Kepler's laws

The explanation on Kepler's laws in the textbook is somewhat insufficient. I will show how these laws arise from the equation of motion.

1 Ellipses

We consider an ellipse of semimajor axis a, semiminor axis b, half-distance between the focuses c. Obviously, $a^{2}=b^{2}+c^{2}$. The eccentricity is $e=c / a$. If we take one of the focuses as the origin, the equation of the ellipse in the cartesian coordinates can be written as

$$
\begin{equation*}
\frac{(x+c)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . \tag{1}
\end{equation*}
$$

In polar coordinates, the ellipse is

$$
\begin{equation*}
r=\frac{\ell}{1+e \cos \theta}, \tag{2}
\end{equation*}
$$

where $\ell=b^{2} / a$. These are related, as usual, by $x=r \cos \theta$ and $y=r \sin \theta$.

2 The equation of motion

Let the mass of the heavier star ('the sun') M and that of the lighter star ('the earth') m. The gravitational force exerted on the earth is

$$
\begin{equation*}
\vec{F}=-G \frac{M m}{r^{2}} \vec{e}_{r}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{e}_{r}=\binom{\cos \theta}{\sin \theta} \tag{4}
\end{equation*}
$$

is a unit vector on the earth, pointing in the opposite direction to the sun. Also defining an orthogonal unit vector

$$
\begin{equation*}
\vec{e}_{\theta}=\binom{-\sin \theta}{\cos \theta}, \tag{5}
\end{equation*}
$$

it is easy to show that the differentials of these unit vectors are

$$
\begin{equation*}
d \vec{e}_{r}=\vec{e}_{\theta} d \theta, \quad d \vec{e}_{\theta}=-\vec{e}_{r} d \theta . \tag{6}
\end{equation*}
$$

As the position of the earth is

$$
\begin{equation*}
\binom{x}{y}=r \vec{e}_{r}, \tag{7}
\end{equation*}
$$

the second law of Newton, with the force (3), is

$$
\begin{equation*}
-G \frac{M m}{r^{2}} \vec{e}_{r}=m \frac{d^{2}}{d t^{2}}\left(r \vec{e}_{r}\right) \tag{8}
\end{equation*}
$$

Using (6), we have (the overdot denoting the time derivative $\frac{d}{d t}$)

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} r \vec{e}_{r}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \vec{e}_{\theta} \tag{9}
\end{equation*}
$$

Then the equation of motion (8) becomes two equations,

$$
\begin{array}{r}
-G \frac{M}{r^{2}}=\ddot{r}-r \dot{\theta}^{2} \\
2 \dot{r} \dot{\theta}+r \ddot{\theta}=0 \tag{11}
\end{array}
$$

3 Kepler's 2nd law

Kepler's 2nd law states that the radius vector of a planet $\left(r \vec{e}_{r}\right)$ sweeps equal area in unit time. The equation (11) can be written as $\frac{d}{d t}\left(r^{2} \dot{\theta}\right)=0$, meaning that

$$
\begin{equation*}
A=r^{2} \dot{\theta} \tag{12}
\end{equation*}
$$

is a constant. Since $A / 2=\frac{1}{2} r^{2} \dot{\theta}$ is the area velocity, namely the area swept by the radius vector of the planet in unit time, we have shown the 2nd law of Kepler.

4 Kepler's 1st law

The nasty-looking differential equation (10) can actually be solved easily if you introduce a new variable $q \equiv 1 / r$. Using (12),

$$
\begin{equation*}
\frac{d q}{d \theta}=\frac{d}{d \theta}\left(\frac{1}{r}\right)=-\frac{1}{r^{2}} \frac{d r}{d \theta}=-\frac{1}{r^{2}} \frac{d r}{d t} \frac{d t}{d \theta}=-\frac{1}{A} \dot{r} \tag{13}
\end{equation*}
$$

and then

$$
\begin{equation*}
\frac{d^{2} q}{d \theta^{2}}=-\frac{1}{A} \frac{d \dot{r}}{d \theta}=-\frac{1}{A} \ddot{r} \frac{d t}{d \theta}=-\frac{r^{2}}{A^{2}} \ddot{r} \tag{14}
\end{equation*}
$$

Using this equation and (12), we can rewrite (10) as

$$
\begin{equation*}
\frac{d^{2} q}{d \theta^{2}}+q-\frac{G M}{A^{2}}=0 \tag{15}
\end{equation*}
$$

This is a 2 nd order differential equation for a harmonic oscillator. The solution is

$$
\begin{equation*}
q-\frac{G M}{A^{2}}=B \cos (\theta+\phi) \tag{16}
\end{equation*}
$$

where B is the amplitude of the oscillator and ϕ is a phase $(B$ and ϕ are the integration constants). Choosing $\phi=0$ by shifting the origin of time t, we find

$$
\begin{equation*}
r=\frac{1}{q}=\frac{\frac{A^{2}}{G M}}{1+\frac{A^{2} B}{G M} \cos \theta} \tag{17}
\end{equation*}
$$

This is an ellipse in the polar coordinates (2), with

$$
\begin{equation*}
\ell=\frac{b^{2}}{a}=\frac{A^{2}}{G M}, \quad e=\frac{c}{a}=\frac{A^{2} B}{G M} \tag{18}
\end{equation*}
$$

This shows Kepler's 1st law.

5 Kepler's 3rd law

The period of the orbital motion T, is equal to the area of the ellipse divided by the area swept by the radius vector in unit time, i.e.

$$
\begin{equation*}
T=\frac{\pi a b}{A / 2} . \tag{19}
\end{equation*}
$$

Using the first equation of (18), we have

$$
\begin{equation*}
T^{2}=\frac{4 \pi^{2} a^{2} b^{2}}{A^{2}}=\frac{4 \pi^{2} a^{3}}{G M} \propto a^{3} . \tag{20}
\end{equation*}
$$

This shows Kepler's 3rd law.

6 The mechanical energy of a planet

The mechanical energy (the sum of the kinetic and potential energy) of the planet can be found as follows. The position of the planet is $\vec{r}=r \vec{e}_{r}$ and hence the velocity is

$$
\begin{equation*}
\vec{v}=\frac{d \vec{r}}{d t}=\frac{d r}{d t} \vec{e}_{r}+r \frac{d \vec{e}_{r}}{d t}=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}, \tag{21}
\end{equation*}
$$

where (6) has been used. Noticing that \vec{e}_{r} and \vec{e}_{θ} are unit vectors which are orthogonal to each other, we have $v^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}$. Thus the sum of the kinetic and the potential energies is

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}-\frac{G M m}{r}=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{G M m}{r} . \tag{22}
\end{equation*}
$$

This expression becomes simple when the planet is at the perihelion $(r=a-c)$ or at the aphelion $(r=a+c)$, because there $\dot{r}=0$. Let us consider the perihelion case below. Using $A=r^{2} \dot{\theta}(12)$ and $A^{2}=b^{2} G M / a$ (18), we find

$$
\begin{equation*}
E=\frac{m A^{2}}{2 r^{2}}-\frac{G M m}{r}=\frac{G M m}{2 r^{2} a}\left(b^{2}-2 r a\right) . \tag{23}
\end{equation*}
$$

Now using the geometry of the ellipse,

$$
\begin{align*}
b^{2}-2 r a & =a^{2}-c^{2}-2(a-c) a \\
& =-(a-c)^{2} \\
& =-r^{2} \tag{24}
\end{align*}
$$

Hence

$$
\begin{equation*}
E=-\frac{G M m}{2 a} . \tag{25}
\end{equation*}
$$

