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What is string theory?
m The theory of strong interaction
m The theory of everything

m AdS/CFT: Logical completion of QFT
(incl. QCD, Condensed Matter Systems...)
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AdS/CFT correspondence

(Some) strongly coupled field theories have gravity duals [Maldacena]

m Conformal group SO(d,2) < AdSd+1
(Poincaré M,,,,, P,, Dilatation D, SCG K,)
Poincaré coordinates are

2

d
ds? = pQr]WdX"dx” + L;
1%
Dilatation is D : x* +— Ax*, p — p/A
] DiCtiOnary: [Gubser, Klebanov, Polyakov] [Witten]

<ef ¢>0(9> — ZAdS[(bO] ~ e~ Sl¢o]

Boundary conditions « states
Variation of boundary conditions < correlation functions
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L Introduction

L AdS/CFT

m Radial coordinate < energy scale (‘holographic renormalization’)

m A realisation of holographic principle

m Canonical example:
AdSs x S® in Type Il B string theory <+ N' =4 SYM in 4 dim
S50(4,2)conf x SO(6)g: isometries of the spacetime
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L AdS/CFT

A = g2, N: 't Hooft coupling
3 versions of AdS/CFT

m weak: large A

m strong: any finite A but N — oo and g5 = g%,M —0
(exact in o' but for small g5 only)

m strongest: any gs and N
(a/ and gs)
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Condensed matter applications of AdS/CFT

Application to QCD relatively successful
— why not Condensed Matter Theory?
m AdS/CFT in laboratory

m Strongly correlated systems near criticality in low dimensions
m Rich examples
m Good control

m A new computational tool in CMT
m Beyond perturbative field theory and lattice
m A new arena of string theory
m Typically, non-relativistic (A ~ (g — gc)"%,§ ~ (¢ — qc) ™)
mD:t— Nt x'— A
m NR AdS/CFT duality: limited technology — a new challenge
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L Ads/cMT

m Examples of condensed matter systems
m Superconductivity
m Superfluidity
m Quantum Hall systems

m AdS/CFT involves large N SYM.

m The AdS is realised by some other fields — CMT is assumed to
be a probe on a background geometry

m Supersymmetry — broken by finite T (7)

m Phenomenological approach — be maximally optimistic and use
as a computational tool

m Questions

m Phase transition, solitonic excitation (brane excitations)
m Especially, vortices play important roles in above examples
m ABJM: M-theory on AdS; x S7/Z <= CFT on M2-branes



Vortex solutions on membranes
I—Intmduction
L ads/cMT

Superfluidity in He
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*He phase diagram (left) and 3He phase diagram (right)

Source: Low Temperature Laboratory, TKK, Finland
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Vortices in 3He superfluidity

Pressure (MPa)
n
T
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A closer look at the low temperature 3He phase diagram (left) and
two types of vortices in the superfluid B phase (right)

Source: Low Temperature Laboratory, TKK, Finland
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L Ads/cMT

Our focus: vortex solutions on the CFT side.
Solitonic solutions in ABJM

m Abelian vortices (Jackiw-Lee-Weinberg type) and domain walls
[Arai, Montonen, Sasaki 2008]

m Non-abelian vortices [kim, Kim, Kwon, Nakajima 2009] [Auzzi, Kumar 2009]

m Abelian, non-relativistic vortices [Kawai, Sasaki 2009]
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The ABJM model

The ABJM mOde| [Aharony, Bergman, Jafferis, Maldacena (2008)]

Skt = [ oPx (i + £os - v - V),

b A A
oy = = [(0,21 (0" 2 + (D W) (0 W),
K un 2i 20, .
Les = A [AHBL,AX A AN = Audu Ay gA“A,,AX],
4x? B A A B A A 2
bos _ Bt A _ JA 1B _ 1B A A B
V3 = = Ter zlzh - 272[ 28 - wiPwy2* + ZAww ‘
» 2 - M ~ 12
+ | wiBwyw A — wirwwt — 2B wih L Wizl 2B,
167 2 A
bos BD AC
- 71&[ ae o+ [PCeppZBwez ‘ ]

1,2, A=3,4)

A, Ay - U(N) x U(N) gauge fields, and ZA, WA (A =
o A _
N, N) rep

- complex scalars in U(N) x U(N) bi-fundamental (
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L The ABJM model

Chern-Simons-matter theory on 241 dimensions

X1,...,X8

2+1dim

o
(22, wihy — (22, wih)

M-theory on AdS; x S /7
N,k — oo, A = & fixed ('t Hooft limit): IIA on AdS; x CP?
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L The ABJM model

We consider:

The ABJM model (Chern-Simons-matter theory)
| massive deformation

Mass-deformed ABJM
| non-relativistic limit

NR, mass-deformed ABJM
| solving BPS eqns

BPS vortex solutions
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A bigger picture:
ABJM CSm-th <——=> M-theory on AdS, x S”/Z,

Massive ABJM Fuzzy spheres

NR Massive ABJM NR

NR BPS vortices <::::> gravity dual of NR BPS vortices?
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Relativistic mass-deformed ABJM

Before taking the NR limit we take massive deformation
[Hosomichi, Lee3, Park 2008], [Gomis, Rodriguez-Gémez, Van Raamsdonk, Verlinde 2008]

- introducing a scale that is necessary for the solitonic solutions
Maximally supersymmetric (N = 6) massive deformation

m SO(8)r — SU(2) x SU(2) x U(1) x Zy

m The scalars acquire equal masses
The change of (the bos. part of) the Lanrangian:
0L = Tr| - mPZ} 2% — mwiAw,
+432 (ZAZ])? — (WHAW,)? — (Z] 2P + (Wa W)
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I—'I'he non-relativistic limit

The non-relativistic limit

Now we consider the NR |imit [Nakayama, Sakaguchi, Yoshida 2009], [Lee? 2009]
Write down the action with ¢ and & explicitly
Decompose: ZA = \/L (e i A e’%%*ﬂ etc.

(zA 5*A are non- relativistic scalar fields)
Keep the particle DoF (z# ,WTA) & drop the antiparticles
Send ¢, m — oo and look at the leading orders
The resulting (bos. part of the) Lagrangian:

< khc 2i 2i N
cNRibos DAy [A,LaVAA + ZALAVAN — AuA Ay — SALAL A

4 3 3

in n? 4
+Tr | — 1-th + th zj — —szAszj

2 A 2m A

in p i n? p

+Z (—WADtWTA + DzWTA . WA) — %waTAwa;‘

wh? A_f12 t_AN2 A2 +Ay2
+E {(z Zﬁ) 7(22\2 — (W wy)” + (wyw )} .
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I—'I'he non-relativistic limit

The equations of motion
m The scalar part: nonlinear Schrodinger equations

2 2
A h™ 2 A 27hT B4 A A+ B
iz — —(

I'hDrZA:——D z z,z" — 2z z"),
2m B B
A R 4 2mh? g A 3 5
inDewt? = — D?WTA + _(WTBWBWTA — WTAWBWTB).
2m km

m The gauge field part: Gauss-law constraints
m The fermionic part:

iRDep_ g +2mc® 545 — iheD_pyp =0,

iRD p +2mP 4, 5 — ihcDygp_p = 0.

(due to these NR Dirac eqns 1/2 of the fermionic DoF drop)
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Non-relativistic SUSY

Apply the same procedure of NR limit to SUSY trfn rules
— non-relativistic SUSY (super Schrodinger symmetry)
14 supercharges:

m 10 kinematical SUSY: (&, 35, @_zp, @ya8)
m 2 dynamical SUSY: (&_zz, @,a5)
m 2 conformal SUSY: (&35, €as)
SUSY parameters defined by
wag = il (1= 1.2,.6), w=ds (5 T ) 048 = (@1ap)" = 3AEPo op

Conformal SUSY ~ Special conformal charge x Dynamical SUSY
— I[K7 QD]
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The BPS equations

The Hamiltonian density (Noether charge of the time translation)
nete [ inAe s L, T‘\z—"—ﬁz{( Al = (] = (g + ()2 |
= o iz Py iw P zz, z,Zz w! T wy wiw .
Using Dy = D; +iD, and Bogomol'nyi completion = BPS bound:

2 N
E:/d2xH:/d2x Tr {h— ’D_ZA
2m

saturated by BPS equations

2 2 .12
2m

D_.A=0, D.w?=0,

Recall: zA and w'? are matrix-valued (N x N)
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I—'I'he BPS equations

The fUZZy 3—Sphere ansatz [Gomis, Rodriguez-Gémez, Van Raamsdonk, Verlinde 2008]

ZA(X) = wz(x)S’, WTA(X) = ¢W(x)5’,A,-(x) = a,-(x)SISIT,A;(x) = a;(x)S,TSI.

Here, ¢z, '(/JWy a; € C, (Sf)mn =vm— 13mp, (SQT)mn =vN - m5m+1,n
s' =s’sTs! —s'sis,
sf =sfs'si —sis'sf,
Trs's] =Trsfs' = Ny - 1).

Then the BPS eqns = the Jackiw-Pi vortex eqns [ackiw and Pi 1990]

(Dl — ID2)1/JZ(X) = 0, (Dl + I'D2)dJW(X) =0 (D, = 8,‘ + ia,-)

J-P eqns allow exact solutions
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The exact vortex solutions

(BPS 1), or

Finding solutions: A
Set WTA =0 & solve for z*, A; and A,
, A; and A; (BPS 1)

— 0 & solve for wi?

set z4
The radius of the fuzzy S* (in the case of BPS I)
2 / N-1 |’¢z|2
2 _ Azt _
R = NTM2 Tr {Z ZA} o TM2 m’

Tpo: the tension of an M2-brane
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L BPS vortex solutions

I—'I'he exact vortex solutions

The BPS | solutions

Changing the variables ¢,(x) = e®™pz(x), (0,p € R),
the BPS eqns become

1.
ai(x) = —0,0 + 56,‘]8" In p.

Using the Gauss law constraint
— Liouville equation V?Inp = —‘%rp,
solved by

p(x) = %w In(1+[£(2))

(f(z): a holomorphic function of z = x; + ixp)
0 is fixed by regularity of ¢, at z =10
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L BPS vortex solutions

I—E><amp|es
Choose a profile: f(z) = (2)", n€ Z, zp: a complex const; yielding

Examples
Examples of BPS I solutions
z
z
2 r 2(n—1)
p(x) = %% L&vz = —(n—1)argz = —(n — 1) arctan(xa/xy)
© 1 ()]
These are non-topological vortices since |¢),| — 0 as |z| — o0
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L Examples

Examples of BPS Il solutions

Setting z* = 0 we find similar solutions for w4:

Yu(x) = e’Mpi(x),

p) = eV (L [f(2)P).
0 = (n—1)arctan(xz/x1).
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L Preserved supersymmetry

Preserved supersymmetry

Check the SUSY trfns against the BPS eqns (in the BPS-I case)

The fermion transformation rules:

B B
Skpip = —wiag? > SkY_4=+w_z7 >
i B
Spp = *2mw,;\§D+Z ) Spy_5 =0,
B
S a ~ EagZ s Ssy_4 ~ 0.

Hence 5¢ =0= WA = W_ag —W_ig = fﬁé =0
This means that the BPS-I solutions break 5 kinematical, 1
dynamical and 1 conformal SUSYs (i.e. exactly 1/2).
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L Preserved supersymmetry

The BPS Il case is similar.
Summarising the results,

Type of Kinematical Dynamical Conformal
SUSY || wips | wiap | wonb | W as | @ as | winb | $as | Sas
BPS | O X O X X O X O
BPS 11 X O X O O X O X

Table: (): preserved, x: broken
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L Preserved supersymmetry

Summary of our solutions

m We find exact solutions of abelian vortices by solving BPS
equations in the non-relativistic ABJM model: Jackiw-Pi
combined with fuzzy 3-sphere

m These solutions preserve half of the super Schrodinger
symmetry

m Any relevance in real physics?

— more realistic, parity broken models with external fields
desirable.
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Vortex solutions in AdS

m Vortex line

m Pure AdS [Dehghani Ghezelbash Mann, 2001]
m AdS-Sch [pehghani Ghezelbash Mann, 2001]

m with boundary magnetic field
B [Albash Johnson 2009]
B [Montull Pomarol Silva 2009]
B [Maeda Natuume Okamura 2009]
m with vanishing magnetic field on the boundary

[Kerinen Keski-Vakkuri Nowling Yogendran 2009]
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I—Summary and comments

Unsorted list of problems

m Non-relativistic AdS/CFT exists at all?

m In 2 4+ 1 dim, spontaneous breaking of continuous symmetry is
not possible at finite temperature (Mermin-Wagner).
However, such a phase transition is found in holographic
superconductor. How do we interpret? Large N artefact?

m Berezinskii-Kosterlitz-Thouless transition in AdS?
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