. (G.13)

Correspondingly, the change of relative velocity ∆v is given by

∆v = −
[
(v · k̂) +

√
(v · k̂)2 − (1− e2)ν2v2 cos2Θ

]
k̂

= −2
[
1− 1

2
ϵν2

cos2Θ

cos2 θ

]
(v · k̂)k̂ +O(ϵ2), (G.14)

which reduces to ∆v = −2(v · k̂)k̂ in the elastic limit.
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Appendix H

Chapman-Enskog expansion

In this Appendix, let us explain the outline of the Chapman-Enskog theory
[44, 46]. As explained in chapter 7, the zeroth order distribution function,
f (0), is determined by Eq. (7.40) in the form Eq. (7.23) [31]. The first order
distribution f (1), satisfies Eq. (7.46), which can be rewritten as

∂(0)f (1)

∂t
+ J (1)

(
f (0), f (1)

)
− ζ(1)T ∂f

(0)

∂T
= A ·∇ log T +B ·∇ log n+ Cij∇jUi, (H.1)

where the coefficients A, B, and Cij are, respectively, given by

A(V ) =
1

2
V

∂

∂V
·
(
V f (0)

)
− T

m

∂

∂V
f (0)

= V

[
T

m

(
mV 2

2T
− 1

)
1

V

∂

∂V
+

3

2

]
f (0), (H.2)

B(V ) = −V f (0) − T

m

∂

∂V
f (0)

= −V
(
T

m

1

V

∂

∂V
+ 1

)
f (0), (H.3)

Cij(V ) =
∂

∂Vi

(
Vjf

(0)
)
− 1

3
δij

∂

∂V
·
(
V f (0)

)
=

(
ViVj −

1

3
δijV

2

)
1

V

∂f (0)

∂V
. (H.4)

From Eq. (H.1), f (1) is expected to have the form

f (1) = A ·∇ log T + B ·∇ log n+ Cij∇jUi. (H.5)

The relationships between the coefficients A, B, Cij and A, B, Cij are,
respectively, obtained by substituting the solution Eq. (H.5) into Eq. (H.1)
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as:

−T ∂

∂T

(
ζ(0)A

)
+ J (1)

(
f (0),A

)
=A, (H.6)

−ζ(0)T ∂B
∂T
− ζ(0)A+ J (1)

(
f (0),B

)
=B, (H.7)

−ζ(0)T ∂Cij
∂T

+ J (1)
(
f (0), Cij

)
=Cij , (H.8)

where we have used ζ(1) = 0 because the coefficient Cij is traceless.
Substituting Eq. (H.5) into Eq. (7.32) with the aid of Eqs. (7.42) and

(7.49), we obtain∫
dV Dij(V )Ckl(V )∇lUk = −η

(
∇iUj +∇jUi −

2

3
δij∇ ·U

)
. (H.9)

Therefore, the shear viscosity η is given by

η = − 1

10

∫
dV Dij(V )Cji(V ). (H.10)

Substituting Eq. (7.56) into Eq. (H.4), we obtain the explicit form of Cij(V )
as

Cij(V ) = − 1

T
Dij(V )

{
1 +

∑
ℓ

[
Sℓ(c

2) + S
(3/2)
ℓ−1 (c2)

]}
fM(V ). (H.11)

This form and Eq. (H.8) leads to

Cij(V ) =
C1
T
Dij(V )fM(V ), (H.12)

where C1 is a constant. Substituting Eq. (H.12) into Eq. (H.10), we obtain
C1 = −η/(nT ).

Similarly, substituting f (1) into Eq. (7.33) with the aid of Eqs. (7.42)
and (7.50), we obtain{

1

T

∫
dV Si(V )Aj(V )

}
∇jT =− κ∇iT, (H.13){

1

n

∫
dV Si(V )Bj(V )

}
∇jn =− µ∇in. (H.14)

Therefore, we, respectively, obtain the thermal conductivity and the coeffi-
cient µ as

κ =− 1

3T

∫
dV S(V ) · A(V ), (H.15)

µ =− 1

3n

∫
dV S(V ) · B(V ). (H.16)
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Substituting Eq. (7.56) into Eqs. (H.2) and (H.3), we obtain the explicit
forms of A(V ) and B(V ) as

A(V ) =V

{
S
(3/2)
1 (c2)

[
1 + a2

(
S
(3/2)
2 (c2)− 3

2

)]
+

∞∑
ℓ=3

aℓ

[
S
(3/2)
1 (c2)Sℓ(c

2) + (1− c2)S(3/2)
ℓ−1 (c2)

]}
fM(V ),

(H.17)

B(V ) =
∑
ℓ

aℓV S
(3/2)
ℓ−1 (c2)fM(V ). (H.18)

Equations (H.6) and (H.7) leads to

A =− A1

T
S(V )fM(V ), (H.19)

B =− B1
T

S(V )fM(V ), (H.20)

where A1 and B1 are constants. Substituting Eqs. (H.2) and (H.3) into Eq.
(H.15) and (H.16), respectively, and integrating over V , we obtain A1 =
2mκ/5nT and B1 = 2mµ/5T 2.

Let us determine the explicit forms of the transport coefficients. Multi-
plying Eq. (H.8) by Dij(V1) and integrate over V1, we obtain

10ζ(0)T
∂η

∂T
+

∫
dV1Dij(V1)J

(1)
(
f (0), Cij

)
=

∫
dV1Dij(V1)Cij(V1). (H.21)

The second term on the left-hand-side of Eq. (H.21) is written as∫
dV1Dij(V )J (1)

(
f (0), Cij

)
=4ηnd2

√
2T

m
Ωe
η, (H.22)

where Ωe
η is defined as Eq. (7.52). Similarly, the right-hand-side of Eq.

(H.21) satisfies ∫
dV1Dij(V )Cij(V1) = 10nT. (H.23)

Therefore, Eq. (H.21) is reduced to Eq. (7.51). The perturbative solution of
Eq. (7.51) with respect to the small inelasticity is given by Eq. (7.70).

Similarly, we derive the differential equation for the thermal conductivity
κ. Multiplying Eq. (H.6) by S(V1)/T and integrating over V1, we obtain

∂

∂T

(
3ζ(0)κT

)
+

1

T

∫
dV1S(V1)J

(1)
(
f (0),A

)
=

1

T

∫
dV1S(V1) ·A(V1). (H.24)
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The second term on the left-hand-side of Eq. (H.24) is written as

1

T

∫
dV1S(V1)J

(1)
(
f (0),A

)
=

4

5
κnd2

√
2T

m
Ωe
κ, (H.25)

where Ωe
κ is given by Eq. (7.55). The right-hand-side on Eq. (H.24) satisfies

1

T

∫
dV1S(V1) ·A(V1) = −

15

2

nT

m
(1 + 2a2) . (H.26)

It should be noted that terms proportional to an (n ≥ 3) vanish due to the
orthogonality of the Sonine polynomials. Therefore, Eq. (H.24) is reduced
to Eq. (7.53). The solution of Eq. (7.53) is given by Eq. (7.74).

Similarly, multiplying Eq. (H.7) by S(V1)/T and integrating over V1,
the coefficient µ is given by Eq. (7.75).

100



Appendix I

Determination of a2 and a3

In this appendix, we determine the coefficients a2 and a3 using the moments
of the dimensionless collision integrals [68–70]. It is useful to introduce the
basic integral [46]

Jk,l,m,n,p,α ≡
∫
dC

∫
dc12

∫
dk̂σ̃(χ, c12, ξ)|c12 · k̂|1+α

× ϕ(C)ϕ(c12)Ckcl12(C · c12)m(C · k̂)n(c12 · k̂)p, (I.1)

with C = (c1 + c2)/2. This is rewritten as

Jk,l,m,n,p,α =2−(k+m+n−1)/2Γ

(
k +m+ n+ 3

2

)
π−1/2

n∑
j=0

(
n

j

)[
1 + (−1)j

]

×
Γ
(
1+j
2

)
Γ
(
2+j
2

) ∫ π

0
dΘsinj+1Θcosm+n−j Θ

×
∫ ∞

0
dc12

∫ ∞

0
db̃ b̃cl+m+p+α+3

12

× sinn+p−j χ

2

∣∣∣sin χ
2

∣∣∣α cosj χ
2
exp

(
−1

2
c212

)
. (I.2)

For α = 0 and n = 0, 1 and 2, Eq. (I.2) reduces to

Jk,l,m,0,p,0 =
2−(k+m−3)/2

m+ 1
[1 + (−1)m] Γ

(
k +m+ 3

2

)
×
∫ ∞

0
dc12

∫ ∞

0
db̃ b̃cl+m+p+3

12 sinp
χ

2
exp

(
−1

2
c212

)
, (I.3)
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Jk,l,m,1,p,0 =
2−(k+m−2)/2

m+ 2
[1− (−1)m] Γ

(
k +m+ 4

2

)
×
∫ ∞

0
dc12

∫ ∞

0
db̃ b̃cl+m+p+3

12 sinp+1 χ

2
exp

(
−1

2
c212

)
, (I.4)

Jk,l,m,2,p,0 =
2−(k+m−1)/2

(m+ 1)(m+ 3)
[1 + (−1)m] Γ

(
k +m+ 5

2

)
×
∫ ∞

0
dc12

∫ ∞

0
db̃ b̃cl+m+p+3

12 sinp
χ

2

(
1 +m sin2

χ

2

)
exp

(
−1

2
c212

)
,

(I.5)

respectively. These integrals recover the previous results in the hard core
limit [46]. In this paper, we only consider the nearly elastic case 1− e≪ 1.
We assume that the coefficients a2 and a3 are proportional to 1− e. When
we use the truncated distribution function Eq. (7.56), we rewrite the n-th
momentMp = −

∫
dc1c

p
1Ĩ(f̃

(0), f̃ (0)) (p ∈ N) as

Mp =−
1

2

∫
dCdc12dk̂σ̃(χ, c12, ξ)|c12 · k̂|ϕ(c1)ϕ(c2)(c12 · k̂)2

×
[
1 + a2(S2(c

2
1) + S2(c

2
2)) + a3(S3(c

2
1) + S3(c

2
2))
]
∆(cp1 + cp2) ,

(I.6)

where, we have ignored the terms proportional to a22, a
2
3, and a2a3, because

they are the order of (1− e)2. The explicit forms of ∆(cp1 + cp2) for p = 2, 4,
and 6 are, respectively, given by

∆(c21 + c22) =− ϵΘ(b̃max − b̃)ν2
cos2Θ

cos2 θ
(c12 · k̂)2 +O(ϵ2), (I.7)

∆(c41 + c42) =− 8(C · c12)(C · k̂)(c12 · k̂) + 8(C · k̂)2(c12 · k̂)2

+ ϵΘ(b̃max − b̃)ν2
cos2Θ

cos2 θ

[
−2C2(c12 · k̂)2 −

1

2
c212(c12 · k̂)2

+4(C · c12)(C · k̂)(c12 · k̂)− 8(C · k̂)2(c12 · k̂)2
]

+O(ϵ2), (I.8)
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∆(c61 + c62) =− 24C2(C · c12)(C · k̂)(c12 · k̂) + 24C2(C · k̂)2(c12 · k̂)2

− 6c212(C · c12)(C · k̂)(c12 · k̂) + 6c212(C · k̂)2(c12 · k̂)2

+ ϵΘ(b̃max − b̃)ν2
cos2Θ

cos2 θ

[
3C4(c12 · k̂)2 +

3

2
C2c212(c12 · k̂)2

−12C2(C · c12)(C · k̂)(c12 · k̂) + 24C2(C · k̂)2(c12 · k̂)2

+
3

16
c412(c12 · k̂)2 − 3c212(C · c12)(C · k̂)(c12 · k̂)

+6c212(C · k̂)2(c12 · k̂)2 + 3(C · c12)2(c12 · k̂)2

−12(C · c12)(C · k̂)(c12 · k̂)3 + 12(C · k̂)2(c12 · k̂)4
]

+O(ϵ2). (I.9)

Then, we explicitly writeM2,M4, andM6 as
M2 =

√
2π (S1 + a2S2 + a3S3) ,

M4 =
√
2π (T1 + a2T2 + a3T3) ,

M6 =
√
2π (D1 + a2D2 + a3D3) ,

(I.10)

where

S1 =ϵ

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512 exp

(
−1

2
c212

)
+O(ϵ2), (I.11)

S2 =ϵ
1

16

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(15− 10c212 + c412) exp

(
−1

2
c212

)
+O(ϵ2), (I.12)

S3 =ϵ
1

192

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(105− 105c212 + 21c412 − c612) exp

(
−1

2
c212

)
+O(ϵ2), (I.13)

T1 =ϵ
1

2

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(5 + c212) exp

(
−1

2
c212

)
+O(ϵ2),

(I.14)

T2 =
1

4

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712 sin

2 χ(0) exp

(
−1

2
c212

)
+ ϵ

[
1

32

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(−25− 23c212 − 5c412 + c612) exp

(
−1

2
c212

)

+

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c712 sin2

χ(0)

2
exp

(
−1

2
c212

)
+
1

4

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712χ

(1) sin2 2χ(1) exp

(
−1

2
c212

)]
+O(ϵ2), (I.15)
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T3 =
1

16

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712(7− c212) sin2 χ(0) exp

(
−1

2
c212

)
+ ϵ

[
1

384

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512

×(−525− 168c212 − 6c412 + 16c612 − c812) exp
(
−1

2
c212

)
+
1

4

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c712(7− c212) sin2

χ(0)

2
exp

(
−1

2
c212

)
+

1

16

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712(7− c212)χ(1) sin2 2χ(1) exp

(
−1

2
c212

)]
+O(ϵ2), (I.16)

D1 =ϵ
3

16

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512(35 + 14c212 + c412) exp

(
−1

2
c212

)
+O(ϵ2), (I.17)

D2 =
3

16

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712(7 + c212) sin

2 χ(0) exp

(
−1

2
c212

)
+ ϵ

[
3

256

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512

×(−595− 252c212 − 18c412 + 4c612 + c812) exp

(
−1

2
c212

)
+
3

4

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c712(7− c212) sin2

χ(0)

2
exp

(
−1

2
c212

)
+
3

2

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c912 sin4

χ(0)

2
exp

(
−1

2
c212

)
+

3

16

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712(7 + c212)χ

(1) sin2 2χ(0) exp

(
−1

2
c212

)]
+O(ϵ2), (I.18)
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D3 =
3

64

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712(35− c412) sin2 χ(0) exp

(
−1

2
c212

)
+ ϵ

[
1

1024

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512

×(−5145− 1785c212 + 798c412 + 22c612 + 7c812 − c1012) exp
(
−1

2
c212

)
+

3

16

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c712(35− 14c212 + c412) sin

2 χ
(0)

2
exp

(
−1

2
c212

)
+
3

8

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c912(7− c212) sin4

χ(0)

2
exp

(
−1

2
c212

)
+

3

64

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712(35− c412)χ(1) sin2 2χ(0) exp

(
−1

2
c212

)]
+O(ϵ2). (I.19)

Here, we only show the lowest order of each term. Here, M4 and M6 are,
respectively, related toM2, the fourth moment

⟨
c4
⟩
and the sixth moment⟨

c6
⟩
as 

4

3
M2

⟨
c4
⟩
=M4

2M2

⟨
c6
⟩
=M6

. (I.20)

Substituting Eqs. (I.10) into Eq. (I.20) with
⟨
c4
⟩

= (15/4)(1 + a2) and⟨
c6
⟩
= (105/8)(1 + 3a2 − a3), we obtain the simultaneous equations with

respect to a2 and a3 as(5S1 + 5S2 − T2) a2 + (5S3 − T3) a3 = T1 − 5S1(
315

4
S1 +

105

4
S2 −D2

)
a2 +

(
−105

4
S1 +

105

4
S3 −D3

)
a3 = D1 −

105

4
S1

.

(I.21)
These equations can be solved easily and the explicit forms of a2 and a3 up
to ϵ order are given by Eqs. (7.57)–(7.61). Thus, we explicitly write M2,
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M4, andM6 up to the first order of ϵ as

M2 =ϵ
√
2π

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512 exp

(
−1

2
c212

)
+O(ϵ2), (I.22)

M4 =ϵ

[√
2π

2
(1− e)

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512

(
5 + c212

)
exp

(
−1

2
c212

)
+a

(1)
2

√
2π

4

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712 sin

2 χ(0) exp

(
−1

2
c212

)
+a

(1)
3

√
2π

16

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712

(
7− c212

)
sin2 χ(0) exp

(
−1

2
c212

)]
+O(ϵ2), (I.23)

M6 =ϵ

[
3
√
2π

16
(1− e)

∫ ∞

0
dc12

∫ b̃max

0
db̃ b̃(ν2 − b̃2)c512

(
35 + 14c212 + c412

)
exp

(
−1

2
c212

)
+a

(1)
2

3
√
2π

16

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712

(
7 + c212

)
sin2 χ(0) exp

(
−1

2
c212

)
+a

(1)
3

3
√
2π

64

∫ ∞

0
dc12

∫ λ

0
db̃ b̃c712

(
35− c412

)
sin2 χ(0) exp

(
−1

2
c212

)]
+O(ϵ2). (I.24)
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Appendix J

Calculation of Ωe
η and Ωe

κ

In this appendix, we calculate the quantities Ωe
η and Ωe

κ in Eqs. (7.52) and

(7.55). From the definition, D̃ij(c) = cicj−c2δij/3, D̃ij(c2)∆
[
D̃ij(c1) + D̃ij(c2)

]
is rewritten as

D̃ij(c2)∆
[
D̃ij(c1) + D̃ij(c2)

]
=

(
c2ic2j −

1

3
δijc

2
2

)[
c′1ic

′
1j + c′2ic

′
2j − c1ic1j − c2ic2j −

1

3
δij
(
c′21 + c′22 − c21 − c22

)]
=c212(C · k̂)(c12 · k̂)−

1

2
c212(c12 · k̂)2 − 2(C · c12)(C · k̂)(c12 · k̂)

+ (C · c12)(c12 · k̂)2 + 2(C · k̂)2(c12 · k̂)2 − 2(C · k̂)(c12 · k̂)3 +
1

2
(c12 · k̂)4

+ ϵΘ(b̃max − b̃)ν2
cos2Θ

cos2 θ

[
1

3
C2(c12 · k̂)2 −

1

2
c212(C · k̂)(c12 · k̂)

+
1

3
c212(c12 · k̂)2 + (C · c12)(C · k̂)(c12 · k̂)−

5

6
(C · c12)(c12 · k̂)2

−2(C · k̂)2(c12 · k̂)2 + 2(C · k̂)(c12 · k̂)3 −
1

2
(c12 · k̂)4

]
+O(ϵ2). (J.1)

Substituting this result into Eq. (7.52), we obtain Eq. (7.65).
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For Ωe
κ, we rewrite S̃(c2) ·∆

[
S̃(c1) + S̃(c2)

]
as

S̃(c2) ·∆
[
S̃(c1) + S̃(c2)

]
=

(
c22 −

5

2

)[(
c′1 · c2

)
c′21 +

(
c′2 · c2

)
c′22 − (c1 · c2) c21 − (c2 · c2) c22

]
=C2c212(C · k̂)(c12 · k̂)− 4C2(C · c12)(C · k̂)(c12 · k̂) + C2(C · c12)(c12 · k̂)2

+ 4C2(C · k̂)2(c12 · k̂)2 − 2C2(C · k̂)(c12 · k̂)3 +
1

4
c412(C · k̂)(c12 · k̂)

− 2c212(C · c12)(C · k̂)(c12 · k̂) +
1

4
c212(C · c12)(c12 · k̂)2 + c212(C · k̂)2(c12 · k̂)2

− 1

2
c212(C · k̂)(c12 · k̂)3 −

5

2
c212(C · k̂)(c12 · k̂) + 4(C · c12)2(C · k̂)(c12 · k̂)

− (C · c12)2(c12 · k̂)2 − 4(C · c12)(C · k̂)2(c12 · k̂)2

+ 2(C · c12)(C · k̂)(c12 · k̂)3 + 10(C · c12)(C · k̂)(c12 · k̂)

− 5

2
(C · c12)(c12 · k̂)2 − 10(C · k̂)2(c12 · k̂)2 + 5(C · k̂)(c12 · k̂)3

+ ϵΘ(b̃max − b̃)ν2
cos2Θ

cos2 θ

[
−C4(c12 · k̂)2 −

1

2
C2c212(C · k̂)(c12 · k̂)

−1

4
C2c212(c12 · k̂)2 + 2C2(C · c12)(C · k̂)(c12 · k̂) + C2(C · c12)(c12 · k̂)2

−4C2(C · k̂)2(c12 · k̂)2 + 2C2(C · k̂)(c12 · k̂) +
5

2
C2(c12 · k̂)2

−1

8
c412(C · k̂)(c12 · k̂) + c212(C · c12)(C · k̂)(c12 · k̂)− c212(C · k̂)2(c12 · k̂)2

+
1

2
c212(C · k̂)(c12 · k̂)3 +

5

4
c212(C · k̂)(c12 · k̂)− 2(C · c12)2(C · k̂)(c12 · k̂)

+4(C · c12)(C · k̂)2(c12 · k̂)2 − 2(C · c12)(C · k̂)(c12 · k̂)3

−5(C · c12)(C · k̂)(c12 · k̂) + 10(C · k̂)2(c12 · k̂)2 − 5(C · k̂)(c12 · k̂)3
]

+O(ϵ2). (J.2)

Substituting this into Eq. (7.55), we obtain Eq. (7.65) after the long and
tedious calculation.
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Appendix K

High and low temperature
expansions

We can evaluate the explicit forms of the transport coefficients in terms of
high temperature expansion. We can also evaluate the dissipation rateM2

as a low temperature expansion, though it diverges in the low temperature
limit.

First, we discuss the high temperature expansion. From Eq. (7.6), we
expand ν as

ν =

√
1 +

2ε

Tc212
= 1 +

ε

T

1

c212
+O

(( ε
T

)2)
, (K.1)

for T/ε≫ 1. Substituting Eq. (K.1) into Eq. (7.62), we expandM2 in terms
of the small parameter ε/T as

M(0)
2 = 0, M(1)

2 =M(1,0)
2 +

ε

T
M(1,1)

2 +O
(( ε

T

)2)
(K.2)

with
M(1,0)

2 = 2
√
2π, M(1,1)

2 = 2
√
2π. (K.3)

Similarly, Ωe
η and Ωe

κ are, respectively, expanded as

Ωe(0)
η = Ωe(0,0)

η +
ε

T
Ωe(0,1)
η +O

(( ε
T

)2)
, (K.4)

Ωe(1)
η = Ωe(1,0)

η +O
( ε
T

)
, (K.5)

Ωe(0)
κ = Ωe(0,0)

κ +
ε

T
Ωe(0,1)
κ +O

(( ε
T

)2)
, (K.6)

Ωe(1)
κ = Ωe(1,0)

κ +O
( ε
T

)
(K.7)
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with

Ωe(0,0)
η = −4

√
2π, Ωe(1,0)

η = −11
√
2π

320
, (K.8)

Ωe(0,1)
η =

√
2π

24
(λ− 1)

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}
, (K.9)

Ωe(0,0)
κ = −4

√
2π, Ωe(1,0)

κ = −1989
√
2π

320
, (K.10)

Ωe(0,1)
κ =

√
2π

24
(λ− 1)

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}
. (K.11)

Next, let us calculate the expansions of the transport coefficients. Sub-
stituting Eqs. (K.2)–(K.5) into Eqs. (7.72) and (7.73), we expand η as

η(0) = η(0,0) +
ε

T
η(0,1) +O

(( ε
T

)2)
, (K.12)

η(1) = η(1,0) +O
( ε
T

)
(K.13)

with

η(0,0) =
5

16d2

√
mT

π
, η(1,0) =

1567

3840
η(0,0), (K.14)

η(0,1) = η(0,0)
λ− 1

96

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}
. (K.15)

Similarly, κ and µ are, respectively, expanded as

κ(0) = κ(0,0) +
ε

T
κ(0,1) +O

(( ε
T

)2)
, (K.16)

κ(1) = κ(1,0) +O
( ε
T

)
, (K.17)

µ(0) = 0, µ(1) = µ(1,0) +O
( ε
T

)
(K.18)
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with

κ(0,0) =
75

64d2

√
T

πm
, κ(1,0) =

539

1280
κ(0,0), (K.19)

κ(0,1) = κ(0,0)
λ− 1

96

{
2(15λ4 + 15λ3 + 2λ2 + 2λ+ 2)

+3λ2(λ+ 1)(5λ2 − 1) log
λ− 1

λ+ 1

}
, (K.20)

µ(1,0) =
1185

1024nd2

√
T 3

πm
. (K.21)

Let us also calculate the low temperature expansion of M2. From Eq.
(7.6), we expand ν as

ν =

√
2

c12

√
ε

T
+

√
2c12
4

T

ε
+O

((
T

ε

)3
)
. (K.22)

Substituting Eq. (K.22) into Eq. (7.62), we can expandM2 in terms of the
small parameter T/ε as

M(0)
2 = 0, M(1)

2 =
ε

T
M(1,−1)

2,0 +M(1,0)
2,0 +O

(√
T

ε

)
(K.23)

with
M(1,−1)

2,0 = 2
√
2πλ2, M(1,0)

2,0 = 2
√
2π. (K.24)
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Appendix L

Relationship between Omega
integrals and the transport
coefficients

Let us introduce two dimensionless integrals Ω(ℓ)∗ and Ω(ℓ,s)∗ (ℓ, s: integer)
[39,150] as follows:

Ω(ℓ)∗ ≡ 2

1− 1
2
1+(−1)ℓ

1+ℓ

∫ ∞

0
db̃ b̃(1− cosℓ χ), (L.1)

Ω(ℓ,s)∗ ≡ 1

(s+ 1)!2s+1

∫ ∞

0
dc12c

2s+3
12 Ω(ℓ)∗ exp

(
−1

2
c212

)
. (L.2)

For (ℓ, s) = (1, 1) and (2, 2), Eqs. (L.1) and (L.2) reduce to

Ω(1)∗ = 4

∫ ∞

0
db̃ b̃ sin2

χ

2
, (L.3)

Ω(1,1)∗ =
1

2

∫ ∞

0
dc12

∫ ∞

0
db̃ b̃c512 sin

2 χ

2
exp

(
−1

2
c212

)
, (L.4)

Ω(2)∗ = 3

∫ ∞

0
db̃ b̃ sin2 χ, (L.5)

Ω(2,2)∗ =
1

16

∫ ∞

0
dc12

∫ ∞

0
db̃ b̃c712 sin

2 χ exp

(
−1

2
c212

)
. (L.6)

Eqs. (L.4) and (L.6) are related to the transport coefficients as

D =
3

8d2

√
mT

π

1

ρΩ(1,1)∗ , (L.7)

η =
5

16d2

√
mT

π

1

Ω(2,2)∗ , (L.8)

κ =
75

64d2

√
mT

π

1

Ω(2,2)∗ , (L.9)
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for monodisperse particles, where D is the diffusion coefficient. Let us com-
pare the results from the kinetic theory and those from the event-driven
MD simulation. We have performed the event-driven MD simulation for
N = 1, 250, L = 150d, λ = 2.5, and e = 1. Figure L.1 shows the compari-
son of the diffusion coefficient of a tracer particle with that obtained by the
kinetic theory with the aid of Eqs. (L.4) and (L.7), where the theoretical
prediction is inconsistent with the result of MD. From Fig. L.2, a snap-
shot of our simulation, we can find that some pairs of particles are forming
“molecules” which contain some particles within the range of the interac-
tions. This means that aggregation processes proceed as times goes on and
we cannot keep the system uniform even in the elastic limit e ≃ 1. The
existence of aggregation processes suggests that the initial state in which all
particles are out of the potential range is in a highly nonequilibrium situa-
tion. Moreover, it is hard to measure the kinetic temperature corresponding
to the kinetic energy because particles are accelerated in the potential well.
Therefore, we need to innovate the theoretical framework to treat such a
system by taking into account the aggregation processes for the description
of the diffusion process.

Figure L.1: The comparison between Ω(1,1)∗ by the kinetic theory and that
of the event-driven MD simulation for N = 1, 250, L = 150d, λ = 2.5, and
e = 1.
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Figure L.2: The snapshot of the event-driven MD simulation at t =
200(md2/ε)1/2 for N = 1, 250, L = 150d, λ = 2.5, and e = 1.
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[46] N. V. Brilliantov and T. Pöschel, “Kinetic Theory of Granular Gases”
(Oxford University Press, New York, 2004).
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