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Kepler's laws

The explanation on Kepler’s laws in the textbook is somewhat insufficient. I will show how

these laws arise from the equation of motion.

1 Ellipses

We consider an ellipse of semimajor axis a, semiminor axis b, half-distance between the
focuses c¢. Obviously, a? = b% + ¢2. The eccentricity is e = c/a. If we take one of the focuses

as the origin, the equation of the ellipse in the cartesian coordinates can be written as

(x+c)? v
- + =i 1. (1)
In polar coordinates, the ellipse is
l
— _ 2
"TTtecosd 2)

where £ = b?/a. These are related, as usual, by z = rcos and y = rsin 6.

2 The equation of motion

Let the mass of the heavier star (‘the sun’) M and that of the lighter star (‘the earth’) m.

The gravitational force exerted on the earth is

Mm
TTer, (3)

[ cosf
€r = < sin 6 > (4)

is a unit vector on the earth, pointing in the opposite direction to the sun. Also defining an

. ([ —sin6
€y = < cos 6 > ) (5)

it is easy to show that the differentials of these unit vectors are

F=-G

where

orthogonal unit vector

de, = Epdf,  dép = —&,do. (6)

( "; ) = ré,, (7)

the second law of Newton, with the force (3), is

As the position of the earth is
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Using (6), we have (the overdot denoting the time derivative <)

d2

@ré} = (¥ — r0°)E, + (270 + r0)éy. (9)
Then the equation of motion (8) becomes two equations,
M .
_Gﬁ =i —r6?, (10)
270 4 rf = 0. (11)

3 Kepler's 2nd law

Kepler’s 2nd law states that the radius vector of a planet (ré,.) sweeps equal area in unit

time. The equation (11) can be written as %(TQQ) = 0, meaning that

A =120, (12)

is a constant. Since A/2 = %7“29 is the area velocity, namely the area swept by the radius

vector of the planet in unit time, we have shown the 2nd law of Kepler.

4 Kepler's 1st law

The nasty-looking differential equation (10) can actually be solved easily if you introduce a

new variable ¢ = 1/r. Using (12),
dq_d(l)_ 1 dr Ldrdt 1

do — do =T aan - A (13)

r)  r2dd  r2dtdd A
and then
d?q 1dr 1.dt r? .

. el et ) 14
> ~ " Ado~  A'dp A2 (14)
Using this equation and (12), we can rewrite (10) as

d?q GM

-1 - =0. 1

T4 =0 (15)
This is a 2nd order differential equation for a harmonic oscillator. The solution is

GM
— = Bcos(0 + ¢), (16)

where B is the amplitude of the oscillator and ¢ is a phase (B and ¢ are the integration
constants). Choosing ¢ = 0 by shifting the origin of time ¢, we find
A2

1 GM
r=—-=—2r 17
q 1+‘g—£cos9 (17)

This is an ellipse in the polar coordinates (2), with

(18)

This shows Kepler’s 1st law.
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5 Kepler's 3rd law

The period of the orbital motion 7', is equal to the area of the ellipse divided by the area

swept by the radius vector in unit time, i.e.

mab
Using the first equation of (18), we have
42 2b2 472a3
2= T = T (20)

This shows Kepler’s 3rd law.

6 The mechanical energy of a planet

The mechanical energy (the sum of the kinetic and potential energy) of the planet can be

found as follows. The position of the planet is 7 = ré,. and hence the velocity is

dF  d dé, .
7= dit" - d—;é’,n —l—r% = 7€, + 10c,, (21)

where (6) has been used. Noticing that &, and €y are unit vectors which are orthogonal to

2

each other, we have v2 = 72 + 7262, Thus the sum of the kinetic and the potential energies is

GMm

= Sml(? 4 ) - (22)

2 r

This expression becomes simple when the planet is at the perihelion (r = a — ¢) or at the
aphelion (r = a + ¢), because there 7» = 0. Let us consider the perihelion case below. Using
A =120 (12) and A2 = B2GM/a (18), we find

mA? _ GMm B GMm

FE = =
272 r 2r2q

(b* — 2ra). (23)
Now using the geometry of the ellipse,

b —2ra=a®>—-c*—2(a—ca

= —(a —c)?

Hence




