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TESTING SUPERSYMMETRIC HIGGS INFLATION 
WITH NON-GAUSSIANITY



What is the particle physics behind inflation? 



Two approaches in inflationary model building

Top-down approach


String-, M- and F-theory cosmology


D-branes, Calabi-Yau, landscape... 


Bottom-up approach


Low energy spectrum (SM + extension)


Predictability & falsifiability


Higgs field can be the inflaton?



Higgs%inflation

SM%Higgs%boson:%mass%≈%125%GeV,%λ%≈%O(1)%

Chaotic%inflation:%m%≈%10¹³%GeV%or%λ%≈%10%⁻¹²%

How%can%ever%be%the%same%field?%

Nonminimal%coupling%to%gravity%[CervantesOCota,%Dehnen%1995]%
[Bezrukov%Shaposhnikov%2008]%

Non%canonical%kinetic%term%[Germani%Kehagias]%[Nakayama%

Takahashi]%[many%others]%

Other%curvature%perturbation%[Langlois%Vernizzi]%[many%others]%

Criticality%of%RG,%adOhoc%modification%beyond%cutoff%
[Hamada%et%al.]



Planck (2013)

0.936 0.944 0.952 0.960 0.968 0.976 0.984 0.992 1.000
Primordial Tilt (ns)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

T
en

so
r-

to
-S

ca
la

r
R
at

io
(r

) ConvexConcave

Planck+WP

Planck+WP+highL

Planck+WP+BAO

Natural Inflation

Power law inflation

SB SUSY

R2

V / �2

V / �2/3

V / �

V / �3

[arXiv: 1303.5062]

Higgs inflation



BICEP2 (2014) [arXiv: 1403.3985]

0.94 0.96 0.98 1.00
ns

0.0

0.1

0.2

0.3

0.4

r 0
.0

02

Planck+WP+highL

Planck+WP+highL+BICEP2

Higgs inflation



Confidence level (CL)

1σ: 68% 
2σ: 95% 
3σ: 99.7% 
4σ: 99.994% 
5σ: 99.99994%
in collider physics

5σ ≃ 50%
in cosmology



• The Standard Model is not a complete theory. 

• Not UV complete 

• No good dark matter candidate 

• Difficulty in baryogenesis 

• Hierarchy problem… 

• Perhaps, supersymmetry is still a good guiding 
principle in the physics beyond the SM



SUSY Higgs inflation
• A-term MSSM inflation — not 

favoured by observation 

• Non-minimally coupled Higgs 
inflation in NMSSM [Einhorn Jones 
2010] 

• Tachyonic instability problem 
[Ferrara Kallosh Linde Marrani Van 
Proeyen 2010] 

• Tachyonic instability removed by 
modifying Kähler [Ferrara Kallosh 
Linde Marrani Van Proeyen 2011] 

• Phenomenologically more natural 
realization of SUSY Higgs inflation 
[Arai, SK, Odaka 2011]

We will use this as an example of SUSY Higgs inflaiton



SUSY%Higgs%inflation%in%MSSM%+%NR

Superpotential

DOflat%direction

Kähler%potential

Seesaw%relation

Right&handed+neutrinos

controls+tachyonic+instability

yD%can%be%naturally%small

nonminimal+coupling+ξRφ²,+ξ+=γ⁄₄&⅙

[Arai, SK, Okada, arXiv:1112.2391, 1212.6828]
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Large enough υ ⟹ single field inflation



Prediction of the single-field model & BICEP2 (2014)

Seesaw%scale

Ne = 60, M = 103

! ⇠ = 3.70⇥ 10�3

Ne = 60, M = 106

! ⇠ = 0.949



TeV-scale seesaw
Type I seesaw: RH neutrinos 
production in collider 
negligible (singlet-doublet 
mixing too small) 

Type III seesaw: heavy lepton 
produced via EW 

M < 245 GeV already 
excluded (95% CL) by ATLAS 

14 TeV run: up to 750 GeV

[SK, Okada 1404.1450]



Prediction of the single-field model & BICEP2 (2014)

Seesaw%scale

Ne = 60, M = 103

! ⇠ = 3.70⇥ 10�3

Ne = 60, M = 106

! ⇠ = 0.949



Noncanonical (quartic) term in Kähler 
⟹ NR =0 
⟹ Single-field inflation

Purpose:  
investigate how the multi-field effects  

(e.g. non-Gaussianity) restricts Kähler potential  
of the underlying supergravity theory
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Inflaton trajectories 
(2-field SUSY Higgs inflation in SUSY seesaw)

• Seesaw mass M =1TeV, e-folding number N =60 
• hinit set by N =60 in the single field limit 
• Trajectory dep on the parameter υ and the init cond (sinit, ṡinit) 
• Once trajectory is fixed, observables can be computed

3

FIG. 1: The shape of the scalar potential V (�I) for M = 1 TeV and � = 0 (left), � = 0.055 (center), � = 0.1 (right).
The parameter ⇠ is fixed to ⇠ = 3.696 ⇥ 10�3 by the condition that in the single-field limit the amplitude of the curvature
perturbation corresponding to Ne = 60 e-folds is Planck-normalized As = 2.215 ⇥ 10�9 [2]. The red curves are the inflaton
trajectories with initial conditions s

init

= 0, ṡ
init

= 0 at h = h
init

= 21.99 (this value of h
init

corresponds to Ne = 60 e-folds
in the single-field limit); The initial value for ḣ is determined by the slow-roll equation of motion. On each panel the point
(s, h) = (0, 21.99) is marked with a black dot. On the left panel (� = 0), the flat regions on the sides represent negative V (�I)
which are considered unphysical. For small values of � a trajectory can reach the supersymmetric vacuum (s, h) = (0, 0) only
when the initial conditions are fine-tuned (s

init

= 1.617 ⇥ 10�11, ṡ
init

= 0 for the yellow dashed curve). For generic initial
conditions the inflaton will fall into either of the V (�I) < 0 regions (so does the red curve in the case of s

init

= 0, ṡ
init

= 0).
When � = 0.055 (center) the potential is stabilized in the s-field direction. The orange dotted curve that makes a mild turn
corresponds to s

init

= 1.0 ⇥ 10�5, ṡ
init

= 0. When � = 0.1 (right), the trajectories are more convergent. Two trajectories
[initial conditions (s

init

, ṡ
init

) = (0, 0) and (1.0⇥ 10�5, 0)] are shown, but they are almost indistinguishable.

by adding a right-handed neutrino superfield N c
R. Its

simplest version is described by the superpotential

W = W
MSSM

+
1

2
MN c

RN
c
R + yDN c

RLHu , (8)

where yD is the Dirac Yukawa coupling, M the seesaw
mass parameter and

W
MSSM

= µHuHd + yuu
cQHu + ydd

cQHd + yee
cLHd ,

(9)

with the MSSM superfields Q, uc, dc, L, ec, Hu and Hd.
In (9) µ is the MSSM µ-parameter and yu, yd, ye are the
Yukawa couplings. Assuming odd R-parity for N c

R, the
superpotential (8) preserves the R-parity. For generation
of the small nonvanishing (left-handed) neutrino masses
by the seesaw mechanism [42], the Dirac Yukawa coupling
yD and the right-handed neutrino mass M in (8) must
satisfy the seesaw relation

m⌫ =
y2DhHui2

M
, (10)

where m⌫ is the left-handed neutrino mass and hHui ⇡
174GeV is the Higgs vacuum expectation value at low
energies. Evaluating the neutrino mass bym2

⌫ = �m2

32

⇡
2.44⇥ 10�3 eV2 [43], we find

yD =

✓

M

6.13⇥ 1014 GeV

◆

1/2

. (11)

B. Higgs-lepton inflation

The HLI model assumes that slow-roll takes place
along the up type Higgs doublet-lepton doublet (L-Hu)

D-flat direction of the supersymmetric seesaw model.
Parametrizing this direction using a superfield ' as

L =
1p
2
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the superpotential becomes, ignoring Q, uc, dc, ec, and
Hd that do not play any role during inflation,

W =
1

2
MN c

RN
c
R +

1

2
yDN c

R'
2 . (13)

This is embedded in supergravity with the Kähler poten-
tial (in the superconformal framework) K = �3�, where
the real function � is chosen to be
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with �, � 2 R. The term proportional to � violates the
R-parity (which is benign [19]) and the one proportional
to � represents a higher dimensional term that controls
the inflaton trajectory. For simplicity, we consider only
one generation of the right-handed neutrino3 and take
yD to be real.
Introducing real scalar fields s and h by ' = 1p

2

h and

N c
R = 1p

2

s (here ' and N c
R are understood as the scalar

3 It is straightforward to extend this model to the phenomenolog-
ically realistic cases of 2 or 3 generations of the right-handed
neutrinos [19]

sinit

υ

red: sinit =0, yellow: sinit = 1.617×10⁻¹¹, orange: sinit = 10⁻⁵
ṡinit =0 in all cases

h(�s)2i ⇡ H2

(2⇡)2

quantum fluctuations



Single field or multi field?

SINGLE FIELD INFLATION MULTI FIELD INFLATION

BACKGROUND 
EVOLUTION Roll off simple potential Curved trajectory in n-

dimensional space

DOF OF 
FLUCTUATIONS

Scalar 1(=2+1-2)

Vector 2

Tensor 2

Scalar n (=2+n-2)

Vector 2

Tensor 2

EVOLUTION OF 
FLUCTUATIONS

Adiabatic, freeze outside 
the Hubble horizon

Adiabatic (curvature)

and


entropy (isocurvature)
NON-GAUSSIANITY 

OF SCALAR 
FLUCTUATIONS

Small Can be large
source



Scalar power spectrum As
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3. Kähler parameter dependence

Our Kähler potential (14) (see also (4)) includes two
tuneable parameters � and �. The former is determined
by ⇠ through (16). We vary � and investigate how the
observables change. Obviously, one can see from (4) that
there is no e↵ects of � when s = 0; in this case the
the model becomes the nonminimally coupled ��4 model
which we illustrated in Sec. II C. The e↵ects of � become
important when the inflaton trajectory deviates from s =
0.

As shown on the left panel of Fig. 1, for very small val-
ues of � the initial value for s needs to be fine-tuned to
some non-zero value in order for the inflaton trajectory
to reach the supersymmetric vacuum (s, h) = (0, 0) (we
see in the expression (17) that the potential V (�I) is not
symmetric in s; thus a trajectory with the initial con-
ditions s

init

= 0 and ṡ
inti

= 0 does not necessarily come
straight down to the supersymmetric vacuum). For larger
values of �, the potential is stabilized in the direction of
s and thus the danger of the trajectory falling into an un-
physical vacuum ceases to bother us. However, a curved
trajectory generally results in cosmological parameters
outside the observational constraints. For even larger
values of � the inflaton trajectory becomes insensitive
to the initial conditions and the prediction of the model
converges to that of single-field inflation. As we start
from the single-field limit (large enough �) that agrees
with observations and tune � to lower values, the predic-
tion of the model goes outside the observational bound
at some value of �. This transition takes place around
� ⇠ 0.0607, for the M = 1 TeV and Ne = 60 case that we
consider. While there may be islands in the parameter
space that are compatible with observations, the analysis
as prescribed above gives reasonable constraints on the
Kähler potential in the vicinity of the straight trajectory
background solutions.
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FIG. 5: The amplitude of the tensor perturbation At as a
function of �, for the initial conditions s

init

= 0, 1.0 ⇥ 10�7,
1.0 ⇥ 10�6 and 1.0 ⇥ 10�5. The initial conditions for ṡ

init

,
h
init

and ḣ
init

are the same as in Fig. 1. The tensor mode
does not interact outside the horizon and hence is insensitive
to the change of the background trajectory.

B. Numerical results for cosmological parameters

In this subsection we describe the behavior of cosmo-
logical parameters as the values of s

init

and � are varied.

1. Scalar power spectrum

The scalar power spectrum (42) may be written as

PS = As

✓

k

k
0

◆ns�1+

1
2

dns
d ln k ln

k
k0

+···
, (58)

where As is the normalized amplitude at the pivot scale
k = k

0

and ns is the scalar spectral index that will be
discussed later. This As is to be compared with the ob-
servational constraints [1]

As ⇥ 109 = 2.23± 0.16 (Planck),

= 2.196+0.051
�0.060 (Planck + WP), (59)

at k
0

= 0.05Mpc�1. In Fig. 3 we show our numerical
results for the scalar power spectrum (42). The panel on
the left shows the values of PS ⇡ As for di↵erent initial
conditions s

init

= 0, 1.0 ⇥ 10�7, 1.0 ⇥ 10�6, 1.0 ⇥ 10�5

and for the Kähler potential parameter 0.06  �  0.074.
We have chosen M = 1TeV and Ne = 60. The green-
shaded region indicates the Planck constrains of (59).
The right panel shows a contour plot in the s

init

-� plane.
The red-shaded color indicates the allowed parameter re-
gion within the Planck constraints (59).

We see that as the parameter � is tuned to a smaller
value, the predicted value of As will become larger and
go out of the observational bounds. For larger |s

init

|, the
constraints on � becomes tighter (the lower bound for
� becomes larger). This can be understood as an e↵ect
of the isocurvature mode: the curvature perturbation at
superhorizon scales is sourced by the isocurvature mode.
The conversion of power from the isocurvature mode to
the curvature mode takes place when the trajectory is
curved. As a consequence, the curvature perturbation
becomes larger at the end of inflation than at the horizon
exit, and this enhancement is more e�cient if the infla-
ton makes a sharp turn (i.e. for larger |s

init

|). Due to
the quantum fluctuations, uncertainty of�s

init

⇠ 10�5 is
expected. This means that fine-tuning of the initial con-
dition for s

init

to be less than 10�5 is unnatural. We thus
conclude that the constraints As = (2.23± 0.06)⇥ 10�9

(Planck) give � & 0.06767. The Planck + WP con-
straints As = 2.196(+0.051

�0.060)⇥ 10�9 give a tighter bound,
� & 0.06827.

2. Scalar bispectrum

Now we turn our attention to the nonlinearity param-
eter f

NL

. Since the main contribution comes from the
scale-independent part of the local-type bispectrum, we
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2. Scalar bispectrum

Now we turn our attention to the nonlinearity param-
eter f

NL

. Since the main contribution comes from the
scale-independent part of the local-type bispectrum, we
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the fact that the uniform energy density hypersurface is
equivalent to the constant Hubble hypersurface on the
super-horizon scales [21] (see also [33, 56]),

H('a(NF + ⇣(NF ))) = H(
(0)

'a(NF )) , (39)

where
(0)

'a are the background trajectories. Note that NF

is a uniform energy density hypersurface and we neglect
the later evolution of the curvature perturbations [21].

B. Cosmological observables

Using the backward formalism, one can compute var-
ious cosmological observables. Here we give the expres-
sions for the scalar and tensor power spectra, the scalar
and tensor spectral indices, the tensor-to-scalar ratio,
and the nonlinearity parameter [21–24, 53].

1. Power spectra

In momentum space the two-point correlator of the
curvature perturbation is written as

h⇣k1⇣k2i = (2⇡)3�3 (k
1

+ k
2

)P⇣(k). (40)

The power spectrum of the scalar perturbation is given
by

PS =
k3

2⇡2

P⇣(k), (41)

and in the �N -formalism it is expressed as [24, 55]

PS =

✓

H⇤
2⇡

◆

2

Aab
⇤ N⇤

aN
⇤
b . (42)

Similarly, the power spectrum of the tensor perturbation
is

PT =
k3

2⇡2

Ph(k), (43)

where Ph(k) is given by the two-point correlator of the
tensor perturbation

hhij(k1

)hij(k
2

)i = (2⇡)3�(k
1

+ k
2

)Ph(k). (44)

In the �N -formalism,

PT = 8

✓

H⇤
2⇡

◆

2

⇥

1� (1 + ↵)✏
⇤

⇤ , (45)

where ↵ ⌘ 2� ln 2� �EM ' 0.7296, with �EM ' 0.5772
the Euler-Mascheroni constant.

2. Spectral indices

The spectral index for the scalar perturbation is

ns � 1 =
D lnPS

d ln k
' D lnPS

dN
, (46)

where we used d ln k = d ln aH ' d ln a = dN to obtain
the last expression. Similarly, the tensor spectral index
is

nt =
D lnPT

d ln k
' D lnPT

dN
' �2✏� (1 + ↵)✏⌘

1� (1 + ↵)✏
. (47)

It is implicit that these quantities are evaluated at N =
N⇤.

3. Tensor-to-scalar ratio

The tensor-to-scalar ratio is defined by

r ⌘ PT

PS
, (48)

and using (42) and (45), we have

r = 8

⇥

1� (1 + ↵)✏
⇤

⇤
Aab

⇤ N⇤
aN

⇤
b

. (49)

4. Nonlinearity parameter

The nonlinearity parameter f
NL

is a measure of non-
Gaussianities in the primordial density fluctuations, de-
fined by the bispectrum, i.e. the three-point correlation
function of the curvature perturbation

h⇣k1⇣k2⇣k3i = (2⇡)3�3 (k
1

+ k
2

+ k
3

)B⇣(k1, k2, k3).
(50)

We will be focusing on the so-called local-type nonlinear-
ity parameter defined through the ratio of the bispectrum
and the power spectrum as

B⇣(k1, k2, k3) =
6

5
f local

NL

n

P⇣(k1)P⇣(k2) + 2 perms
o

.

(51)

The local-type non-Gaussianity is generated by nonlin-
ear interactions after the horizon exit [57–60]. There are
other types of non-Gaussian profiles that can be gener-
ated in di↵erent mechanisms (see e.g. [61]).
The local-type nonlinearity parameter f

NL

= f local

NL

(we
will omit ‘local’ hereafter) is conveniently computed us-
ing the �N -formalism [28] and its leading contribution
(the scale-independent part) is

f
NL

' f
(4)

NL

=
5

6

Aac
⇤ Abd

⇤ N⇤
cN

⇤
dN

⇤
ab

(Aab
⇤ N⇤

aN
⇤
b )

2

(52)

(the superscript ‘(4)’ denotes the the scale-independent
part in the convention of [62, 63]). Other (scale-
dependent) parts are subleading and will be neglected.
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sions for the scalar and tensor power spectra, the scalar
and tensor spectral indices, the tensor-to-scalar ratio,
and the nonlinearity parameter [21–24, 53].

1. Power spectra

In momentum space the two-point correlator of the
curvature perturbation is written as

h⇣k1⇣k2i = (2⇡)3�3 (k
1
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2

)P⇣(k). (40)

The power spectrum of the scalar perturbation is given
by

PS =
k3

2⇡2

P⇣(k), (41)

and in the �N -formalism it is expressed as [24, 55]
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is

PT =
k3

2⇡2

Ph(k), (43)
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tensor perturbation
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where ↵ ⌘ 2� ln 2� �EM ' 0.7296, with �EM ' 0.5772
the Euler-Mascheroni constant.

2. Spectral indices

The spectral index for the scalar perturbation is

ns � 1 =
D lnPS

d ln k
' D lnPS

dN
, (46)

where we used d ln k = d ln aH ' d ln a = dN to obtain
the last expression. Similarly, the tensor spectral index
is

nt =
D lnPT
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' D lnPT
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1� (1 + ↵)✏
. (47)

It is implicit that these quantities are evaluated at N =
N⇤.

3. Tensor-to-scalar ratio

The tensor-to-scalar ratio is defined by

r ⌘ PT
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, (48)

and using (42) and (45), we have

r = 8
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⇤ N⇤
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4. Nonlinearity parameter

The nonlinearity parameter f
NL

is a measure of non-
Gaussianities in the primordial density fluctuations, de-
fined by the bispectrum, i.e. the three-point correlation
function of the curvature perturbation

h⇣k1⇣k2⇣k3i = (2⇡)3�3 (k
1

+ k
2

+ k
3

)B⇣(k1, k2, k3).
(50)

We will be focusing on the so-called local-type nonlinear-
ity parameter defined through the ratio of the bispectrum
and the power spectrum as

B⇣(k1, k2, k3) =
6

5
f local

NL

n

P⇣(k1)P⇣(k2) + 2 perms
o

.

(51)

The local-type non-Gaussianity is generated by nonlin-
ear interactions after the horizon exit [57–60]. There are
other types of non-Gaussian profiles that can be gener-
ated in di↵erent mechanisms (see e.g. [61]).
The local-type nonlinearity parameter f

NL

= f local

NL

(we
will omit ‘local’ hereafter) is conveniently computed us-
ing the �N -formalism [28] and its leading contribution
(the scale-independent part) is

f
NL

' f
(4)

NL

=
5

6

Aac
⇤ Abd

⇤ N⇤
cN

⇤
dN

⇤
ab

(Aab
⇤ N⇤

aN
⇤
b )

2

(52)

(the superscript ‘(4)’ denotes the the scale-independent
part in the convention of [62, 63]). Other (scale-
dependent) parts are subleading and will be neglected.
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3. Kähler parameter dependence

Our Kähler potential (14) (see also (4)) includes two
tuneable parameters � and �. The former is determined
by ⇠ through (16). We vary � and investigate how the
observables change. Obviously, one can see from (4) that
there is no e↵ects of � when s = 0; in this case the
the model becomes the nonminimally coupled ��4 model
which we illustrated in Sec. II C. The e↵ects of � become
important when the inflaton trajectory deviates from s =
0.

As shown on the left panel of Fig. 1, for very small val-
ues of � the initial value for s needs to be fine-tuned to
some non-zero value in order for the inflaton trajectory
to reach the supersymmetric vacuum (s, h) = (0, 0) (we
see in the expression (17) that the potential V (�I) is not
symmetric in s; thus a trajectory with the initial con-
ditions s

init

= 0 and ṡ
inti

= 0 does not necessarily come
straight down to the supersymmetric vacuum). For larger
values of �, the potential is stabilized in the direction of
s and thus the danger of the trajectory falling into an un-
physical vacuum ceases to bother us. However, a curved
trajectory generally results in cosmological parameters
outside the observational constraints. For even larger
values of � the inflaton trajectory becomes insensitive
to the initial conditions and the prediction of the model
converges to that of single-field inflation. As we start
from the single-field limit (large enough �) that agrees
with observations and tune � to lower values, the predic-
tion of the model goes outside the observational bound
at some value of �. This transition takes place around
� ⇠ 0.0607, for the M = 1 TeV and Ne = 60 case that we
consider. While there may be islands in the parameter
space that are compatible with observations, the analysis
as prescribed above gives reasonable constraints on the
Kähler potential in the vicinity of the straight trajectory
background solutions.
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FIG. 5: The amplitude of the tensor perturbation At as a
function of �, for the initial conditions s

init

= 0, 1.0 ⇥ 10�7,
1.0 ⇥ 10�6 and 1.0 ⇥ 10�5. The initial conditions for ṡ

init

,
h
init

and ḣ
init

are the same as in Fig. 1. The tensor mode
does not interact outside the horizon and hence is insensitive
to the change of the background trajectory.

B. Numerical results for cosmological parameters

In this subsection we describe the behavior of cosmo-
logical parameters as the values of s

init

and � are varied.

1. Scalar power spectrum

The scalar power spectrum (42) may be written as

PS = As

✓

k

k
0

◆ns�1+

1
2

dns
d ln k ln

k
k0

+···
, (58)

where As is the normalized amplitude at the pivot scale
k = k

0

and ns is the scalar spectral index that will be
discussed later. This As is to be compared with the ob-
servational constraints [1]

As ⇥ 109 = 2.23± 0.16 (Planck),

= 2.196+0.051
�0.060 (Planck + WP), (59)

at k
0

= 0.05Mpc�1. In Fig. 3 we show our numerical
results for the scalar power spectrum (42). The panel on
the left shows the values of PS ⇡ As for di↵erent initial
conditions s

init

= 0, 1.0 ⇥ 10�7, 1.0 ⇥ 10�6, 1.0 ⇥ 10�5

and for the Kähler potential parameter 0.06  �  0.074.
We have chosen M = 1TeV and Ne = 60. The green-
shaded region indicates the Planck constrains of (59).
The right panel shows a contour plot in the s

init

-� plane.
The red-shaded color indicates the allowed parameter re-
gion within the Planck constraints (59).

We see that as the parameter � is tuned to a smaller
value, the predicted value of As will become larger and
go out of the observational bounds. For larger |s

init

|, the
constraints on � becomes tighter (the lower bound for
� becomes larger). This can be understood as an e↵ect
of the isocurvature mode: the curvature perturbation at
superhorizon scales is sourced by the isocurvature mode.
The conversion of power from the isocurvature mode to
the curvature mode takes place when the trajectory is
curved. As a consequence, the curvature perturbation
becomes larger at the end of inflation than at the horizon
exit, and this enhancement is more e�cient if the infla-
ton makes a sharp turn (i.e. for larger |s

init

|). Due to
the quantum fluctuations, uncertainty of�s

init

⇠ 10�5 is
expected. This means that fine-tuning of the initial con-
dition for s

init

to be less than 10�5 is unnatural. We thus
conclude that the constraints As = (2.23± 0.06)⇥ 10�9

(Planck) give � & 0.06767. The Planck + WP con-
straints As = 2.196(+0.051

�0.060)⇥ 10�9 give a tighter bound,
� & 0.06827.

2. Scalar bispectrum

Now we turn our attention to the nonlinearity param-
eter f

NL

. Since the main contribution comes from the
scale-independent part of the local-type bispectrum, we

• Observation (Planck 2013): 

h�si ⇡ H

2⇡
⇠ 10�5MPlQuantum fluctuations give

for the seesaw mass M =1TeV, e-folding number N =60
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the fact that the uniform energy density hypersurface is
equivalent to the constant Hubble hypersurface on the
super-horizon scales [21] (see also [33, 56]),

H('a(NF + ⇣(NF ))) = H(
(0)

'a(NF )) , (39)

where
(0)

'a are the background trajectories. Note that NF

is a uniform energy density hypersurface and we neglect
the later evolution of the curvature perturbations [21].

B. Cosmological observables

Using the backward formalism, one can compute var-
ious cosmological observables. Here we give the expres-
sions for the scalar and tensor power spectra, the scalar
and tensor spectral indices, the tensor-to-scalar ratio,
and the nonlinearity parameter [21–24, 53].

1. Power spectra

In momentum space the two-point correlator of the
curvature perturbation is written as

h⇣k1⇣k2i = (2⇡)3�3 (k
1

+ k
2

)P⇣(k). (40)

The power spectrum of the scalar perturbation is given
by

PS =
k3

2⇡2

P⇣(k), (41)

and in the �N -formalism it is expressed as [24, 55]

PS =

✓

H⇤
2⇡

◆

2

Aab
⇤ N⇤

aN
⇤
b . (42)

Similarly, the power spectrum of the tensor perturbation
is

PT =
k3

2⇡2

Ph(k), (43)

where Ph(k) is given by the two-point correlator of the
tensor perturbation

hhij(k1

)hij(k
2

)i = (2⇡)3�(k
1

+ k
2

)Ph(k). (44)

In the �N -formalism,

PT = 8

✓

H⇤
2⇡

◆

2

⇥

1� (1 + ↵)✏
⇤

⇤ , (45)

where ↵ ⌘ 2� ln 2� �EM ' 0.7296, with �EM ' 0.5772
the Euler-Mascheroni constant.

2. Spectral indices

The spectral index for the scalar perturbation is

ns � 1 =
D lnPS

d ln k
' D lnPS

dN
, (46)

where we used d ln k = d ln aH ' d ln a = dN to obtain
the last expression. Similarly, the tensor spectral index
is

nt =
D lnPT

d ln k
' D lnPT

dN
' �2✏� (1 + ↵)✏⌘

1� (1 + ↵)✏
. (47)

It is implicit that these quantities are evaluated at N =
N⇤.

3. Tensor-to-scalar ratio

The tensor-to-scalar ratio is defined by

r ⌘ PT

PS
, (48)

and using (42) and (45), we have

r = 8

⇥

1� (1 + ↵)✏
⇤

⇤
Aab

⇤ N⇤
aN

⇤
b

. (49)

4. Nonlinearity parameter

The nonlinearity parameter f
NL

is a measure of non-
Gaussianities in the primordial density fluctuations, de-
fined by the bispectrum, i.e. the three-point correlation
function of the curvature perturbation

h⇣k1⇣k2⇣k3i = (2⇡)3�3 (k
1

+ k
2

+ k
3

)B⇣(k1, k2, k3).
(50)

We will be focusing on the so-called local-type nonlinear-
ity parameter defined through the ratio of the bispectrum
and the power spectrum as

B⇣(k1, k2, k3) =
6

5
f local

NL

n

P⇣(k1)P⇣(k2) + 2 perms
o

.

(51)

The local-type non-Gaussianity is generated by nonlin-
ear interactions after the horizon exit [57–60]. There are
other types of non-Gaussian profiles that can be gener-
ated in di↵erent mechanisms (see e.g. [61]).
The local-type nonlinearity parameter f

NL

= f local

NL

(we
will omit ‘local’ hereafter) is conveniently computed us-
ing the �N -formalism [28] and its leading contribution
(the scale-independent part) is

f
NL

' f
(4)

NL

=
5

6

Aac
⇤ Abd

⇤ N⇤
cN

⇤
dN

⇤
ab

(Aab
⇤ N⇤

aN
⇤
b )

2

(52)

(the superscript ‘(4)’ denotes the the scale-independent
part in the convention of [62, 63]). Other (scale-
dependent) parts are subleading and will be neglected.
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(the superscript ‘(4)’ denotes the the scale-independent
part in the convention of [62, 63]). Other (scale-
dependent) parts are subleading and will be neglected.
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We investigate multi-field signatures of the nonminimally coupled supersymmetric Higgs inflation-
type cosmological scenario, focusing on the two-field Higgs-lepton inflation model as a concrete ex-
ample. This type of inflationary model is realized in a theory beyond the Standard Model embedded
in supergravity with a noncanonical Kähler potential. We employ the backward �N formalism to
compute cosmological observables, including the scalar and tensor power spectra, the spectral in-
dices, the tensor-to-scalar ratio and the local-type nonlinearity parameter. The trajectory of the
inflaton is controlled by the initial conditions of the inflaton as well as by the coe�cients in the Kähler
potential. We analyze the bispectrum of the primordial fluctuations when the inflaton trajectory de-
viates from a straight line, and obtain constraints on the noncanonical terms of the Kähler potential
using the Planck satellite data. Our analysis represents a concrete particle phenomenology-based
case study of inflation in which primordial non-Gaussianities can reveal aspects of supergravity.
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I. INTRODUCTION

In cosmology, the precision of measurements has dra-
matically improved in the last decade or so. The re-
cent Planck satellite experiments of the cosmic microwave
background (CMB), for example, indicate that the scalar
spectral index ns, the tensor-to-scalar ratio r and the
local-type nonlinearity parameter f local

NL

are in the fol-
lowing windows [1–3]:

ns = 0.9603± 0.0073 (68% C.L.),

r < 0.12 (95% C.L.),

f local

NL

= 2.7± 5.8 (68% C.L.). (1)

Eventually, these data are to be accounted for by a model
of the Universe based on, ideally, a well-motivated the-
ory of particle physics. The leading account of the early
Universe in agreement with present observational data
is inflationary cosmology, which emerged as a solution
to the flatness, horizon, and monopole problems of the
standard Big Bang cosmology. Currently, inflationary
model building is somewhat postmodernistic — there are
a plethora of toy models inspired by string theory and
M-theory, among others, and many of them can be ad-
justed to fit the data. Future observation could change
this situation, however, as measurements with increasing
accuracy are expected to put many models under pres-
sure.

In order to build a realistic cosmological scenario be-
yond inflationary toy models, supersymmetric extension
of the Standard Model provides a technically natural and
phenomenologically well-motivated framework. A consis-
tent scenario of cosmology needs to be compatible with

⇤Electronic address: kawai(AT)skku.edu
†Electronic address: kimjinsu(AT)skku.edu

physics at low energies, including particle phenomenol-
ogy at collider scales, and thus must incorporate the
Standard Model in some form. Moreover, if the energy
scale of inflation turns out to be as high as H ⇡ 1014

GeV (H is the Hubble parameter) as implied1 by the
BICEP2 experiments [7], it is plausible that supersym-
metry plays some role in the physics of inflation. Re-
cently there has been a keen interest in the Standard
Model Higgs inflation model [8, 9], in which the gravita-
tionally coupled Higgs field is identified as the inflaton.
A supersymmetric version of the Higgs inflation model
was implemented first in the next-to-minimal supersym-
metric Standard Model (NMSSM) [10–13]. Subsequently,
various other models — based on the supersymmetric
Pati-Salam model [14], the supersymmetric grand uni-
fied theory [15, 16], the supersymmetric B-L model [17]
and the supersymmetric seesaw model [18–20] — were
proposed. In contrast to the Standard Model Higgs in-
flation model, these supersymmetric models necessarily
involve multiple scalar fields participating in the dynam-
ics of inflation. The e↵ects of multiple fields, so far, have
not been studied in full detail, due to the complexities
pertaining to the larger degrees of freedom.

In this paper we discuss non-Gaussianities of the pri-
mordial fluctuations in these supersymmetric Higgs in-
flation models. It is well known that single-field inflation
typically predicts primordial fluctuations of Gaussian
spectrum; hence detection of sizeable non-Gaussianities
would be a strong evidence for multi-field inflation. Since
present observation of cosmological parameters is all con-
sistent with the prediction of single-field inflation [2], we
shall take a modest approach and start from a single-field
limit, that is, inflation with a straight inflaton trajectory.
We then analyze how the prediction for the bispectrum

1 Presuming that the observed B-mode polarization results from
the primordial tensor mode fluctuations. See also [4–6].
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3. Kähler parameter dependence

Our Kähler potential (14) (see also (4)) includes two
tuneable parameters � and �. The former is determined
by ⇠ through (16). We vary � and investigate how the
observables change. Obviously, one can see from (4) that
there is no e↵ects of � when s = 0; in this case the
the model becomes the nonminimally coupled ��4 model
which we illustrated in Sec. II C. The e↵ects of � become
important when the inflaton trajectory deviates from s =
0.

As shown on the left panel of Fig. 1, for very small val-
ues of � the initial value for s needs to be fine-tuned to
some non-zero value in order for the inflaton trajectory
to reach the supersymmetric vacuum (s, h) = (0, 0) (we
see in the expression (17) that the potential V (�I) is not
symmetric in s; thus a trajectory with the initial con-
ditions s

init

= 0 and ṡ
inti

= 0 does not necessarily come
straight down to the supersymmetric vacuum). For larger
values of �, the potential is stabilized in the direction of
s and thus the danger of the trajectory falling into an un-
physical vacuum ceases to bother us. However, a curved
trajectory generally results in cosmological parameters
outside the observational constraints. For even larger
values of � the inflaton trajectory becomes insensitive
to the initial conditions and the prediction of the model
converges to that of single-field inflation. As we start
from the single-field limit (large enough �) that agrees
with observations and tune � to lower values, the predic-
tion of the model goes outside the observational bound
at some value of �. This transition takes place around
� ⇠ 0.0607, for the M = 1 TeV and Ne = 60 case that we
consider. While there may be islands in the parameter
space that are compatible with observations, the analysis
as prescribed above gives reasonable constraints on the
Kähler potential in the vicinity of the straight trajectory
background solutions.
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FIG. 5: The amplitude of the tensor perturbation At as a
function of �, for the initial conditions s

init

= 0, 1.0 ⇥ 10�7,
1.0 ⇥ 10�6 and 1.0 ⇥ 10�5. The initial conditions for ṡ

init

,
h
init

and ḣ
init

are the same as in Fig. 1. The tensor mode
does not interact outside the horizon and hence is insensitive
to the change of the background trajectory.

B. Numerical results for cosmological parameters

In this subsection we describe the behavior of cosmo-
logical parameters as the values of s

init

and � are varied.

1. Scalar power spectrum

The scalar power spectrum (42) may be written as

PS = As

✓

k

k
0

◆ns�1+

1
2

dns
d ln k ln

k
k0

+···
, (58)

where As is the normalized amplitude at the pivot scale
k = k

0

and ns is the scalar spectral index that will be
discussed later. This As is to be compared with the ob-
servational constraints [1]

As ⇥ 109 = 2.23± 0.16 (Planck),

= 2.196+0.051
�0.060 (Planck + WP), (59)

at k
0

= 0.05Mpc�1. In Fig. 3 we show our numerical
results for the scalar power spectrum (42). The panel on
the left shows the values of PS ⇡ As for di↵erent initial
conditions s

init

= 0, 1.0 ⇥ 10�7, 1.0 ⇥ 10�6, 1.0 ⇥ 10�5

and for the Kähler potential parameter 0.06  �  0.074.
We have chosen M = 1TeV and Ne = 60. The green-
shaded region indicates the Planck constrains of (59).
The right panel shows a contour plot in the s

init

-� plane.
The red-shaded color indicates the allowed parameter re-
gion within the Planck constraints (59).

We see that as the parameter � is tuned to a smaller
value, the predicted value of As will become larger and
go out of the observational bounds. For larger |s

init

|, the
constraints on � becomes tighter (the lower bound for
� becomes larger). This can be understood as an e↵ect
of the isocurvature mode: the curvature perturbation at
superhorizon scales is sourced by the isocurvature mode.
The conversion of power from the isocurvature mode to
the curvature mode takes place when the trajectory is
curved. As a consequence, the curvature perturbation
becomes larger at the end of inflation than at the horizon
exit, and this enhancement is more e�cient if the infla-
ton makes a sharp turn (i.e. for larger |s

init

|). Due to
the quantum fluctuations, uncertainty of�s

init

⇠ 10�5 is
expected. This means that fine-tuning of the initial con-
dition for s

init

to be less than 10�5 is unnatural. We thus
conclude that the constraints As = (2.23± 0.06)⇥ 10�9

(Planck) give � & 0.06767. The Planck + WP con-
straints As = 2.196(+0.051

�0.060)⇥ 10�9 give a tighter bound,
� & 0.06827.

2. Scalar bispectrum

Now we turn our attention to the nonlinearity param-
eter f

NL

. Since the main contribution comes from the
scale-independent part of the local-type bispectrum, we
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I. INTRODUCTION

In cosmology, the precision of measurements has dra-
matically improved in the last decade or so. The re-
cent Planck satellite experiments of the cosmic microwave
background (CMB), for example, indicate that the scalar
spectral index ns, the tensor-to-scalar ratio r and the
local-type nonlinearity parameter f local

NL

are in the fol-
lowing windows [1–3]:

ns = 0.9603± 0.0073 (68% C.L.),

r < 0.12 (95% C.L.),

f local

NL

= 2.7± 5.8 (68% C.L.). (1)

Eventually, these data are to be accounted for by a model
of the Universe based on, ideally, a well-motivated the-
ory of particle physics. The leading account of the early
Universe in agreement with present observational data
is inflationary cosmology, which emerged as a solution
to the flatness, horizon, and monopole problems of the
standard Big Bang cosmology. Currently, inflationary
model building is somewhat postmodernistic — there are
a plethora of toy models inspired by string theory and
M-theory, among others, and many of them can be ad-
justed to fit the data. Future observation could change
this situation, however, as measurements with increasing
accuracy are expected to put many models under pres-
sure.

In order to build a realistic cosmological scenario be-
yond inflationary toy models, supersymmetric extension
of the Standard Model provides a technically natural and
phenomenologically well-motivated framework. A consis-
tent scenario of cosmology needs to be compatible with

⇤Electronic address: kawai(AT)skku.edu
†Electronic address: kimjinsu(AT)skku.edu

physics at low energies, including particle phenomenol-
ogy at collider scales, and thus must incorporate the
Standard Model in some form. Moreover, if the energy
scale of inflation turns out to be as high as H ⇡ 1014

GeV (H is the Hubble parameter) as implied1 by the
BICEP2 experiments [7], it is plausible that supersym-
metry plays some role in the physics of inflation. Re-
cently there has been a keen interest in the Standard
Model Higgs inflation model [8, 9], in which the gravita-
tionally coupled Higgs field is identified as the inflaton.
A supersymmetric version of the Higgs inflation model
was implemented first in the next-to-minimal supersym-
metric Standard Model (NMSSM) [10–13]. Subsequently,
various other models — based on the supersymmetric
Pati-Salam model [14], the supersymmetric grand uni-
fied theory [15, 16], the supersymmetric B-L model [17]
and the supersymmetric seesaw model [18–20] — were
proposed. In contrast to the Standard Model Higgs in-
flation model, these supersymmetric models necessarily
involve multiple scalar fields participating in the dynam-
ics of inflation. The e↵ects of multiple fields, so far, have
not been studied in full detail, due to the complexities
pertaining to the larger degrees of freedom.

In this paper we discuss non-Gaussianities of the pri-
mordial fluctuations in these supersymmetric Higgs in-
flation models. It is well known that single-field inflation
typically predicts primordial fluctuations of Gaussian
spectrum; hence detection of sizeable non-Gaussianities
would be a strong evidence for multi-field inflation. Since
present observation of cosmological parameters is all con-
sistent with the prediction of single-field inflation [2], we
shall take a modest approach and start from a single-field
limit, that is, inflation with a straight inflaton trajectory.
We then analyze how the prediction for the bispectrum

1 Presuming that the observed B-mode polarization results from
the primordial tensor mode fluctuations. See also [4–6].

• Observation (Planck 2013):
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I. INTRODUCTION

In cosmology, the precision of measurements has dra-
matically improved in the last decade or so. The re-
cent Planck satellite experiments of the cosmic microwave
background (CMB), for example, indicate that the scalar
spectral index ns, the tensor-to-scalar ratio r and the
local-type nonlinearity parameter f local

NL

are in the fol-
lowing windows [1–3]:

ns = 0.9603± 0.0073 (68% C.L.),

r < 0.12 (95% C.L.),

f local

NL

= 2.7± 5.8 (68% C.L.). (1)

Eventually, these data are to be accounted for by a model
of the Universe based on, ideally, a well-motivated the-
ory of particle physics. The leading account of the early
Universe in agreement with present observational data
is inflationary cosmology, which emerged as a solution
to the flatness, horizon, and monopole problems of the
standard Big Bang cosmology. Currently, inflationary
model building is somewhat postmodernistic — there are
a plethora of toy models inspired by string theory and
M-theory, among others, and many of them can be ad-
justed to fit the data. Future observation could change
this situation, however, as measurements with increasing
accuracy are expected to put many models under pres-
sure.

In order to build a realistic cosmological scenario be-
yond inflationary toy models, supersymmetric extension
of the Standard Model provides a technically natural and
phenomenologically well-motivated framework. A consis-
tent scenario of cosmology needs to be compatible with
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physics at low energies, including particle phenomenol-
ogy at collider scales, and thus must incorporate the
Standard Model in some form. Moreover, if the energy
scale of inflation turns out to be as high as H ⇡ 1014

GeV (H is the Hubble parameter) as implied1 by the
BICEP2 experiments [7], it is plausible that supersym-
metry plays some role in the physics of inflation. Re-
cently there has been a keen interest in the Standard
Model Higgs inflation model [8, 9], in which the gravita-
tionally coupled Higgs field is identified as the inflaton.
A supersymmetric version of the Higgs inflation model
was implemented first in the next-to-minimal supersym-
metric Standard Model (NMSSM) [10–13]. Subsequently,
various other models — based on the supersymmetric
Pati-Salam model [14], the supersymmetric grand uni-
fied theory [15, 16], the supersymmetric B-L model [17]
and the supersymmetric seesaw model [18–20] — were
proposed. In contrast to the Standard Model Higgs in-
flation model, these supersymmetric models necessarily
involve multiple scalar fields participating in the dynam-
ics of inflation. The e↵ects of multiple fields, so far, have
not been studied in full detail, due to the complexities
pertaining to the larger degrees of freedom.

In this paper we discuss non-Gaussianities of the pri-
mordial fluctuations in these supersymmetric Higgs in-
flation models. It is well known that single-field inflation
typically predicts primordial fluctuations of Gaussian
spectrum; hence detection of sizeable non-Gaussianities
would be a strong evidence for multi-field inflation. Since
present observation of cosmological parameters is all con-
sistent with the prediction of single-field inflation [2], we
shall take a modest approach and start from a single-field
limit, that is, inflation with a straight inflaton trajectory.
We then analyze how the prediction for the bispectrum

1 Presuming that the observed B-mode polarization results from
the primordial tensor mode fluctuations. See also [4–6].

As = (2.23± 0.16)⇥ 10�9 (68% C.L.),

3

FIG. 1: The shape of the scalar potential V (�I) for M = 1 TeV and � = 0 (left), � = 0.055 (center), � = 0.1 (right).
The parameter ⇠ is fixed to ⇠ = 3.696 ⇥ 10�3 by the condition that in the single-field limit the amplitude of the curvature
perturbation corresponding to Ne = 60 e-folds is Planck-normalized As = 2.215 ⇥ 10�9 [2]. The red curves are the inflaton
trajectories with initial conditions s

init

= 0, ṡ
init

= 0 at h = h
init

= 21.99 (this value of h
init

corresponds to Ne = 60 e-folds
in the single-field limit); The initial value for ḣ is determined by the slow-roll equation of motion. On each panel the point
(s, h) = (0, 21.99) is marked with a black dot. On the left panel (� = 0), the flat regions on the sides represent negative V (�I)
which are considered unphysical. For small values of � a trajectory can reach the supersymmetric vacuum (s, h) = (0, 0) only
when the initial conditions are fine-tuned (s

init

= 1.617 ⇥ 10�11, ṡ
init

= 0 for the yellow dashed curve). For generic initial
conditions the inflaton will fall into either of the V (�I) < 0 regions (so does the red curve in the case of s

init

= 0, ṡ
init

= 0).
When � = 0.055 (center) the potential is stabilized in the s-field direction. The orange dotted curve that makes a mild turn
corresponds to s

init

= 1.0 ⇥ 10�5, ṡ
init

= 0. When � = 0.1 (right), the trajectories are more convergent. Two trajectories
[initial conditions (s

init

, ṡ
init

) = (0, 0) and (1.0⇥ 10�5, 0)] are shown, but they are almost indistinguishable.

by adding a right-handed neutrino superfield N c
R. Its

simplest version is described by the superpotential

W = W
MSSM

+
1

2
MN c

RN
c
R + yDN c

RLHu , (8)

where yD is the Dirac Yukawa coupling, M the seesaw
mass parameter and

W
MSSM

= µHuHd + yuu
cQHu + ydd

cQHd + yee
cLHd ,

(9)

with the MSSM superfields Q, uc, dc, L, ec, Hu and Hd.
In (9) µ is the MSSM µ-parameter and yu, yd, ye are the
Yukawa couplings. Assuming odd R-parity for N c

R, the
superpotential (8) preserves the R-parity. For generation
of the small nonvanishing (left-handed) neutrino masses
by the seesaw mechanism [42], the Dirac Yukawa coupling
yD and the right-handed neutrino mass M in (8) must
satisfy the seesaw relation

m⌫ =
y2DhHui2

M
, (10)

where m⌫ is the left-handed neutrino mass and hHui ⇡
174GeV is the Higgs vacuum expectation value at low
energies. Evaluating the neutrino mass bym2

⌫ = �m2

32

⇡
2.44⇥ 10�3 eV2 [43], we find

yD =

✓

M

6.13⇥ 1014 GeV

◆

1/2

. (11)

B. Higgs-lepton inflation

The HLI model assumes that slow-roll takes place
along the up type Higgs doublet-lepton doublet (L-Hu)

D-flat direction of the supersymmetric seesaw model.
Parametrizing this direction using a superfield ' as

L =
1p
2

✓

'
0

◆

, Hu =
1p
2

✓

0
'

◆

, (12)

the superpotential becomes, ignoring Q, uc, dc, ec, and
Hd that do not play any role during inflation,

W =
1

2
MN c

RN
c
R +

1

2
yDN c

R'
2 . (13)

This is embedded in supergravity with the Kähler poten-
tial (in the superconformal framework) K = �3�, where
the real function � is chosen to be

� = 1� 1

3

�|N c
R|2 + |'|2�+ 1

4
�
�

'2 + c.c.
�

+
1

3
�|N c

R|4 ,
(14)

with �, � 2 R. The term proportional to � violates the
R-parity (which is benign [19]) and the one proportional
to � represents a higher dimensional term that controls
the inflaton trajectory. For simplicity, we consider only
one generation of the right-handed neutrino3 and take
yD to be real.
Introducing real scalar fields s and h by ' = 1p

2

h and

N c
R = 1p

2

s (here ' and N c
R are understood as the scalar

3 It is straightforward to extend this model to the phenomenolog-
ically realistic cases of 2 or 3 generations of the right-handed
neutrinos [19]

canonical terms

fixed by As
υ > 0.069 from fNL



Summary
• Inflaton can be anything, but it’s a good time to think 

about its origin in “beyond the Standard Model”. 

• Higgs inflation interesting. SUSY Higgs inflation more 
interesting. 

• Avoid the η problem: non-canonical Kähler potential 

• Multi-field signatures (e.g. non-Gaussianities) may be a 
clue to understand supergravity embedding of BSM. 

• Analysed a concrete model based on SUSY seesaw



Thank you for your attention.


