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Abstract

This thesis presents a study on a formal aspect of two-dimensional boundary conformal

field theory. We focus on a specific approach for finding boundary states and investigate

several unexplored models. This method was originally introduced by Cardy to identify

physical boundary conditions of conformal field theories by a purely mathematical manner.

We exploit the fact that the basis of boundary states may be constructed by Fock space

representations and try to reformulate the method from a Lagrangian point of view. We

consider two systems in particular. One is the so-called Coulomb-gas system, developed

by Dotsenko and Fateev, and the other is the symplectic fermion worked out by Kausch.

The Coulomb-gas systems provide a powerful tool to calculate correlation functions and it

is also advantageous because of its wide applicability. We develop a formalism to describe

boundary states of Coulomb-gas and show that it reproduces conventional results in A-series

Virasoro minimal models. The symplectic fermion is used to describe a model of logarithmic

conformal theory, called the triplet model at c = −2. We investigate the boundary states of

this model using free-fields and elucidate several novel features. In particular, we show the

existence of boundary states with consistent modular properties, which has not been known

for this class of theories.
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Chapter 1

Introduction

Before discussing the main subject of this thesis, namely, free-field representations of bound-

ary conformal field theory (BCFT) in c < 1 Virasoro minimal models and the c = −2 triplet

model, we review in this chapter some basic issues in conformal field theory (CFT) with

and without boundary. Regarding the vastness of the subject, this chapter is by no means

intended to give an overview of the whole development of the theory over the past decades.

Rather, we collect material needed for the following chapters and establish notation. We

start in the next section by discussing how boundary conformal field theory is used in string

theory and statistical physics. The second section deals with the geometry of our work

space, i.e. the two-dimensional real manifolds. In Sec.1.3 we review basic elements of CFT,

where modular invariance and the Coulomb-gas formalism are treated in detail. Finally in

Sec.1.4, we review basic ideas and techniques of boundary conformal field theory. Here and

throughout this thesis only CFTs in two-dimensions are considered.

1 Boundary conformal field theories in string theory and sta-

tistical physics

Conformal field theory finds its physical applications in string theory and in the study of

critical phenomena of statistical systems. As these applications motivate mathematical stud-

ies of CFT and they also facilitate intuitive understanding of what is happening, let us start

by describing examples where BCFT is employed.

String theory was originated in the study of quark confinement and is being studied as

1



1 Boundary conformal field theories in string theory and statistical physics 2

the most promising candidate for the unified theory of all fundamental interactions including

gravity. It is a quantum theory of relativistic one-dimensional objects (strings) propagating

in aD-dimensional space-time. Strings are described by a field theory on the two-dimensional

surface swept by the strings (world sheet), and the equivalence of different parametrisations

for the same embedding amounts to the conformal invariance of the field theory. Conformal

invariance at quantum level is ensured by the cancellation of the conformal anomaly, which

gives the critical dimensions D = 26 for bosonic strings and D = 10 for superstrings. The

anomaly cancellation also leads to the vanishing of the renormalisation group β-functions,

which gives the generalised Einstein equation in the lowest order perturbation in the Regge

slope parameter α′.

A boundary appears in the string theory as the end point of an open string. Apart from

periodic boundary condition which leads to closed strings, the Neumann condition is the only

possible boundary condition which is consistent with D-dimensional Poincaré invariance and

string equations of motion. The object satisfying this boundary condition is the open string

propagating freely at the speed of light. The Dirichlet boundary condition may also be

imposed if one relaxes the condition for Poincaré invariance. The end points of open strings

are then fixed to higher dimensional objects called D-branes, which are extremely important

for the study of non-perturbative aspects of string theory. The discovery of D-branes has

drastically changed the landscape of string theory. For example, the duality web relating

the different perturbative string theories and the unified picture of M-theory are all fruits of

this observation.

The conformal symmetry of statistical systems at criticality is attributed to the diver-

gence of the correlation length at a second-order critical point. The absence of a characteris-

tic length results in power-law scaling of correlation functions, and hence finding the power

(scaling dimension) is one of the main objectives in the study of such systems. Solvability of

two-dimensional statistical systems is closely related to conformal invariance. A landmark

work in this field is by Belavin, Polyakov and Zamolozchikov [1] in 1984, where a particularly

important class of CFTs called minimal models were studied, and it was shown that for such

models n-point correlation functions can be found analytically.

When a critical system has a boundary, which is always the case for realistic situations

since any sample of material has a finite size, the scaling laws near the boundary generally
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Figure 1.1: Schematic surface phase diagram of statistical systems with boundary. The
symbols O, E, SP and S in the figure stand for the ordinary, extraordinary, special and
surface transitions, respectively.

differ from the bulk. The purpose of BCFT is then to describe the system correctly in the

presence of the boundary, in particular to find scaling laws and correlation functions. The

phase diagram near criticality is schematically depicted in Fig.1.1 [2–4]. In a spin system,

X is the temperature T , Xc is the bulk critical temperature Tc,b, and Y = −1/λ where λ is

called the extrapolation length which measures the decay of the order parameter near the

boundary. In two dimensions, systems like the Ising model with free boundary conditions

can only have the ordinary surface transition since the one-dimensional free surface cannot

order independently of the bulk at a non-zero temperature without ordering fields. However,

the O(n) model with n < 1 is known to exhibit the critical behaviour as Fig.1.1 even in two

dimensions. Such behaviour is believed to be generic to statistical models in more than two

dimensions.

Analytical methods based on conformal invariance in the presence of boundary are quite

powerful and they are exploited to solve various problems involving more than simple bound-

aries. For example, the two-dimensional Ising model with a defect line is studied by folding

the Ising model along the defect line and mapping it to the Ashkin-Teller model [5, 6]. The
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crossing probability of the two-dimensional percolation is found analytically by considering

the 4-point function of boundary operators [7,8]. These analytic solutions are compared with

results obtained by other methods including numerical calculations, and have been shown to

be in excellent agreement.

2 Two-dimensional manifolds

In this section we review some basic facts about manifolds of real dimension two [9–12].

2.1 Topology of two-dimensional manifolds

Compact connected real two-dimensional manifolds Σ are known to be characterised by three

non-negative integers, namely the number of handles g, holes b, and crosscaps c added to a

sphere. The number g is called the genus of the surface. A hole introduces a boundary to

the surface (b stands for boundary). A crosscap is a hole with diametrically opposite points

identified, and its insertion makes a manifold unorientable. Crosscaps are important for the

construction of type I string theories. The three numbers (g, b, c) are slightly redundant

to specify the topology of Σ, since three crosscaps can be traded for one handle and one

crosscap. For example, a torus with a crosscap is written either as (g, b, c) = (0, 0, 3) or as

(g, b, c) = (1, 0, 1). Hence, the number of crosscaps may be restricted to be less than 3. In

this notation, a sphere is (g, b, c) = (0, 0, 0), a torus is (1, 0, 0), a disk is (0, 1, 0), a cylinder

is (0, 2, 0), a Möbius strip is (0, 1, 1), and a Klein bottle is (0, 0, 2). The Euler characteristic

is given by χ = 2− 2g − b− c.

Any compact, connected, oriented two-dimensional surface is topologically equivalent to

a sphere with handles and holes (no crosscaps), and is specified by two non-negative integers

g and b. If such an oriented manifold has no boundary, its topology is specified by the genus

g only. Such a surface is called a Riemann surface and has several nice properties, as is

discussed in the next subsection.

One may construct an oriented boundaryless manifold Σ̂ called the Schottky double asso-

ciated to a compact connected manifold Σ, by doubling the manifold except for the points on

the boundary. This doubling process proceeds in two steps: creating a mirror image of the

original manifold Σ by reflection σ, and then gluing the boundaries of Σ and its mirror image.

For example, the Schottky double of a disk (g, b, c) = (0, 1, 0) is a sphere (g, b, c) = (0, 0, 0),
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(a) Cylinder Σ. (b) Torus Σ̂.

Figure 1.2: An example of Schottky double. By doubling a cylinder Σ (a) except the bound-
aries, one may construct a torus Σ̂ (b) which is the Schottky double of Σ.

obtained by gluing the disk and its mirror image along their circumferences. Similarly, the

double of a cylinder (or an annulus) (0, 2, 0) is a torus (1, 0, 0), as shown in Fig.1.2. The

relation between the Euler characteristics of Σ and Σ̂ is χ(Σ̂) = 2χ(Σ), which holds in gen-

eral. The reflection σ creating a mirror image is an orientation-reversing involution (σ2 = 1).

Using this σ the original manifold Σ is written as the quotient Σ = Σ̂/σ. Boundaries of Σ

are fixed points of σ. If Σ is orientable and has no boundary, Σ̂ is just the total space of the

trivial orientation bundle, Σ̂ = Σ ⊗ Z2. Note that in any case Σ̂ is naturally oriented. The

idea of Schottky double is important in CFT because a full (non-chiral) CFT on a conformal

manifold is constructed from a chiral CFT on its double.

2.2 Riemann surfaces

A Riemann surface is a connected, analytic, orientable two-dimensional manifold without

boundaries. The Schottky double Σ̂ mentioned in the previous subsection is an example of

a Riemann surface. Such a manifold is paracompact, and possesses a holomorphic structure

(the charts take values on a complex plane and the transition functions are holomorphic).

In particular, a Riemann surface allows a metric gαβ(ζ) which is defined globally.

Using the metric one may define the complex structure tensor Jα
β as

Jα
β =

√
gεαγg

γβ , (1.1)

where g = det gαβ and εαβ is an antisymmetric tensor, εαβ = −εβα, ε12 = 1. The complex
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structure tensor has the properties,

Jα
βJβ

γ = −δγ
α, (1.2)

∇γJα
β = 0. (1.3)

The covariant derivative ∇α is defined by the metric gαβ(ζ). A Riemann surface is al-

ternatively defined as a two-dimensional connected oriented manifold Σ furnished with a

complex structure J . One can change the coordinate from ζα to (z, z̄) in accordance with

the Cauchy-Riemann equations,

Jα
β ∂z

∂ζβ
= i

∂z

∂ζα
, (1.4)

Jα
β ∂z̄

∂ζβ
= −i ∂z̄

∂ζα
. (1.5)

It is a special property of the two-dimensional manifolds that we can always choose a coor-

dinate which makes the metric locally conformally flat,

ds2 = gαβ(ζ)dζαdζβ = ρ(z, z̄)dzdz̄. (1.6)

Topological and geometrical aspects of manifolds are related by the Gauss-Bonnet theo-

rem. On a Riemann surface it reads

∫
d2x

√
gR = 4πχ, (1.7)

where R is the scalar curvature of the manifold (see App. A for our conventions). The Euler

characteristic is χ = 2− 2g in our case.

For any compact Riemann surface of genus g, there are 2g non-contractable independent

closed curves. We may choose a basis (called a canonical homology basis) of such cycles as

ai and bi (i = 1, 2, · · · , g), satisfying

g∏
i=1

aibia
−1
i b−1

i = 1. (1.8)
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The spin structure of a function on Σ is defined as the transformation properties around these

curves ai and bi. A function is said to have the spin structure (α,β), where α = (α1, · · · , αg),

β = (β1, · · · , βg) and 0 ≤ αi, βj < 1, if the function is multiplied with exp(2πiαi) around ai

and with exp(2πiβi) around bi.

2.3 Teichmüller and moduli spaces

For a given Riemann surface Σ, let Diff(Σ) be the group of all diffeomorphisms of Σ, and

Diff0(Σ) consist of the elements of Diff(Σ) homotopic to the identity map. One may define

the constant curvature slice Mconst for the Weyl transformation group in the space of all

metrics on Σ. The Teichmüller and moduli spaces are then defined by

Tg =
Mconst

Diff0(Σ)
, (1.9)

Mg =
Mconst

Diff(Σ)
, (1.10)

respectively. The subscript g stands for the genus. The group

Gg =
Diff(Σ)
Diff0(Σ)

, (1.11)

is called the mapping class group, with which the Teichmüller and the moduli spaces are

related as Mg = Tg/Gg. The dimensions of the Teichmüller and moduli spaces are

dim Tg = dimMg =


0, g = 0,

2, g = 1,

6g − 6, g ≥ 2.

(1.12)

For g = 1 (i.e. on the torus), the Teichmüller space is the upper half plane,

T1 = {τ ∈ C | Imτ > 0}, (1.13)

and τ is called the modular parameter. The action of the mapping class group G1 is
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PSL(2,Z),

G1 : τ 7→ aτ + b

cτ + d
, (1.14)

where a, b, c, d ∈ Z and ad− bc = 1. G1 is generated by S : τ → −1/τ and T : τ → τ + 1.

2.4 Theta functions

Functions defined on a closed manifold are conveniently expressed by some basis functions

which have some particular periodicity with respect to the periodic directions of the manifold

they inhabit. A simple example is functions defined on a circle, which, through the Fourier

transformation may be expressed using trigonometric functions. The functions which play

the role of trigonometric functions for the Riemann surfaces are Jacobi’s theta functions.

They have been studied extensively since the 19th century.

For a canonical homology basis ai, bi of a Riemann surface Σ, there exists a normalised

basis of holomorphic 1-forms ωi (i = 1, · · · , g) satisfying

∮
ai

ωj = δij , (1.15)

∮
bi

ωj = τij , (1.16)

where τij is a complex symmetric g×g matrix with positive definite imaginary part, called the

period matrix of the Riemann surface Σ. For g = 1 the period matrix is merely the modular

parameter τ . The Riemann theta function is defined using the period matrix τ = τij , as

ϑ(z, τ ) =
∑

n∈Zg

exp(iπniτijnj + 2πinizi), (1.17)

where z = (z1, · · · , zg), n = (n1, · · · , ng). This function has a simple transformation prop-

erty on shifting z by the lattice Zg + τZg,

ϑ(z + τn + m, τ ) = exp(−iπnτn− 2πinz)ϑ(z, τ ). (1.18)

That is, on the Riemann surface Σ it is single-valued up to a phase. Theta functions are
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solutions of the heat equation

(
4πi

∂

∂τij
+

∂2

∂zi∂zj

)
ϑ(z, τ ) = 0. (1.19)

Associated to the spin structure we may define the theta function with characteristics

(α,β), by

ϑ

 α

β

 (z, τ ) = exp(iπατα + 2πiα(z + β))ϑ(z + τα + β, τ ). (1.20)

Its transformation laws are

ϑ

 α

β

 (z + τn + m, τ ) = exp(−iπnτn− 2πin(z + β) + 2πimα)ϑ

 α

β

 (z, τ ), (1.21)

ϑ

 α + m

β + n

 (z, τ ) = exp(2πiαn)ϑ

 α

β

 (z, τ ). (1.22)

As is easily shown by the definition, we also have

ϑ

 α

β

 (−z, τ ) = (−1)4αβϑ

 α

β

 (z, τ ). (1.23)

The spin structure is called even (odd) if 4αβ is even (odd).

For g = 1 the theta functions (1.17), (1.20) reduce to

ϑ(z, τ) =
∑
n∈Zg

exp(iπn2τ + 2πinz). (1.24)

and

ϑ

 α

β

 (z, τ) = exp(iπα2τ + 2πiα(z + β))ϑ(z + τα+ β, τ), (1.25)
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respectively. They are commonly denoted as

ϑ

 0

0

 (z, τ) = θ3(z, τ), (1.26)

ϑ

 0

1/2

 (z, τ) = θ4(z, τ), (1.27)

ϑ

 1/2

0

 (z, τ) = θ2(z, τ), (1.28)

ϑ

 1/2

1/2

 (z, τ) = −θ1(z, τ). (1.29)

These theta functions at z = 0 are simply denoted as θ2(0, τ) = θ2(τ), θ3(0, τ) = θ3(τ),

θ4(0, τ) = θ4(τ). Note that θ1(0, τ) ≡ 0. We also use generalised theta functions at z = 0,

defined as

Θλ,µ(τ) =
∑
k∈Z

q(2µk+λ)2/4µ. (1.30)

In this notation,

θ2(τ) = 2Θ1,2(τ), (1.31)

θ3(τ) = Θ0,2(τ) + Θ2,2(τ), (1.32)

θ4(τ) = Θ0,2(τ)−Θ2,2(τ). (1.33)

Some formulas of theta functions are collected in App.A.

3 Two-dimensional conformal field theories

In this section we review some of the basics of the two-dimensional conformal field theory

without boundary [2, 9, 12–16]. We start by discussing the Virasoro algebra and primary

fields in the first subsection, and then in Subsec.1.3.3 we discuss modular invariance which

plays a central role throughout this thesis. In Subsec.1.3.5 we review the Coulomb-gas
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representation of CFT which is intended as the introduction of the discussions in Chap.2.

The only non-standard material is in Subsec.1.3.7, where we introduce logarithmic conformal

field theories whose behaviour in the presence of boundaries is the main topic of Chap.3.

3.1 Conformal invariance and Virasoro algebra

The central object in a two-dimensional CFT is the energy-momentum tensor Tµν . In a

free-field theory it is obtained by the variation of the action,

Tµν = −2
δS
δgµν

. (1.34)

However, we do not assume the existence of an action but start from Tµν itself. The energy-

momentum tensor satisfies the conservation law

∇µTµν = 0, (1.35)

and due to local scale invariance it is traceless,

Tµ
µ = 0. (1.36)

Choosing a conformal gauge gµν(z1, z2) = ρ(z1, z2)δµν and introducing complex coor-

dinates z = z1 + iz2, z̄ = z1 − iz2 (see App.A), the energy-momentum tensor splits

into its holomorphic and antiholomorphic parts, T ≡ −2πTzz = π(T22 − T11 + 2iT12)/2,

T̄ ≡ −2πTz̄z̄ = π(T22− T11− 2iT12)/2. As the holomorphic and antiholomorphic parts of an

operator are treated on equal footing, we often write the holomorphic part only.

The operator product expansion (OPE) of T (z) with itself is

T (z)T (w) =
c/2

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

+ · · · . (1.37)

Here, c is called the central charge and the dots represent the terms regular in the limit

z → w. Such an OPE should be understood as an identity which holds when inserted into

arbitrary correlation functions.
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Primary fields are the fields in the theory which transform as tensors of weight (h, h̄),

Φ′
(h,h̄)(w(z), w̄(z̄)) =

(
dw

dz

)−h(dw̄
dz̄

)−h̄

Φ(h,h̄)(z, z̄), (1.38)

under conformal transformations z → w(z), z̄ → w̄(z̄). The scaling powers (h, h̄) are called

the conformal dimensions of the primary field. The OPE of the energy-momentum tensor

and a primary field takes the form

T (z)φ(h)(w) =
hφ(h)(w)
(z − w)2

+
∂φ(h)(w)
z − w

+ · · · . (1.39)

The fields which are not primary are called secondary or descendant, and are obtained from

primary fields by taking the OPE with the energy-momentum tensor.

The Laurent mode operators Lm of the energy-momentum tensor are called Virasoro

operators. They are defined by

T (z) =
∑
m∈Z

Lmz
−m−2, (1.40)

Lm =
1

2πi

∮
dzzm+1T (z), (1.41)

and the OPE (1.37) yields the Virasoro algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, (1.42)

[Ln, L̄m] = 0, (1.43)

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0. (1.44)

The subset {L−1, L0, L1} generates global conformal (or Möbius) transformations, consisting

of translations, dilatations, rotations and special conformal transformations.

Using the Virasoro operators the OPE (1.39) becomes

[Lm, φ(h)(z)] = (m+ 1)zmhφ(h)(z) + zm+1∂φ(h)(z). (1.45)

If this equation holds for m = −1, 0, 1, then φ(h)(z) is said to be quasi-primary. Obviously,
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primary fields are quasi-primary but quasi-primary fields are not necessarily primary. An

example of fields that are quasi-primary but not primary is the energy-momentum tensor

T (z). On the z-plane the Laurent mode expansion of a (quasi-) primary field is defined as

φ(h)(z) =
∑
n∈Z

φnz
−n−h. (1.46)

Using the modes φn, (1.45) is written as

[Lm, φn] = (hm−m− n)φm+n. (1.47)

The OPE of two primary fields is a linear sum of primary and descendant fields,

φi(z)φj(w) =
∑

k

Cij
k(z − w)hk−hi−hjφk(w) + (descendants). (1.48)

Due to the conformal invariance, 2-point functions 〈φi(z)φj(w)〉 vanish if the conformal

dimensions of the two fields differ. Then they may be normalised as

〈φi(z)φj(w)〉 =
δij

(z − w)2hi
. (1.49)

Similarly, the conformal invariance restricts the form of 3-point functions to be

〈φi(zi)φj(zj)φk(zk)〉 =
Cijk

z
hi+hj−hk

ij z
hj+hk−hi

jk z
hk+hi−hj

ki

, (1.50)

where zij = zi − zj , and the coupling constant Cijk is the same as the OPE coefficient

appearing in (1.48). The conformal invariance does not fix the forms of n-point functions

with n ≥ 4, leaving the dependence on anharmonic ratios undetermined. However, once we

know the 3-point coefficients Cijk any n-point function is obtained by repeated use of the OPE

(1.48) within the correlators. CFT is therefore completely characterised by the central charge

c, the conformal dimensions hi of primary fields φi, and the three-point coefficients Cijk
1.

One may find Cijk from n-point functions, with some assumptions (existence of conformal

1The above discussion only applies to conventional CFTs where the OPEs are in the power-law form
(1.48); for logarithmic CFTs, OPEs are modified as in (1.170).
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blocks and crossing symmetry). Such a programme is called the conformal bootstrap.

An important concept related to Cijk is fusion. Because of conformal invariance the

descendant terms on the right hand side of the chiral OPE (1.48) factorise into conformal

families associated with their primary fields. Then the OPE schematically takes the form,

[φi]× [φj ] =
∑

k

Nij
k[φk]. (1.51)

The entries of the matrix Nij
k are non-negative integers, indicating the multiplicities of [φk]

occurring as a result of the fusion [φi]× [φj ]. The fusion rule comprises a commutative and

associative algebra among the chiral components of primary operators. A fusion coefficient

Nij
k is non-zero if and only if Cij

k is non-zero. This property is called naturality.

The Hilbert space of a CFT is built on the vacuum |0〉 which is a singlet under the Möbius

transformation. States |φ〉 in the Hilbert space and fields φ(z, z̄) are related by a one-to-one

correspondence,

|φ〉 = lim
z,z̄→0

φ(z, z̄)|0〉. (1.52)

Among these states there exist states called highest weight states |h, c〉 characterised by the

properties,

L0|h, c〉 = h|h, c〉, (1.53)

Ln|h, c〉 = 0, n > 0. (1.54)

The highest weight states are the states associated with primary fields through the operator-

state correspondence (1.52). Descendants of a highest weight states |h, c〉 are obtained from

|h, c〉 as

L−k1L−k2 · · ·L−km |h, c〉, ki > 0, (1.55)

and the set of states associated with a conformal family (h, c),

M(h, c) = {L−k1L−k2 · · ·L−km |h, c〉 ; k1 ≥ k2 ≥ · · · ≥ km > 0}, (1.56)
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is called the Verma module. The Verma module splits into L0-eigenspaces,

M(h, c) =
⊕
n≥0

M(h, c)n, (1.57)

M(h, c)n = {v ∈M(h, c) ; L0v = (h+ n)v}. (1.58)

Such an eigenspace M(h, c)n is spanned by the basis states

L−k1L−k2 · · ·L−km |h, c〉,
m∑

i=1

ki = n, k1 ≥ k2 ≥ · · · ≥ km > 0. (1.59)

The determinant of the inner-product matrix M̂(h, c)n of the basis vectors of M(h, c)n is

called the Kac determinant, and is given by

det M̂(h, c)n =
n∏

k=1

∏
rs=k

(h− hr,s(c))p(n−k), (1.60)

with

hr,s(c) =
1
48

[
(13− c)(r2 + s2)− 24rs− 2(1− c) + (r2 − s2)

√
(1− c)(25− c)

]
. (1.61)

Here, r and s are positive integers and p(n) is Euler’s partition function, the number of ways

to partition n into positive integers.

Now we are in a position to discuss reducibility and unitarity of CFT. The Verma module

is called reducible if it contains invariant subspaces. The zeros of the Kac determinant

correspond to the null-states v ∈ M(h, c), which are orthogonal to every state in M(h, c)

and hence decouple from the theory. Such null-states form an invariant subspace I(h, c).

One can thus find whether the Verma module is reducible or irreducible by analysing the

Kac determinant. Verma modules with c > 1 and h > 0 are easily seen to be irreducible.

If a Verma module is reducible, one may construct a coset highest weight module L(h, c) =

M(h, c)/I(h, c) which is irreducible.

A highest weight module L(h, c) is called unitary if all the states in L(h, c) have positive
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norm. It has been shown that unitary irreducible highest weight modules occur when

c ≥ 1, h ≥ 0, (1.62)

or when

c = 1− 6
m(m+ 1)

, hr,s =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
, (1.63)

where m, r, s ∈ Z and m ≥ 2, 0 < r < m, 0 < s < m+ 1. The CFTs of the first case (1.62)

are accompanied by extra symmetry other than the conformal symmetry. The series of the

second case (1.63) are called the unitary Virasoro minimal models, which are associated with

critical systems in statistical physics. The first few examples are, m = 3 (c = 1/2): Ising

model, m = 4 (c = 7/10): tricritical Ising model, m = 5 (c = 4/5): tetracritical Ising model,

and so on.

If non-unitarity is allowed, we may consider the so-called Virasoro minimal models (often

called simply minimal models) M(p, p′), characterised by two co-prime positive integers p

and p′ (we accept the convention p > p′ ≥ 2). In these models, the operator algebra truncates

due to the existence of the singular vectors, and the fusion rule closes for a finite number

of Virasoro representations. The central charge and the conformal weights of the operator

content are given by the Kac formula,

c = 1− 6
(p− p′)2

pp′
, (1.64)

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
, (1.65)

where 1 ≤ r ≤ p′ and 1 ≤ s ≤ p. Because of the symmetry

hr,s = hp′−r,p−s, (1.66)

the operators φr,s and φp′−r,p−s are identified. The explicit form of the fusion rules for these

operators is

[φr,s]× [φm,n] =
kmax∑

k=1+|r−m|,
k+r+m=1 mod 2.

lmax∑
l=1+|s−n|,

l+s+n=1 mod 2.

[φk,l], (1.67)
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with

kmax = min(r +m− 1, 2p′ − 1− r −m), (1.68)

lmax = min(s+ n− 1, 2p− 1− s− n). (1.69)

3.2 Free CFTs

Among CFTs other than the Virasoro minimal series, particularly simple but nevertheless

significant classes of CFTs are those realised by free bosons, fermions, and ghosts. In the

following we discuss them briefly in this order.

Free bosons

The CFT of a free massless boson is realised by the action

S =
1
8π

∫
d2x

√
g∂µΦ∂µΦ. (1.70)

The 2-point correlation function of the bosons are

〈Φ(z, z̄)Φ(w, w̄)〉 = − ln(z − w)− ln(z̄ − w̄), (1.71)

indicating that Φ itself is not primary. The derivatives of the boson,

∂ϕ(z) ≡ ∂Φ(z, z̄)
∂z

, (1.72)

∂̄ϕ̄(z̄) =
∂Φ(z, z̄)
∂z̄

, (1.73)

are respectively holomorphic and antiholomorphic functions due to the equation of motion

∇2Φ = 0. Differentiating (1.71), we find

〈∂ϕ(z)∂ϕ(w)〉 = − 1
(z − w)2

, (1.74)

〈∂̄ϕ̄(z̄)∂̄ϕ̄(w̄)〉 = − 1
(z̄ − w̄)2

. (1.75)
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The OPE of ∂ϕ with itself is now seen to be

∂ϕ(z)∂ϕ(w) = − 1
(z − w)2

· · · , (1.76)

where the dots indicate regular terms.

The energy-momentum tensor of this system is

T (z) = −1
2

: ∂ϕ(z)∂ϕ(z) :, (1.77)

which is obtained from the action. The OPE of T (z) with ∂ϕ(z) is

T (z)∂ϕ(w) =
∂ϕ(w)

(z − w)2
+
∂2ϕ(w)
z − w

+ · · · , (1.78)

and thus ∂ϕ(z) is a primary field of conformal dimension 1. The central charge of this system

is c = 1, which is read off from the OPE of T (z) with itself. The vertex operators defined

by Vα(z, z̄) =: ei
√

2αΦ(z,z̄) : are also primary. The conformal dimension of Vα(z, z̄) is α2. The

OPE among themselves is

Vα(z, z̄)Vβ(w, w̄) = |z − w|4αβVα+β(w, w̄) + · · · . (1.79)

Free fermions

The action of a free Majorana fermion in 2-dimensional Euclidean space is written as

S =
1
2π

∫
d2x

√
g(ψ̄∂ψ̄ + ψ∂̄ψ), (1.80)

where ψ(z, z̄) and ψ̄(z, z̄) have correlators

〈ψ(z, z̄)ψ(w, w̄)〉 =
1

z − w
, (1.81)

〈ψ̄(z, z̄)ψ̄(w, w̄)〉 =
1

z̄ − w̄
, (1.82)

〈ψ(z, z̄)ψ̄(w, w̄)〉 = 0. (1.83)
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Thus one may say that the holomorphic and antiholomorphic parts decouple. The OPE of

ψ with itself is

ψ(z)ψ(w) =
1

z − w
+ · · · . (1.84)

The energy-momentum tensor is

T (z) = −1
2

: ψ(z)∂ψ(z) :, (1.85)

and calculating the OPEs, the central charge of the system and the conformal dimension of

ψ are shown to be c = 1/2 and h = 1/2.

Fermionic and bosonic ghosts

Generalised fermionic and bosonic ghosts are called bc and βγ systems, respectively2. They

follow from the same form of the action,

S =
1
π

∫
d2x

√
g(b̃∂̄c̃+ ¯̃

b∂ ¯̃c), (1.86)

where b̃ = b and c̃ = c for the anticommuting case (ε = 1), and b̃ = β and c̃ = γ for the

commuting case (ε = −1). They have the OPEs,

c̃(z)b̃(w) =
1

z − w
+ · · · , b̃(z)c̃(w) =

ε

z − w
+ · · · . (1.87)

The energy-momentum tensor is

T (z) = (1− λ) : ∂b̃(z)c̃(z) : −λ : b̃(z)∂c̃(z) :, (1.88)

where the parameter λ comes from the freedom to add a total derivative term to the La-

grangian. The central charge then becomes

c = −2ε(6λ2 − 6λ+ 1), (1.89)
2Needless to say, c of bc is not the central charge.
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and the dimensions of b̃(z) and c̃(z) are found to be

hb̃ = λ, hc̃ = 1− λ. (1.90)

The bc theory (ε = 1) with λ = 1/2 is the complex fermion with the central charge

c = 1. The Faddeev-Popov ghosts arising in the gauge-fixing of (super) strings are realised

by (ε, λ) = (1, 2) and (ε, λ) = (−1, 3/2). The case (ε, λ) = (1, 0) describes the simple ghost

system, which is related to the symplectic fermions discussed in Chap.3.

3.3 Modular invariance

CFTs are not restricted to the plane, but are extendible to manifolds of more general topolo-

gies. Theories defined on the torus are the simplest of such generalisations, but reveal amaz-

ingly rich structures of CFT.

As is mentioned in Subsec.1.2.3, a torus is characterised by the modular parameter τ =

τ1 + iτ2 with τ2 > 0. The key object which plays a central role in the study of CFT on the

torus is the character, which is a function of τ . For the highest weight representation V of

the Virasoro algebra, the Virasoro character χV(q) is defined by

χV(q) = TrVqL0−c/24, (1.91)

where

q = e2πiτ . (1.92)

In particular, the character of the Verma module M(h, c) becomes

χM(h,c)(q) =
qh−c/24∏∞

n=1(1− qn)
. (1.93)

The characters for representations (r, s) in the M(p, p′) Virasoro minimal models are found

by Rocha-Caridi [17], as

χ(r,s) =
1

η(τ)
(Θpr−p′s,pp′(τ)−Θpr+p′s,pp′(τ)), (1.94)
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where the theta functions are defined as (1.30).

The partition function of CFT on the torus is defined as a function of τ by

Z(τ) = Tre−τ2He−τ1P

= Tr(qL0−c/24q̄L̄0−c/24), (1.95)

where H = 2π(L0+L̄0−c/12) and P = 2πi(L0−L̄0) are the Hamiltonian and the momentum

operators, respectively. As a consequence of conformal invariance which splits the Hilbert

space of the CFT into modules associated to irreducible representations of the Virasoro

algebra, the torus partition function is written as

Z(τ) =
∑
h,h̄

Nh,h̄χh(q)χ̄h̄(q̄), (1.96)

where χh(q) is the character of the irreducible Virasoro representation with highest weight

h, and χ̄h̄(q̄) is its antiholomorphic counterpart. The entries of the multiplicity matrix Nh,h̄

are non-negative integers and the uniqueness of the vacuum implies N0,0̄ = 1.

As the torus partition function is a physical object (zero-point function on the torus), it

must be invariant under the modular transformations S and T (defined in Subsec.1.2.3) under

which the shape of the torus is unchanged. This condition imposes a stringent constraint on

the CFT. Once a set of irreducible modules are specified, the classification of rational CFTs

boils down to finding the matrix Nh,h̄ which keeps the modular invariance and satisfies the

condition N0,0̄ = 1. For unitary Virasoro minimal models this classification (called ADE-

classification after the associated simply-laced Lie algebra) was done in [18–21]. A modern

proof of such a classification based on Galois theory is found in [22].

Another remarkable result of genus one CFT is that fusion rules are determined by the

modular transformations of characters. This is highly non-trivial since fusion is a local

property of operators whereas modular transformations are obviously global. The relation

between fusion and modular transformations is summarised in the form of the celebrated

Verlinde formula [23]:

Nij
k =

∑
m

SimSjmS̄mk

S0m
, (1.97)



3 Two-dimensional conformal field theories 22

where Nij
k is the fusion matrix in (1.51) and Sij is the modular S matrix, χi(q̃) =∑

j Sijχj(q), where q̃ = e−2πi/τ . The index 0 stands for the vacuum representation. The

proof of this equation is found in [24, 25]. See also [16] for a more recent review. Using

SS† = 1, the above relation may be written in the form

∑
k

Nij
kSkm =

Sim

S0m
Sjm, (1.98)

meaning that the fusion matrix is diagonalised by the modular S matrix 3.

3.4 Correlation functions

From a practical point of view, the goal of a CFT is to identify its full spectrum and find

all correlation functions. If this is accomplished, the CFT is said to be solved. In the

case of Virasoro minimal models, the spectrum is obtained by the Kac formula. Correlation

functions are found by exploiting the existence of singular vectors, with the help of conformal

invariance [1].

A singular vector (also called a null state4) at level n is a descendant state |χ〉 satisfying

L0|χ〉 = (h+ n)|χ〉,

Lk|χ〉 = 0, k > 0, (1.99)

where h is the conformal dimension of the ancestral primary state |h〉. Null states are

by definition highest weight states as well. The singular vector at level 1 takes the form

|χ〉 = L−1|h〉. In order to satisfy the conditions (1.99), |h〉 must be the Möbius invariant

vacuum |0〉 and the singular vector is |χ〉 = L−1|0〉. At level 2, the singular vector may be

written as

|χ〉 = (L−2 + aL2
−1)|h〉, (1.100)

for some a. The values of a and h satisfying the conditions (1.99) are found by using the
3This discussion does not hold for logarithmic CFTs
4There are some cases where these two concepts must be distinguished. An example is the N = 2

superconformal algebra, where subsingular vectors exist [26].
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Virasoro algebra (1.42), to be

a = − 3
2(2h+ 1)

, (1.101)

h =
5− c±

√
(c− 1)(c− 25)
16

. (1.102)

Hence the singular vectors at level 2 are

|χ〉 =
[
L−2 −

3
2(2h+ 1)

L2
−1

]
|h〉, (1.103)

with h given by (1.102). Singular vectors at higher levels are obtained in a similar manner.

The behaviour of correlation functions under infinitesimal conformal transformtions is

governed by the conformal Ward identity,

δε,ε̄〈X〉 = − 1
2πi

∮
C
dzε(z)〈T (z)X〉+

1
2πi

∮
C
dz̄ε̄(z̄)〈T̄ (z̄)X〉, (1.104)

where ε and ε̄ are holomorphic and antiholomorphic infinitesimal coordinate changes, X

stands for an arbitrary product of primary operators, and C is a contour encircling all

coordinates within X. The correlator 〈T (z)X〉 in the integrand is explicitly written as

〈T (z)X〉 =
n∑

i=1

{
1

z − wi

∂

∂wi
+

hi

(z − wi)2

}
〈X〉, (1.105)

which, in operator language, reads (redefining X → φ(w)X)

〈(L−nφ)(w)X〉 = L−n〈φ(w)X〉, n ≥ 1, (1.106)

with

L−n =
∑

i

{
(n− 1)hi

(wi − w)n
− 1

(wi − w)n−1

∂

∂wi

}
. (1.107)

This indicates that the action of a Virasoro operator L−n on a primary field within a corre-

lator is described by the differential operator L−n.

Now, the decoupling of a singular vector |χ〉 from the theory enables us to set |χ〉 = 0.
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Writing the operator corresponding to the singular vector |χ〉 as χ(h)(w), this results in

〈χ(h)(w)X〉 = 0, (1.108)

for an arbitrary product X of operators. Since χ(h)(w) is obtained from φ(h)(w) (primary

operator of conformal dimension h) by operating with a polynomial of L−n, (1.108) becomes

a differential equation satisfied by the correlator 〈φ(h)(w)X〉.

As the simplest non-trivial example, let us consider the case for a level 2 singular vector.

As a consequence of the projective Ward identity expressing the translational covariance of

correlators, we have

L−1 = −
∑

i

∂

∂wi
=

∂

∂w
. (1.109)

Then for a level 2 singular vector (1.103),

〈χ(h)(w)X(wi)〉 =

[
3

2(2h+ 1)
∂2

∂w2
−
∑

i

hi

(w − wi)2
−
∑

i

1
w − wi

∂

∂wi

]
〈φ(h)(w)X(wi)〉 = 0.

(1.110)

The correlator 〈φ(h)(w)X(wi)〉 is found by solving this second order partial differential equa-

tion. For a 4-point correlation function 〈φ1(z1)φ2(z2)φ3(z3)φ4(z4)〉 the partial differential

equation is reduced to an ordinary differential equation with respect to the anharmonic ratio

η =
z12z34

z13z24
, (1.111)

where zij = zi − zj , and the solutions are expressed in terms of hypergeometric functions.

Physical correlation functions are then obtained as particular sesquilinear combinations of

two independent solutions, where the coefficients are determined by the monodromy invari-

ance, i.e. single-valuedness of the full correlators at z̄ = z∗.

3.5 Coulomb-gas representation

It was shown by Dotsenko and Fateev [27] that all the features of the minimal models can

be realised by using a single scalar field. This approach, called the Coulomb-gas formalism,

has several nice features. For example, this is a free-field theory and thus all pieces of the
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theory are constructed from a Lagrangian. Correlation functions found by solving differential

equations in the last subsection, are obtained in the Coulomb-gas formalism as contour

integrals. This is not only an alternative way to obtain the same result, but is advantageous

in that the method is easily extendible to CFTs on higher genus manifolds. Construction of

the boundary CFT based on the Coulomb-gas formalism is the main topic of Chap.2.

The essential ingredient of the Coulomb-gas formalism is the non-minimal coupling of

the free scalar field to the background curvature. This makes the U(1) symmetry anomalous,

modifying the central charge and the conformal dimensions of c = 1 theory to generate the

minimal models. In this subsection we collect the basic components of the Coulomb-gas

formalism without the boundary [9, 14,27,28]. Variation of the action,

S =
1
8π

∫
d2x

√
g(∂µΦ∂µΦ + 2

√
2α0iΦR), (1.112)

with respect to the metric gives the energy-momentum tensor

T (z) = −2πTzz = −1
2

: ∂ϕ∂ϕ : +i
√

2α0∂
2ϕ, (1.113)

where ϕ is the holomorphic part of the boson, Φ(z, z̄) = ϕ(z) + ϕ̄(z̄). The antiholomorphic

part is similar. From T (z) the central charge is read off as

c = 1− 24α2
0. (1.114)

The chiral vertex operator defined as

Vα(z) =: ei
√

2αϕ(z) : (1.115)

then has the conformal dimension hα = α2− 2α0α, which is easily verified by computing the

OPE with T (z). Among these vertex operators, V±(z) ≡ Vα±(z) with α± = α0 ±
√
α2

0 + 1

play a special role. They have conformal dimensions 1 and the closed contour integral,

Q± ≡
∮
dzV±(z), (1.116)
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are the screening operators which are conformal singlets and carry charges. The condition

that the fields must be screened by such screening operators leads to the quantisation of the

spectrum,

αr,s =
1
2
(1− r)α+ +

1
2
(1− s)α−, (1.117)

where r and s are positive integers. The vertex operators Vαr,s(z) then have conformal

dimensions

hr,s =
1
4
(rα+ + sα−)2 − α2

0, (1.118)

and are identified with the operators φr,s appearing in the Kac formula. Note that α+ =√
p/p′ and α− = −

√
p′/p for a minimal model M(p, p′).

The Hilbert space of the theory defined on a Riemann surface is a direct sum of charged

bosonic Fock spaces (CBFSs) with BRST projection [28]. The chiral CBFS Fα,α0 with

vacuum charge α and background charge α0 is built on the highest-weight vector |α;α0〉 as

a representation of the Heisenberg algebra

[am, an] = mδm+n,0, (1.119)

where an are the mode operators defined by

ϕ(z) = ϕ0 − ia0 ln z + i
∑
n6=0

an

n
z−n. (1.120)

The zero-mode operators satisfy the commutation relation [ϕ0, a0] = i. The highest-weight

vector is constructed from the vacuum |0;α0〉 by operating with ei
√

2αϕ0 ,

|α;α0〉 = ei
√

2αϕ0 |0;α0〉, (1.121)

and is annihilated by the action of an>0. The charge α is related to the eigenvalue of a0 by

a0|α;α0〉 =
√

2α|α;α0〉. (1.122)
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The Virasoro generators are written in terms of the mode operators as

Ln6=0 =
1
2

∑
k∈Z

an−kak −
√

2α0(n+ 1)an, (1.123)

L0 =
∑
k≥1

a−kak +
1
2
a2

0 −
√

2α0a0. (1.124)

With these generators the CBFS Fα,α0 has the structure of a Virasoro module. It is easy to

check that

L0|α;α0〉 = (α2 − 2αα0)|α;α0〉, (1.125)

that is, the conformal dimension of |α;α0〉 is α2− 2αα0. Because of [L0, a−n] = na−n (∀n ≥

0), Fα,α0 is graded by L0 and written as

Fα,α0 =
∞⊕

n=0

(Fα,α0)n, (1.126)

where (Fα,α0)n is the subspace with conformal dimension α2 − 2αα0 + n. Counting the

number of states the character of Fα,α0 is found to be

χα,α0(q) ≡ Tr
Fα,α0

qL0−c/24 =
q(α−α0)2

η(τ)
, (1.127)

where q = e2πiτ , τ is the modular parameter, and η(τ) ≡ q1/24
∏

n≥1(1− qn) is the Dedekind

eta function.

The dual space F ∗α,α0
of Fα,α0 is built on a contravariant highest-weight vector 〈α;α0|

satisfying the condition

〈α;α0|α;α0〉 = κ, (1.128)

where κ is a normalisation factor which is usually set to 1 in unitary models. The modules

are endowed with a dual Virasoro structure

〈ω|L−nξ〉 = 〈ωLn|ξ〉 (1.129)

for any 〈ω| ∈ F ∗α,α0
, |ξ〉 ∈ Fα,α0 . This dual structure naturally incorporates the transpose At
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of an operator A through the relation

〈ω|Aξ〉 = 〈ωAt|ξ〉. (1.130)

In particular, Lt
−n = Ln, at

−n = 2
√

2α0δn,0 − an. With this definition of transpose, F ∗α,α0
is

shown to be a Fock space isomorphic to F2α0−α,α0 . The contravariant highest-weight vector

〈α;α0| is annihilated by the action of an for n < 0 (or at
n for n > 0),

〈α, α0|an<0 = 0. (1.131)

From the uniqueness of the expression 〈α;α0|a0|α;α0〉 and the right operation of the zero

mode (1.122) we immediately have

〈α;α0|a0 =
√

2α〈α;α0|. (1.132)

Analogously to (1.121) we find

〈α;α0| = 〈0;α0|e−i
√

2αϕ0 , (1.133)

where the contravariant vector 〈0;α0| is the vacuum with the normalisation 〈0;α0|0;α0〉 = κ.

From (1.121) and (1.133), the in-state |α;α0〉 and the out-state 〈α;α0| are interpreted as

possessing charges α and −α, respectively. The non-vanishing inner product (1.128) is

consistent with the neutrality of the total charge, −α+α = 0. Since the inner product must

vanish when the total charge is not zero, we have in general

〈α;α0|β;α0〉 = κδα,β. (1.134)

On the plane the minimal conformal theory is realized through the radial quantisation

scheme, by sending the in-state to zero and the out-state to infinity. Expectation values are

usually taken between 〈2α0;α0| and |0;α0〉, which is interpreted as placing a charge −2α0

at infinity. Correlation functions of primary operators are calculated with suitable insertion

of the screening operators,

〈Vα1Vα2 · · ·Vαk
Qm

+Q
n
−〉, (1.135)
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where the numbers of the screening charges m and n are subject to the charge neutrality

condition,

α1 + α2 + · · ·+ αk +mα+ + nα− = 2α0. (1.136)

We may use the equivalence of αr,s and αp′−r,p−s to minimise the numbers of screening

charges. The correlation functions are then expressed as contour integrals over the positions

of the screening operators.

The Coulomb-gas formalism also applies to Riemann surfaces of higher genus and such

theories have been studied by many authors [28–33]. On the torus it is shown that taking the

trace over the BRST cohomology space is equivalent to the alternated summation [28]. For

example, the zero-point function on the torus for the conformal block corresponding to the

representation (r, s) of the minimal models is calculated in the Coulomb-gas method as [28]

Tr(r,s)q
L0−c/24 =

1
η(τ)

(Θpr−p′s,pp′(τ)−Θpr+p′s,pp′(τ)), (1.137)

which is nothing but the Rocha-Caridi character formula (1.94) as it should be.

3.6 CFTs with extended symmetry

CFTs other than the Virasoro minimal models are generally accompanied by some symmetry

other than the conformal symmetry. For such theories the chiral algebra is an extended

algebra containing the Virasoro algebra as a subalgebra. Examples of the extra symmetries

are the supersymmetry, the affine Kac-Moody symmetry, and the W-symmetry. In this

subsection we review two classes of such CFTs, WZNW theory and CFTs with W-symmetry,

which are relevant to later discussions.

WZNW theory

The Wess-Zumino-Novikov-Witten (WZNW) theory [34–36] is a non-linear sigma model with

a Wess-Zumino (WZ) topological term, defined by the action,

S(g) =
k

16π

∫
∂Σ
d2xTr′(∂µg−1∂µg)−

ik

24π

∫
Σ
d3yTr′(g−1dg ∧ g−1dg ∧ g−1dg), (1.138)
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where Σ is the 3-dimensional ball whose boundary ∂Σ is the 2-sphere, and Tr′ = x−1
repTr is

a rescaled trace (xrep is the Dynkin index of the representation). The scalar field g takes

values in a Lie group G. The integrand of the second term (the WZ topological term) is

a total derivative and thus the integration gives a surface term on ∂Σ. The WZ term is

single-valued if k ∈ Z.

The action (1.138) is invariant not only under the conformal transformations but also

under the infinite-dimensional transformations,

g(z, z̄) → Ω(z)g(z, z̄)Ω̄−1(z̄), (1.139)

where Ω(z) ∈ G and Ω̄(z̄) ∈ Ḡ. This symmetry is characterised by the currents,

J(z) = Ja(z)ta = −k∂gg−1 =
∑
n∈Z

Jnz
−n−1, (1.140)

J̄(z̄) = J̄a(z̄)ta = kg−1∂̄g =
∑
n∈Z

J̄nz̄
−n−1, (1.141)

with OPEs

Ja(z)Jb(w) =
k

(z − w)2
δab +

ifabc

z − w
Jc(w) + · · · . (1.142)

These currents generate two commuting affine Kac-Moody algebras,

[Ja
n, J

b
m] = ifabcJ

c
n+m + knδabδn+m,0, (1.143)

[Ja
n, J̄

b
m] = 0, (1.144)

[J̄a
n, J̄

b
m] = ifabcJ̄

c
n+m + knδabδn+m,0, (1.145)

where k is called the level of the algebra.

The energy-momentum tensor of the WZNW model is given by the bilinear form of the

current,

T (z) =
1

2(k + h∨)

dim G∑
a=1

: Ja(z)Ja(z) :, (1.146)

called the Sugawara-Sommerfeld construction [37, 38]. The number h∨ is the dual Coxeter
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number associated of the group G. The Virasoro operators are then written as

Ln =
1

2(k + h∨)

dim G∑
a=1

∑
m∈Z

: Ja
mJ

a
n−m : . (1.147)

The central charge of the CFT is

cG =
k dimG

k + h∨
. (1.148)

Various CFTs are obtained from the WZNW model by the coset construction of Goddard,

Kent and Olive (GKO) [39,40]. For a group G and its subgroup H, the operators

LK
n = LG

n − LH
n , (1.149)

commute with the Virasoro operators LH
m for the subgroup theory and define a new Virasoro

algebra with central charge cK = cG − cH . These new Virasoro operators then realise a

CFT on the coset space K = G/H. For example, the unitary Virasoro minimal models are

reproduced by taking G = ŜU(2)k⊗ ŜU(2)1 and H = ŜU(2)k+1 (the subscripts indicate the

levels). The central charge for the coset model is then

cK = 1− 6
(k + 2)(k + 3)

, (1.150)

reproducing that of the M(k + 2, k + 3) minimal models.

CFT with W-algebra

Another important class of CFTs with extra symmetry is those possessing W-symmetry,

generated by currents of conformal dimension (spin) greater than 2. The algebra comprising

the energy-momentum tensor T (z) (of spin 2), and primary fields of conformal dimensions

s2, s3, · · · , sn (si ≥ 3), is denoted by W(2, s2, s3, · · · , sn).

The simplest of these is W(2, 3) (also called W3 algebra), generated by the energy-

momentum tensor and a field W (z) of conformal dimension h = 3 [41]. The 3-state Potts
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model at c = 4/5 is known to have such an algebra. The OPEs involving T (z) and W (z) are

T (z)T (w) =
c

2(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

+
[
Λ(w) +

3
10
∂2T (w)

]
+ · · · , (1.151)

T (z)W (w) =
3W (w)
(z − w)2

+
∂W (w)
z − w

+ · · · , (1.152)

W (z)W (w) =
c

3(z − w)6
+

2T (w)
(z − w)4

+
∂T (w)

(z − w)3
+

2βΛ(w) + 3∂2T (w)/10
(z − w)2

+
β∂Λ(w) + ∂3T (w)/15

z − w
+ · · · , (1.153)

where β = 16/(22 + 5c) and

Λ(z) =: T (z)T (z) : − 3
10
∂2T (z). (1.154)

Mode expansions of T (z) and W (z) define Virasoro and W-mode operators,

T (z) =
∑
n∈Z

Lnz
−n−2, (1.155)

W (z) =
∑
n∈Z

Wnz
−n−3. (1.156)

In terms of these mode operators, the above OPEs are equivalent to the commutation rela-

tions of the W3 algebra,

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, (1.157)

[Ln,Wm] = (2n−m)Wn+m, (1.158)

[Wn,Wm] =
c

360
n(n2 − 1)(n2 − 4)δn+m,0

+(n−m)
[

1
15

(m+ n+ 3)(m+ n+ 2)− 1
6
(m+ 2)(n+ 2)

]
Ln+m

+β(n−m)Λn+m, (1.159)

where

Λn =
∑
m∈Z

(Ln−mLm)− 3
10

(n+ 3)(n+ 2)Ln. (1.160)
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The W3 algebra is quite different from the Lie-type algebra due to the appearance of the

composite field Λ(z) which is quadratic in T (z).

A particularly important class of CFTs with W-algebra is the so-called unitary W -

minimal series starting from the 3-state Potts model. There are also other classes, such

as w∞, W∞, W1+∞, and W∞(λ) algebras. The supersymmetric extension of W-algebra is

also well-studied. A comprehensive review article on this subject is [15]. W-algebra of type

W(2, 3, 3, 3) proves to be important in the study of logarithmic CFT at c = −2.

3.7 Logarithmic conformal field theories

Conformal field theories with logarithmic correlation functions have been studied actively for

the past few years. Such theories arise naturally as generalisations of the well-investigated

Virasoro minimal theories or integral level WZNW theories, and are believed to have many

applications in statistical models and string / brane physics. These logarithmic conformal

field theories (LCFTs) were investigated sporadically by several authors [42–45] in the late

eighties and early nineties, and systematic study started with Gurarie’s work [46] in 1993.

By now various models, e.g. c = −2 model [44,46–50], gravitationally dressed CFTs [51,52],

WZNW models with fractional k [45,53] and k = 0 [54–57] have been studied, and a number

of applications, including critical polymers [44,58,59], percolation [7,8], quantum Hall effect

[60,61], disordered systems [54,55,62–64], sandpile model [65,66], turbulence [67–69], MHD

[70], D-brane recoil [71, 72], etc. have been discussed. The state of the art of the study on

LCFT is summarised in the recent lecture notes [73–76]. In this subsection we review the

basic features of LCFT following the analytic approach of Gurarie [46], by examining the

so-called c = −2 model.

Usually the operator content of the M(p, p′) minimal model (we assume p > p′) is

restricted to φr,s such that 0 < r < p′, 0 < s < p (and also pr > p′s to avoid the double

counting of identical operators). Although the Kac table for (p, p′) = (2, 1) is empty, a non-

trivial theory at c = c2,1 = −2 is obtained by extending the border of the grid. Note that

the Kac formulas of central charge cp,p′ and conformal dimension hr,s for M(p, p′) minimal
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model,

cp,p′ = 1− 6
(p− p′)2

pp′
, (1.161)

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
, (1.162)

are invariant for the “rescaling” p → lp and p′ → lp′ for some natural number l. The table

of conformal dimensions for the extended M(2, 1) ‘minimal’ model is

s

r 1 2 3 4 5 6 7 8 9 10 11 · · ·

1 0 −1/8 0 3/8 1 15/8 3 35/8 6 63/8 10 · · ·

2 1 3/8 0 −1/8 0 3/8 1 15/8 3 35/8 6

3 3 15/8 1 3/8 0 −1/8 0 3/8 1 15/8 3

4 6 35/8 3 15/8 1 3/8 0 −1/8 0 3/8 1

5 10 63/8 6 35/8 3 15/8 1 3/8 0 −1/8 0
...

...
. . .

In the following we shall restrict the contents to be 0 < r < 3, 0 < s < 6, that is, we consider

the ‘next-to-minimal’ model M(6, 3). It has been shown by algebraic [47] and free-field [50]

approaches that the operators with conformal dimensions h = −1/8, 3/8, 0 and 1, defined

with respect to the enhanced symmetry generated by a triplet of h = 3 fields, indeed close

under the fusion rule.

We shall discuss the fusion product of the µ = φ1,2 operators with conformal dimension

h = −1/8. The necessary information is encoded in the 4-point function,

〈µ(z1)µ(z2)µ(z3)µ(z4)〉, (1.163)

which is determined by the method described in Subsec.1.3.41. The conformal family with
1In c = −2 theory, µ = φ1,2 and ν = φ1,4 are ordinary (pre-logarithmic) operators which satisfy conven-

tional conformal Ward identities. Their correspondence with h = −1/8 and h = 3/8 operators in symplectic
fermion representation (see Chap.3) is also well understood.
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the primary field µ has the singular vector (L−2 − 2L2
−1)µ at level 2, which implies,

〈[(L−2 − 2L2
−1)µ](z1)µ(z2)µ(z3)µ(z4)〉 = 0. (1.164)

Substituting the differential operators L−n for L−n, we obtain a second order partial differen-

tial equation satisfied by the correlation function. In order to solve the differential equation,

it is convenient to use the Möbius symmetry and write

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = (z1 − z3)1/4(z2 − z4)1/4[η(1− η)]1/4F (η), (1.165)

where

η =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

. (1.166)

Substituting this into the partial differential equation we obtain an ordinary differential

equation,

η(1− η)
∂2F (η)
∂η2

+ (1− 2η)
∂F (η)
∂η

− 1
4
F (η) = 0. (1.167)

This is a hypergeometric differential equation and we may choose the two independent solu-

tions as F (1/2, 1/2, 1; η) and F (1/2, 1/2, 1; 1− η). The function F (1/2, 1/2, 1; η) is a hyper-

geometric function of Gaussian type and reduces to the complete elliptic integral

π

2
F (

1
2
,
1
2
, 1; k2) = K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

. (1.168)

The properties of K(k) are well known. In particular, F (1/2, 1/2, 1; η) is regular at η = 0

and has a logarithmic singularity at η = 1. Thus the general solution

F (η) = AF (1/2, 1/2, 1; η) +BF (1/2, 1/2, 1; 1− η), (1.169)

has a logarithmic singularity at η = 0 unless B = 0, and at η = 1 unless A = 0. The

chiral 4-point function (1.165) then necessarily has a logarithmic singularity somewhere on

the manifold.
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The OPE of µ with itself implied by the 4-point function is

µ(z)µ(0) = z1/4[ω(0) + Ω(0) log(z)] + · · · . (1.170)

The two operators ω and Ω, both having the conformal dimension h = 0, represent the two

conformal blocks associated with the two independent solutions of the differential equation

(1.167). The operator Ω is the Möbius invariant vacuum with respect to which vacuum

expectation values are taken. Operations with Ln on the operators Ω and ω are calculated

as [46,77]

L0ω = Ω, (1.171)

L0Ω = 0, (1.172)

Lnω = 0, n > 0. (1.173)

This may be regarded as a special case of the Jordan cell structure,

L0



C

D1

D2

...


=



h 0 0 · · ·

1 h 0 · · ·

0 1 h · · ·
...

...
...

. . .





C

D1

D2

...


, (1.174)

with h = 0, C = Ω, and D1 = ω. Although a precise definition of logarithmic conformal field

theories is absent5, it seems to be generally accepted that they are the CFTs characterised

by such Jordan cells.

4 Boundary conformal field theory

In this section we review standard techniques and concepts of boundary conformal field

theory. The discussion is restricted to simple diagonal unitary minimal models, such as the

Ising model. We start, in the first subsection, by discussing conformal invariance in the

presence of a boundary. In Subsec.1.4.2 we review the mirroring method [78] for finding
5In [75], it is conjectured that LCFTs may be fully characterised by non-semisimple Zhu’s algebra.
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boundary correlation functions. We describe in Subsec.1.4.3 the classification of consistent

boundary states based on the modular invariance, which is known as Cardy’s fusion method

[79]. In Subsec.1.4.4 we discuss boundary operators [79,80] and sewing relations which lead

to the concept of completeness of boundary conditions. We give in Subsec.1.4.5 an example

of a statistical model [7] where the concept of boundary operators plays a central role.

4.1 Conformal transformation on half plane

Let us start by considering what is meant by conformal invariance in the presence of a

boundary. Let

ds2 = gµν(x)dxµdxν , (1.175)

be the line element of the manifold we work on. Since the metric is a tensor, it transforms

as

gµν(x) → g̃µν(x̃) =
∂x̃µ

∂xλ

∂x̃ν

∂xρ
gλρ(x). (1.176)

The conformal transformation is defined as a mapping which preserves the metric gµν(x) up

to a scale factor,

gµν(x) → g̃µν(x̃) ∝ gµν(x). (1.177)

In two dimensions this condition is written as

(
∂x̃1

∂x1

)2

+
(
∂x̃1

∂x2

)2

=
(
∂x̃2

∂x1

)2

+
(
∂x̃2

∂x2

)2

, (1.178)

∂x̃1

∂x1

∂x̃2

∂x1
+
∂x̃1

∂x2

∂x̃2

∂x2
= 0, (1.179)

which are equivalent either to

∂x̃1

∂x1
=
∂x̃2

∂x2
,
∂x̃2

∂x1
= −∂x̃

1

∂x2
, (1.180)

or to
∂x̃1

∂x1
= −∂x̃

2

∂x2
,
∂x̃2

∂x1
=
∂x̃1

∂x2
. (1.181)
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These are the Cauchy-Riemann equations and their antiholomorphic counterpart. Defining

z = x1 + ix2 and z̄ = x1 − ix2, we conclude that the conformal transformation in two-

dimensions (without considering boundary) is equivalent to analytic mapping on the complex

plane [14].

On the full plane, the conformal mapping

z → w(z) =
∑

n

anz
n, (1.182)

z̄ → w̄(z̄) =
∑

n

ānz̄
n, (1.183)

is generated by an infinite number of generators an and ān, which imposes strict constraints

on the field theory. In a geometry with boundary, we may take the line x2 = 0 as the

boundary and consider a CFT on the upper half plane. As the field theory is restricted to

a fixed geometry, the conformal transformation must keep the boundary x2 = 0 invariant.

This means

Im w(x)|x2=0 = 0 ⇔ w(x1) = w̄(x1) ⇔ an = ān. (1.184)

Although the number of generators is reduced by half due to this condition, we still have

an infinite dimensional conformal group and conformal invariance remains extremely pow-

erful [81]. Note that the holomorphic and antiholomorphic generators are coupled on the

boundary. This allows us to interpret the antiholomorphic part as an analytic continuation

of the holomorphic part, as we shall see in the next subsection.

4.2 Boundary correlation functions

The existence of null vectors in minimal CFTs allows us to find n-point correlation functions

as solutions to differential equations of hypergeometric type [1]. This method was generalised

to CFTs on the half plane by Cardy [78], using the mirroring technique which is familiar in

electrostatics. In this subsection we review this method, and as an example find the spin

correlation functions of the Ising model on the upper half plane.

The behaviour of correlation functions under the conformal transformations is described
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by the conformal Ward identities (1.104). For a CFT on the upper half plane they are

δ〈φ1φ2 · · · 〉 =
−1
2πi

∮
C
dzε〈T (z)φ1φ2 · · · 〉+

1
2πi

∮
C
dz̄ε̄〈T̄ (z̄)φ1φ2 · · · 〉, (1.185)

as z → w = z+ε, z̄ → w̄ = z̄+ε̄, and ε̄ = ε∗. The contours are the semicircle C which encircles

all the coordinates (zi, z̄i) of the operators (Fig.1.3a). Since there is no energy-momentum

flow across the boundary, the energy-momentum tensor satisfies the condition

[
T − T̄

]
z=z̄

= 0, (1.186)

on the boundary z = z̄. This condition also means the diffeomorphism invariance of the

boundary as the conformal transformation is generated by the energy-momentum tensor.

We can use the condition (1.186) to extend the domain of definition of T (z), by mapping the

antiholomorphic part on the upper half plane (UHP) to the holomorphic part on the lower

half plane (LHP), as T (z∗) = T̄ (z̄). The antiholomorphic dependence of the correlation

function on the UHP coordinates is similarly mapped to the holomorphic dependence on

the LHP coordinates. The antiholomorphic part of the Ward identities (1.185) is then

mapped into the holomorphic part on the LHP, as shown in Fig.1.3b. The direction of the

integration contour on the LHP is reversed (Fig.1.3c) by changing the sign of the second

term in (1.185). Since the two contours along the boundary cancel each other, the contours

can be concatenated to make a contour of the full circle (Fig.1.3d), leading to a much simpler

conformal Ward identity,

δ〈φ1φ2 · · · 〉 =
−1
2πi

∮
C−C∗

dzε(z)〈T (z)φ1(z1)φ̄1(z∗1)φ2(z2)φ̄2(z∗2) · · · 〉. (1.187)

This means that the n-point function on the UHP satisfy the same differential equation as

the chiral 2n-point function on the full plane, with the LHP coordinates obtained through

mirroring with respect to the boundary.

Now let us see this in the example of the Ising model, and find the spin-spin correlation

function on the UHP. As the boundary 2-point function on the half plane is equivalent to
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φ (z2, z2)φ (z1, z1)

CC

φ (z2)φ (z1)

CC

C*

φ (z1*)

φ (z2*)

(a) Contour C on UHP. (b) Mirroring: C → C∗.

φ (z2)φ (z1)

CC

− C*

φ (z1*)

φ (z2*)

φ (z2)φ (z1)

C − C*

φ (z1*)

φ (z2*)

(c) Reverse the direction. (d) Merge two contours.

Figure 1.3: The antiholomorphic coordinate dependence of CFT on the UHP (a) is mapped
to the holomorphic dependence on the LHP by mirroring (b). Flipping the direction of the
contour on the LHP (c), and merging the two contours, the Ward identity of the n-point
function on the UHP is shown to be equivalent to that of the 2n-point function on the full
plane.
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the 4-point function on the full plane, one may write

〈σ(z1, z̄1)σ(z2, z̄2)〉UHP = 〈σ(z1)σ(z2)σ(z∗1)σ(z∗2)〉chiral, (1.188)

where σ is the spin operator. Due to the existence of a singular vector at level 2, the 4-point

function of σ = φ1,2 satisfies a second order differential equation,

{
∂2

z −
3
4

3∑
i=1

[
1

z − zi
∂zi +

1/16
(z − zi)2

]}
〈σ(z)σ(z1)σ(z2)σ(z3)〉 = 0. (1.189)

Using the global conformal transformations, this partial differential equation reduces to a

hypergeometric differential equation which is solved as

〈σ(z1, z̄1)σ(z2, z̄2)〉UHP =
[

(z1 − z∗1)(z2 − z∗2)
|z1 − z2|2|z1 − z∗2 |2

]1/8{
A

√√
1− η + 1 +B

√√
1− η − 1

}
,

(1.190)

where η = (z1 − z2)(z∗1 − z∗2)/(z1 − z∗1)(z2 − z∗2) = −|z1 − z2|2/4Imz1Imz2 is the cross ratio,

which takes a negative real value −∞ < η < 0 in the physical region.

The coefficients A and B are to be determined by the boundary conditions. It is conve-

nient to introduce coordinates y1, y2 and ρ as in Fig.1.4. The cross ratio is then written as

η = −[(y1 − y2)2 + ρ2]/4y1y2. For the free boundary condition, the correlation must vanish

as we go closer to the boundary:

〈σ(z1, z̄1)σ(z2, z̄2)〉UHP → 0, as ρ→∞. (1.191)

Apart from the overall normalisation the coefficients are then determined as A = 1 and

B = −1. The scaling law near the boundary is now found to be

〈σ(z1, z̄1)σ(z2, z̄2)〉UHP ∼ ρ−1. (1.192)

In the case of the fixed boundary condition, the asymptotic behaviour near the boundary

must be

〈σ(z1, z̄1)σ(z2, z̄2)〉UHP → 〈σ(z1, z̄1)〉UHP 〈σ(z2, z̄2)〉UHP , (1.193)
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z2

ρ 

z1

y1

y2

Figure 1.4: Parameters y1, y2 and ρ.

as ρ → ∞. The coefficients may be chosen as A = 1 and B = 1 to satisfy this condition.

Then, near the boundary we have

〈σ(z1, z̄1)σ(z2, z̄2)〉UHP ∼ (y1y2)−1/8. (1.194)

In terms of conformal blocks, the free boundary condition corresponds to the process with

intermediate energy operator ε, that is, 〈σσσσ〉 ∼ 〈εε〉. The fixed boundary condition

corresponds to the identity operator, 〈σσσσ〉 ∼ 〈II〉.

4.3 Consistency condition and physical boundary states

Physical systems described by CFT, such as the Ising model at criticality, usually have a

finite number of conformally invariant, physically realisable boundary states corresponding

to various boundary conditions. For example, in the Ising model there are three physical

boundary states corresponding to all spins up (| ↑ 〉), down (| ↓ 〉), and free (|F 〉) along the

boundary. They are not only conformally invariant but satisfy some extra conditions. Indeed,

any linear combination of conformally invariant boundary states is conformally invariant,

whereas the number of physical boundary states are usually finite. One of the most powerful

and systematic method for finding such physical boundary states is Cardy’s fusion method

[79], which uses the modular invariance of partition functions as the extra information. In the

following we shall review this method. In the past several years Cardy’s method has attracted

much attention and has been studied extensively. Generalisations to various rational CFTs,
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including non-diagonal minimal theories [82–84], superconformal models [85], coset models

[86, 87], have been considered, and algebraic understanding of the method [88–92] has also

been drastically improved. Here we shall not go into these recent developments but describe

only the simplest diagonal case, following [14,79].

The CFTs we analyse in this subsection are defined on an annulus. This geometry has a

great advantage that the operators on the full plane (without boundary) may be employed

without modification. This is due to the fact that in the radial quantisation, the annulus

arises as a portion of the full plane bounded by two concentric circles. One may use the

conformal transformation w = (T/π) ln z and ζ = exp(−2πiw/L) to map the boundary

z = z̄ of the half plane to the two circles bordering the annulus6. This annulus may also be

regarded as a cylinder with length T and circumference L. On the ζ-plane (annulus), the

conformal invariance condition of the boundary (1.186) implies the Ishibashi condition [93]

on boundary states |B〉,

(Ln − L̄−n)|B〉 = 0. (1.195)

We shall call the boundary states |B〉 satisfying this condition as conformally invariant

boundary states.

In ordinary rational conformal theories there is an important set of conformally invariant

boundary states, called Ishibashi states. They are defined as

|j〉〉 ≡
∑
M

|j;M〉 ⊗ U |j;M〉, (1.196)

where j is the label for representations (conformal towers), M is the level in the conformal

tower, and U is an antiunitary operator which is the product of time reversal and complex

conjugation. Ishibashi states are conformally invariant boundary states associated with

conformal towers, and they form a basis spanning the space of boundary states. An important

property of the Ishibashi states is that they diagonalise the closed string amplitudes and give

characters for corresponding representations:

〈〈i|(q1/2)L0+L̄0−c/12|j〉〉 = δijχi(q). (1.197)

6In Chap.2 and Sec.3.4 we shall use ζ for the half plane and z for the annulus.
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These Ishibashi states are not normalisable, as the innerproducts between them (taking the

limit q → 1 in the expression above) are divergent.

Cardy’s method uses the modular invariance of boundary partition functions as a con-

straint on the boundary states; partition functions calculated in open and closed string chan-

nels lead to different expressions and their equivalence imposes a condition on the boundary

states (Fig.1.5). Suppose we have boundary conditions α̃ and β̃ on the two ends of an open

string. If these boundary conditions are physical, chiral representations labeled by i appear

in the bulk with non-negative integer multiplicities ni
α̃β̃

. The partition function is then the

sum of the chiral characters with the associated multiplicities,

Zopen

α̃β̃
(q) =

∑
i

ni
α̃β̃
χi(q), (1.198)

where q = e−πL/T . This is the partition function in the open-string channel. In the closed-

string channel, the partition function is nothing but the amplitude between two equal-time

hypersurfaces,

Zclosed
α̃β̃

(q̃) = 〈α̃|(q̃1/2)L0+L̄0−c/12|β̃〉, (1.199)

where q̃ = e−4πT/L. Note that the Hamiltonian of our system is H = 2π(L0 + L̄0− c/12)/L.

The duality between the open and closed string channels demands Zopen

α̃β̃
(q) = Zclosed

α̃β̃
(q̃), or

on expanding the boundary states in the closed string channel by some basis states as

|α̃〉 =
∑

a

〈a|α̃〉|a〉, (1.200)

we have ∑
i

ni
α̃β̃
χi(q) =

∑
a,b

〈α̃|a〉〈a|(q̃1/2)L0+L̄0−c/12|b〉〈b|β̃〉. (1.201)

This duality constraint on the boundary states is called Cardy’s consistency condition.

By solving (1.201), one may find physical boundary conditions and express the associated

consistent boundary states7 as particular linear combinations of basis states |a〉. Although
7In this thesis we call the states including coherent, Ishibashi and consistent boundary states generically

as ‘boundary states,’ whereas some authors reserve this term for what we call ‘consistent boundary states’
here. Also, in some literature the term ‘Ishibashi state’ is used to mean any boundary state satisfying the
condition (1.195), i.e. what we call ‘conformally invariant boundary state’ in this thesis. Our definition of
Ishibashi states is in a narrower sense, meaning the particular solution (1.196) found by Ishibashi [93].
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(a) Open string channel (b) Closed string channel

Figure 1.5: The open-string channel (a) and the closed-string channel (b) are related by
the duality exchanging the directions of time and space. The equivalence of the partition
functions calculated in each channel leads to the constraints (1.201) on the boundary states.

in principle we may use any set of basis states as long as they are complete, it is convenient

to use Ishibashi states for such an expansion [79]. Using the modular transformation of the

characters χi(q) → χi(q̃) =
∑

j Sijχj(q) under τ → τ̃ = −1/τ , the left-hand side of (1.201)

is written as ∑
i

ni
α̃β̃
χi(q) =

∑
i,j

ni
α̃β̃
Sijχj(q̃). (1.202)

On the right-hand side, if we use the Ishibashi states as the basis, we have

∑
i,j

〈α̃|i〉〉〈〈i|(q̃1/2)L0+L̄0−c/12|j〉〉〈〈j|β̃〉 =
∑

j

〈α̃|j〉〉〈〈j|β̃〉χj(q̃). (1.203)

Equating the coefficients of the character functions on the both sides, we have

∑
i

Sijn
i
α̃β̃

= 〈α̃|j〉〉〈〈j|β̃〉. (1.204)

Solutions to this equation are found by assuming the existence of a boundary state |0̃〉

satisfying ni
0̃α̃

= ni
α̃0̃

= δi
α̃ for any boundary condition α̃. Letting α̃ = β̃ = 0̃ in (1.204), and

using the positive-definiteness of S0j (which is always the case for unitary models) we have

|0̃〉 =
∑

j

√
S0j |j〉〉. (1.205)
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Next, putting α̃ = 0̃ and β̃ 6= 0̃ in (1.204) and using the result above, we have

|α̃〉 =
∑

j

Sαj√
S0j

|j〉〉. (1.206)

This result (1.206) includes the α̃ = 0̃ case (1.205).

Let us see this result in the case of the critical Ising model. In this model there are three

operators, the identity (I), energy density (ε), and spin (σ) operators. In the Kac table they

correspond to I = φ1,1 = φ2,3, ε = φ2,1 = φ1,3, σ = φ1,2 = φ2,2, respectively. The characters

for the three representations are

χI = 〈〈I|(q̃1/2)L0+L̄0−c/12|I〉〉 =
1
2

√
θ3(τ̃)
η(τ̃)

+
1
2

√
θ4(τ̃)
η(τ̃)

, (1.207)

χε = 〈〈ε|(q̃1/2)L0+L̄0−c/12|ε〉〉 =
1
2

√
θ3(τ̃)
η(τ̃)

− 1
2

√
θ4(τ̃)
η(τ̃)

, (1.208)

χσ = 〈〈σ|(q̃1/2)L0+L̄0−c/12|σ〉〉 =
1
2

√
θ2(τ̃)
η(τ̃)

, (1.209)

where |I〉〉, |ε〉〉, |σ〉〉 are the Ishibashi states for I, ε, σ. The modular S matrix for the Ising

model is then calculated using the modular transformation formula in App.A, as (in the

order of I, ε, σ),

Sij =
1
2


1 1

√
2

1 1 −
√

2
√

2 −
√

2 0

 . (1.210)

Substituting the modular S matrix into (1.206) we find consistent boundary states as

|0̃〉 = |Ĩ〉 =
1√
2
|I〉〉+

1√
2
|ε〉〉+

1
4
√

2
|σ〉〉, (1.211)

|ε̃〉 =
1√
2
|I〉〉+

1√
2
|ε〉〉 − 1

4
√

2
|σ〉〉, (1.212)

|σ̃〉 = |I〉〉 − |ε〉〉. (1.213)

Since |Ĩ〉 and |ε̃〉 differ only by the sign of |σ〉〉 associated with the spin operator, they are
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identified as the fixed boundary conditions (| ↑ 〉, | ↓ 〉). Which is up and which is down is

purely a matter of choice. The remaining |σ̃〉 corresponds to the free boundary condition

|F 〉.

Substituting (1.206) into the duality relation (1.204) we have

∑
i

Sijn
i
α̃β̃

=
SαjSβj

S0j
. (1.214)

Comparing this with the Verlinde formula (1.98), it is concluded that [79]

Nij
k = nk

ij , (1.215)

that is, in diagonal theories the multiplicity of the representations appearing in the bulk is

identical to the fusion coefficient for the operators associated with the boundary states.

4.4 Boundary operators, sewing relations, and completeness

The concept of boundary operators is introduced by Cardy and Lewellen [79, 80, 94], and

has played a central role in the recent development of boundary CFT. A boundary operator,

ψi
α̃β̃, is a chiral operator living on a boundary. The index i refers to the representation of

the chiral algebra (Virasoro or its extension), and α̃ and β̃ are boundary conditions of the

boundaries where the operator is inserted (let us define α̃ is the left and β̃ is the right of

ψi
α̃β̃, seeing the boundary from the bulk). Thus the insertion of a boundary operator may

change boundary conditions. The OPE of boundary operators takes the form,

ψi
α̃β̃ψj

β̃γ̃ =
∑

k

Cα̃β̃γ̃
ijk ψk

α̃γ̃ , (1.216)

where Cα̃β̃γ̃
ijk is a structure constant which determines boundary 3-point functions. The

boundary 2-point functions are

〈ψi
α̃β̃(x1)ψi

β̃α̃(x2)〉 =
αi

α̃β̃

(x1 − x2)2hi
, (1.217)
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where αi
α̃β̃ is a normalisation constant and hi is the conformal dimension of the boundary

operators. Just as in the bulk theory, αi
α̃β̃ and Cα̃β̃γ̃

ijk determine the algebraic structure of the

boundary operators completely. For a given bulk theory where the bulk operator content,

the modular matrices T and S, the braid and fusion matrices B and F , the fusion and OPE

coefficients Nij
k and C(kk̄)

(īı)(j̄) = Ck
ijC

k̄
ı̄̄) have been found, one may ask what is the possible set

of boundary operators which is consistent with the bulk theory. This is answered by solving

various constraints, called the sewing relations, satisfied by αi
α̃β̃ and Cα̃β̃γ̃

ijk . The resulting

set of boundary operators is said to be complete [88]. The sewing constraints were solved

explicitly in several models [89], including non-diagonal cases [90].

4.5 Critical percolation

The critical bond percolation problem in statistical physics is an example which is solved

using boundary operators. Since this is often discussed in the context of logarithmic CFTs,

whose boundary theory is the main topic of Chap.3, we shall review it here following [2,7,14].

The problem we want to solve is defined as follows. We consider a two-dimensional

lattice of horizontal length a`, vertical length b` and spacing `, and set electrodes on the left

and right sides of the lattice. We start placing conducting needles randomly on the grid,

and observe if electric current can run between the two electrodes (horizontal percolation).

Obviously, when we put no needle on the lattice there is no way the current can run through,

and when all the grids are filled with conducting needles the percolation has readily been

achieved. Thus there must be some occupation probability p between 0 and 1 which is barely

sufficient to achieve the percolation. We may take the thermodynamic limit of this system

(letting `→ 0 and a`, b` fixed). Then there is a critical occupation probability pc such that

the horizontal percolation probability πh is 1 for p > pc and πh = 0 for p < pc. The system

at p = pc is called the critical bond percolation. At p = pc, πh still depends on the aspect

ratio r = a/b. Our problem is to find πh as a function of r.

This percolation problem is translated into Q → 1 limit of the Q-state Potts model in

two dimension [95, 96]. The interaction energy of the Q-state Potts model is J
∑

〈ij〉 δσiσj ,

where the sum is over nearest-neighbours and the indices i and j label one of the Q states.
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The partition function of the Q-state Potts model is then

Z =
∑

config

∏
〈ij〉

exp
{
−βJδσiσj

}
. (1.218)

Defining 1/(1− p) = e−βJ , one may rewrite this partition function as

Z =
∑

activation

pB(1− p)b−BQNc , (1.219)

where b is the number of bonds, B is the number of activated bonds (needles), and Nc is the

number of disjoint clusters. The Q-state Potts model has been mapped into a system with

active bonds of Q possible colours (probability = p) and inert bonds (probability= 1−p). It

is now obvious that the critical percolation is realised by taking Q→ 1 limit of this system.

The relation between the Q-state Potts models and the M(m + 1,m) unitary Virasoro

minimal series (m = 3 is the Ising model) is well established for Q = 2, 3, 4. The correspon-

dence is given by Q = 4 cos2(π/(m + 1)) for these models. Extrapolating this formula for

arbitrary value of m, the bond percolation problem then correspond to the minimal model of

M(3, 2), whose central charge is c = 0. Using this correspondence, the percolation problem

is described in a boundary CFT language as follows. Let us consider a rectangle with a

pair of opposing sides having free boundary condition f̃ (Fig.1.6). The remaining two sides

have fixed boundary conditions α̃ and β̃, with fixed ‘colours’ out of the Q possible colours of

the activated bonds. Such a configuration is realised by inserting four boundary (changing)

operators at the four corners of the rectangle. The boundary operator ψα̃f̃ , which changes a

fixed boundary condition α̃ to the free boundary condition f̃ , is identified as φ1,2 by analogy

with the Q-state Potts models of Q = 2, 3, 4.

The crossing probability πh is obtained by calculating the partition functions for the

configurations

 α̃ α̃α̃

+

 α̃ α̃

α̃

α̃

−
 α̃ β̃

α̃

β̃

 (1.220)
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α̃ β̃

Free b.c.

Free b.c.

ψf̃ α̃(x1)

ψα̃f̃ (x4)

ψβ̃f̃ (x2)

ψf̃ β̃(x3)

Figure 1.6: Horizontal bond percolation is modelled by a rectangle with the free boundary
condition on the top and bottom sides, and fixed boundary conditions on the left and right
sides.

and taking the limit Q→ 1 (that is, α̃ = β̃) afterwards. In this graphical notation, the first

term indicates configurations with the left and right boundaries linked by bonds of the same

colour α̃. The second term means configurations with no percolation, with left and right

boundaries in the same colour α̃, and the third one means no percolation with left and right

boundaries in different colours (α̃ and β̃). Note that after taking the limit the last two terms

cancel and only the first one (realising the percolation) survives. If we write the partition

function for the configurations with the boundary condition (or colour) α̃ on the left and β̃

on the right as Zα̃β̃, the crossing probability is given by

πh = lim
Q→1

(Zα̃α̃ − Zα̃β̃), (1.221)

since the first two terms of the graphical representation (1.220) are Zα̃α̃ and the last one is

Zα̃β̃. These partition functions for particular boundary conditions are given by the four-point

functions of the boundary operators. Then up to a multiplicative constant we have

πh ∼ 〈ψf̃ α̃(x1)ψα̃f̃ (x2)ψf̃ β̃(x3)ψβ̃f̃ (x4)〉Q=1

= 〈φ1,2(x1)φ1,2(x2)φ1,2(x3)φ1,2(x4)〉Q=1. (1.222)

The four-point function 〈φ1,2(x1)φ1,2(x2)φ1,2(x3)φ1,2(x4)〉 is found by solving a second order

ordinary differential equation, as in Subsec.1.3.4. Introducing the cross ratio η = [(z1 −
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z2)(z3 − z4)]/[(z1 − z3)(z2 − z4)], where zi are the coordinates after the Schwartz-Christoffel

transformation xi → zi mapping the interior of the rectangle to the upper half plane, the

differential equation for πh(η) = g(η) is

η(1− η)
d2g(η)
dη2

+
2(1− 2η)

3
dg(η)
dη

= 0. (1.223)

This differential equation has two independent solutions. One is g(η) = const, and the other

is

g(η) = η1/3F (
1
3
,
2
3
,
4
3
; η). (1.224)

The crossing probability πh is a linear combination of the two solutions. The coefficients are

determined by demanding πh → 1 when the rectangle is infinitely narrow and πh → 0 when

it is infinitely wide. The percolation probability is then found to be

πh(η) =
3Γ(2/3)
Γ(1/3)2

η1/3F (
1
3
,
2
3
,
4
3
; η). (1.225)

This analytic result is compared with numerical calculations and exhibits excellent agreement

[7, 97, 98]. Although the extrapolation of the Q 6= 1 results to Q → 1 may seem somewhat

speculative, this agreement justifies the method of the analysis as well as the underlying

concepts such as conformal invariance and boundary operators.

Finally we emphasise that this CFT at c = 0 is not the minimal model of M(3, 2),

which consists only of the identity operator. Recall that the differential equation (1.223)

has two independent solutions, one corresponds to the conformal block φ1,1 and the other

to φ1,3. Obviously, the former solution is the constant and the latter is (1.224). If we were

dealing with M(3, 2) minimal model, the solution (1.224) should have been discarded since

it is associated with the operator outside the Kac table. Hence the percolation problem

must be considered in the framework of a CFT with extended conformal grid, possibly

to M(9, 6) [2, 74]. From this example we may expect the existence of bona-fide CFTs

which are not minimal models but something that should be called ‘next-to-minimal’ models,

which may well include logarithmic operators [99]. The existence of such statistical models

motivates the study of boundary logarithmic CFT.



Chapter 2

Coulomb-gas approach for

boundary conformal field theory

In this chapter we discuss a construction of boundary states based on the Coulomb-gas

formalism of Dotsenko and Fateev. After addressing the motivation and advertising the

merits of this formalism, we start in Sec.2.2 by defining the charged bosonic Fock space

(CBFS) for the theory on an annulus. We then construct boundary coherent states on

CBFS and find conditions for the conformal invariance of such states. In Sec.2.3 the charge-

neutrality conditions for the boundary Coulomb-gas are considered and the closed-string

channel amplitudes are calculated. We illustrate the method in Sec.2.4 using the Ising

model as an example, and in Sec.2.5 we conclude by discussing possible applications to other

models. The result of this section has been published in [100].

1 Why Coulomb-gas?

Among the series of seminal papers on BCFT written in the eighties, two results are of

particular importance: one is the method to calculate boundary correlation functions [78],

and the other is the observation that bulk operator content is restricted by boundary con-

ditions [101]. The former result is essential from a phenomenological point of view since

correlation functions are the only observable quantities which may be compared with mea-

surements, while the latter result is more conceptual and leads to the study of algebraic

aspects of BCFT, namely, the systematic classification of boundary states based on the

52
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modular transformations [79,88,91,102,103].

These two aspects of BCFT seem to be, in the author’s opinion, somewhat remote.

Although the link between them may be made through boundary operators [80, 94, 101]1,

a more direct connection is desirable. In string theory, boundary states are defined on the

Fock space and correlation functions are obtained by inserting vertex operators on string

world sheets. If such a free-field construction of boundary states is available for any CFT, it

should be in principle possible to calculate correlation functions directly from algebraically

classified boundary states. The formalism we present in this chapter is intended to be a first

step in this direction.

So far the boundary theory of Coulomb-gas picture was only considered by Schulze [104],

where the CFT is defined on the half plane and the results for the Ising model are repro-

duced in a contour integration form using the mirroring technique of [78]. In the following

we formulate the Coulomb-gas picture on an annulus and discuss modular properties of

boundary states built on a Fock space on the boundaries. The Coulomb-gas formalism is

quite attractive in many respects. It is a Lagrangian theory and hence the whole theory

may be constructed from an action (which is comfortable for those who were brought up in

the physics community). Extension to the non-critical (massive) regime is also possible by

perturbation. Thus once the boundary theory of the Coulomb-gas picture is formulated, we

may expect development of the theory in many directions. In the following, however, we

shall not discuss such topics but shall restrict ourselves to presenting the formalism.

2 CBFS with boundary

In this section we discuss the Fock space representation of BCFT where the interplay between

holomorphic and antiholomorphic sectors is important. Let us start with the geometry of

the upper half-plane. We define ζ = x + iy, x, y ∈ R and consider a CFT defined on the

region Imζ ≥ 0. The boundary is y = 0, or ζ = ζ̄. As is discussed in Subsec.1.4.2, the

antiholomorphic dependence of the correlators on the upper half plane may be mapped into

the holomorphic dependence on the lower half plane [78]. This introduces a mirror image on

the lower half plane, and the boundary condition tells how the images on the upper and lower
1If we can find a set of boundary operators which reside on a algebraically classified boundary state, the

leading terms of a correlation function near the boundary should be obtained by the OPE expanded with
such boundary operators.



2 CBFS with boundary 54

half-planes are glued on the mirror, ζ = ζ̄. The energy-momentum tensor on the lower half

plane is obtained by the mapping from the upper half plane, T (ζ∗) = T̄ (ζ̄). The condition

on the boundary [
T (ζ)− T̄ (ζ̄)

]
ζ=ζ̄

= 0, (2.1)

indicates the absence of the energy-momentum flow across the boundary. Since the energy-

momentum tensor is the generator of conformal transformations, (2.1) also means the con-

formal invariance of the boundary. Going from the upper half plane (or holomorphic part)

to the lower half plane (antiholomorphic part) is generally accompanied by a parity trans-

formation P. The free boson transforms under P as ϕ(ζ) → Ωϕ̄(ζ̄), Ω = ±1. This leads to

the condition on the boundary

[
ϕ(ζ)− Ωϕ̄(ζ̄)

]
ζ=ζ̄

= 0. (2.2)

When Ω = 1, the non-chiral free boson Φ(ζ, ζ̄) = ϕ(ζ) + ϕ̄(ζ̄) is a scalar and the boundary

condition is called Neumann, whereas when Ω = −1, Φ(ζ, ζ̄) is a pseudo-scalar and such a

boundary condition is called Dirichlet. Under the parity transformation the chiral vertex

operators Vα(ζ) =: ei
√

2αϕ(ζ) : are mapped into V̄α(ζ̄) =: ei
√

2αΩϕ̄(ζ̄) :. When Ω = −1

(Dirichlet) the mirror image has a charge Ωα = −α which has the opposite sign from the

original one. In the Neumann case (Ω = 1), the mirror and the original vertex operators have

the same charge α. The Coulomb-gas system on the half plane was studied in [104], where

the boundary correlation functions of the Ising model are calculated using the mirroring

technique [78].

In this chapter we mainly study BCFT defined on a finite cylinder, or an annulus. We

consider a finite cylinder of length T and circumference L, or an annulus on the z-plane with

1 ≤ |z| ≤ exp(2πT/L). We also introduce a modular parameter as q̃ = e2πiτ̃ , τ̃ = 2iT/L.

With this the annulus is 1 ≤ |z| ≤ q̃−1/2. We regard this cylinder as a propagating closed

string, and call the direction along it as time. A merit of considering such a geometry is that

the familiar energy-momentum tensor for the full-plane may be used without modification.

We conformally map a semi-annular domain in the upper-half ζ-plane onto a full-annulus in

the z-plane by z = exp(−2πiw/L) and w = (T/π) ln ζ. The boundary ζ = ζ̄ is then mapped

on the z-plane to |z| = 1, exp(2πT/L). Since the z-plane allows radial quantization, the
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conformal invariance (2.1) on the |z| = 1 boundary becomes the conditions on the quantum

states |B〉 [79, 93],

(Lk − L̄−k)|B〉 = 0. (2.3)

As ϕ(ζ) and ϕ̄(ζ̄) are not primary, the condition (2.2) cannot be mapped to the annulus.

However, the derivatives of uncharged bosons are primary and

[
∂ϕ(ζ)− Ω∂̄ϕ̄(ζ̄)

]
ζ=ζ̄

= 0 (2.4)

on the ζ-plane is mapped on the z-plane as

(an + Ωā−n)|B〉 = 0. (2.5)

This expression no longer makes sense for the charged bosons since ∂ϕ and ∂̄ϕ̄ cease to be

primary when they are couple to the background curvature. However, (2.3) is still valid and

is indeed a necessary condition for the conformally invariant boundary states. The vertex

operators are safely mapped to z-plane since they remain primary. In the rest of this section

we construct a Fock space representation of boundary states which satisfy the conformal

invariance condition (2.3).

Our starting point is recalling that a BCFT consists of a pair of chiral CFTs whose holo-

morphic and antiholomorphic sectors are glued together on the boundary. The construction

of the boundary states then requires a Fock space which is common to both holomorphic and

antiholomorphic sectors. As we have the same central charge c for both holomorphic and

antiholomorphic sectors, α0, which is related to c by (1.114), is common to both sectors2,

although we are free to choose different vacuum charges for each sector. Hence let us define

the highest-weight vectors at the two boundaries of the annulus as |α, ᾱ;α0〉 and 〈α, ᾱ;α0|,
2Even if one relaxes this condition and starts by allocating different background charges α0 and ᾱ0 to

holomorphic and antiholomorphic sectors, the condition (2.3) restricts either α0 = ±ᾱ0. For α0 = −ᾱ0 we
have Ω = −1 (Dirichlet) and α− ᾱ− 2α0 = 0 instead of (2.20) and (2.21), respectively, but this merely flips
the sign of all antiholomorphic charges and thus does not give any new results.
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satisfying

a0|α, ᾱ;α0〉 =
√

2α|α, ᾱ;α0〉, (2.6)

ā0|α, ᾱ;α0〉 =
√

2ᾱ|α, ᾱ;α0〉, (2.7)

〈α, ᾱ;α0|a0 = 〈α, ᾱ;α0|
√

2α, (2.8)

〈α, ᾱ;α0|ā0 = 〈α, ᾱ;α0|
√

2ᾱ, (2.9)

which are essentially the direct products of holomorphic and antiholomorphic parts of (1.122),

(1.132). The state |α, ᾱ;α0〉 has holomorphic charge α and antiholomorphic charge ᾱ, and

〈α, ᾱ;α0| has holomorphic charge −α and antiholomorphic charge −ᾱ. The mode operators

of the antiholomorphic sector are defined, similarly to the holomorphic part (1.120), by the

mode expansion of ϕ̄(z̄) as

ϕ̄(z̄) = ϕ̄0 − iā0 ln z̄ + i
∑
n6=0

ān

n
z̄−n. (2.10)

The antiholomorphic mode operators satisfy the same Heisenberg algebra as their holomor-

phic counterpart:

[ām, ān] = mδm+n,0, (2.11)

[ϕ̄0, ā0] = i. (2.12)

There is a subtlety in the treatment of ϕ̄0 and ā0 since the zero mode of the boson Φ(z, z̄) does

not naturally decouple into left and right. We split them into two identical and independent

copies such that [ϕ0, ā0] = [ϕ̄0, a0] = 0. In such decomposition the existence of the dual field

is implicit [105]. The highest-weight vector |α, ᾱ;α0〉 is annihilated by the action of an>0

and ān>0, and the contravariant highest-weight vector 〈α, ᾱ;α0| is annihilated by an<0 and

ān<0. Following (1.134) we assume the highest-weight vectors are normalised as

〈α, ᾱ;α0|β, β̄;α0〉 = κ′δα,βδᾱ,β̄ , (2.13)

where κ′ is a normalisation factor, which may be set to 1 if the sector is unitary. If κ′ is

negative we set it to −1.
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We are looking for conformally invariant boundary states built on the highest-weight

vectors |α, ᾱ;α0〉 and 〈α, ᾱ;α0|. Since we know that such states for (uncharged) bosonic

strings are found in the form of coherent states in string theory, let us start with an ansatz

|Bα,ᾱ;α0〉Ω =
∏
k>0

exp
(
−Ω
k
a−kā−k

)
|α, ᾱ;α0〉, (2.14)

Ω〈Bα,ᾱ;α0 | = 〈α, ᾱ;α0|
∏
k>0

exp
(
− 1
kΩ

akāk

)
. (2.15)

These states satisfy

(an + Ωā−n)|Bα,ᾱ;α0〉Ω = 0 (n 6= 0), (2.16)

Ω〈Bα,ᾱ;α0 |(an + Ωā−n) = 0 (n 6= 0). (2.17)

Using the expression of Virasoro operators (1.123) (1.124) we see that |Bα,ᾱ;α0〉Ω does not

satisfy the condition (2.3) straightaway. For example, we have

(Ln − L̄−n)|Bα,ᾱ;α0〉Ω

=
∏
k>0

exp
(
−Ω
k
a−kā−k

)

×
{√

2ā−n[(Ω− 1)nα0 + (Ω + 1)α0 − Ωα− ᾱ]

+
1
2

∑
0<j<n

ā−j āj−n(Ω2 − 1)

 |α, ᾱ;α0〉 (2.18)

for n > 0, and

(L0 − L̄0)|Bα,ᾱ;α0〉Ω

=
∏
k>0

exp
(
−Ω
k
a−kā−k

)
×{(α− ᾱ)(α+ ᾱ− 2α0)} |α, ᾱ;α0〉, (2.19)

which are in general not zero. However, it can be easily seen that the expressions (2.18) and
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(2.19) do vanish when

Ω = 1, (2.20)

and

α+ ᾱ− 2α0 = 0, (2.21)

even for α0 6= 0. It is easily verified that these conditions also lead to (Ln−L̄−n)|Bα,ᾱ;α0〉Ω =

0 for n < 0 and are indeed a sufficient condition for the conformal invariance. Similarly it

can be checked that Ω〈Bα,ᾱ;α0 |(Ln − L̄−n) = 0 as long as (2.20) and (2.21) hold. Note that

the “Dirichlet” condition Ω = −1 is not compatible with the conformal invariance for non-

zero α0 (= ᾱ0) because of the term proportional to n in (2.18). In the rest of this chapter

we shall consider the conformally invariant boundary states satisfying the conditions (2.20)

and (2.21). Since the antiholomorphic charge is determined by the condition (2.21), such

boundary states are characterised by only one parameter α, apart from the value of the

background charge α0 which is fixed by the central charge. For simplicity we shall denote

these boundary states as

|B(α)〉 = |Bα,2α0−α;α0〉Ω=1, (2.22)

and

〈B(α)| = Ω=1〈Bα,2α0−α;α0 |. (2.23)

The background charge α0 is suppressed since no confusion arises.

3 Coherent and consistent boundary states

Identifying boundary states which may be realised in a physical system is one of the main

goals in BCFT. In order to study the modular properties of the coherent states we defined

in the last section and discuss their physical relevance, we need to calculate the closed

string amplitudes between 〈B(α)| and |B(β)〉. Such amplitudes generally involve screening

operators, or floating charges in the bulk. Let us consider the situation where m positive

(α+) and n negative (α−) floating charges are present. The closed-string amplitude for such
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a process is

Aα,β = 〈B(α)|e−THQm
+Q

n
−Q̄

m
+ Q̄

n
−|B(β)〉

= 〈B(α)|(q̃1/2)L0+L̄0−c/12Qm
+Q

n
−Q̄

m
+ Q̄

n
−|B(β)〉, (2.24)

where Q± is defined in (1.116) and

Q̄± ≡
∮
dz̄V̄±(z̄), (2.25)

V̄±(z̄) =: ei
√

2α±ϕ̄(z̄) : . (2.26)

The integration contours must be non-self-intersecting closed curves with non-trivial ho-

motopy. In our geometry such contours are the ones which simply go around the cylinder

just once. A comment on the uniqueness of the amplitude (2.24) is in order. It is easy

to show that [Q+, Q−] = 0, [Q̄+, Q̄−] = 0. Also, [Q±, Q̄±] = 0, [Q±, Q̄∓] = 0 because

the holomorphic and antiholomorphic mode operators commute. As the screening operators

have trivial conformal dimension, they commute with the Virasoro operators: [Ln, Q±] = 0,

[L̄n, Q̄±] = 0. In particular, [L0, Q±] = 0 and [L̄0, Q̄±] = 0. Hence the order and the position

of the screening operators do not matter and the amplitude with m positive and n negative

floating charges may be always written in the form (2.24).

The numbers of the screening charges m and n are not arbitrary but they must satisfy the

charge neutrality condition (otherwise the amplitude vanishes). Note that our formalism (see

the normalisation (2.13)) demands charge neutrality in both holomorphic and antiholomor-

phic sectors. In the holomorphic sector, we have charges −α and β on the boundaries, and m

positive and n negative screening charges in the bulk. The total charge in the holomorphic

part is then

−α+ β +mα+ + nα−, (2.27)

which must be zero. Similarly, the total charge in the antiholomorphic part is −ᾱ + β̄ +

mα+ + nα−, or, using the condition (2.21),

α− β +mα+ + nα−, (2.28)
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which is also zero. Since the sum of the holomorphic and antiholomorphic charges must also

vanish, summing the above two expressions we have mα+ +nα− = 0. Now let us recall that

the screening charges of the minimal models are characterised by two co-prime integers p

and p′ (p > p′) as α+ =
√
p/p′, α− = −

√
p′/p. Then we have

pm− p′n = 0. (2.29)

Since p and p′ are co-prime, m and n are written using an integer l as m = lp′, n = lp.

This means the net floating charges must vanish in both holomorphic and antiholomorphic

sectors. The simplest charge configuration obeying this condition is m = n = 0, or no

screening operators. In this case the amplitude (2.24) is particularly easily evaluated. The

oscillating part is calculated with the Heisenberg algebras (1.119) (2.11) and repeated use of

Hausdorff formula, as
∞∏

k=1

1
1− qk

=
q1/24

η(τ)
. (2.30)

The zero-mode part,

〈α, ᾱ;α0|(q1/2)(a
2
0+ā2

0)/2−
√

2α0(a0+ā0)−c/12|β, β̄;α0〉, (2.31)

is simplified with the central charge (1.114), the condition on boundary charges for conformal

invariance (2.21) and the operation of zero-modes on the highest-weight vectors (2.6)-(2.9),

as

〈α, 2α0 − α;α0|qα2−2α0α+α2
0−1/24|β, 2α0 − β;α0〉. (2.32)

Using the normalisation of the highest weight vectors (2.13) we have

Aα,β = 〈B(α)|(q̃1/2)L0+L̄0−c/12|B(β)〉

=
q̃(α−α0)2

η(τ̃)
κ′δα,β. (2.33)

Note the similarity of these amplitudes to the characters (1.127) of CBFS. This is a conse-

quence of the fact that the Schottky double of the annulus is the torus.

In order to describe the minimal models, it is convenient to introduce boundary states
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|ar,s〉 and |ar,−s〉 defined as

|ar,s〉 =
∑
k∈Z

|B(k
√
pp′ + αr,s)〉, (2.34)

|ar,−s〉 =
∑
k∈Z

|B(k
√
pp′ + αr,−s)〉. (2.35)

Similarly we define

〈ar,s| =
∑
k∈Z
〈B(k

√
pp′ + αr,s)|, (2.36)

〈ar,−s| =
∑
k∈Z
〈B(k

√
pp′ + αr,−s)|. (2.37)

These are linear sums of countably many coherent states (2.22) and (2.23) defined in the

previous section. Using (2.33) it is shown that

〈ar,s|(q̃1/2)L0+L̄0−c/12|ar′,s′〉 =
Θpr−p′s,pp′(τ̃)

η(τ̃)
κ′δr,r′δs,s′

=
Θpr−p′s,pp′(τ̃)

η(τ̃)
δr,r′δs,s′ , (2.38)

〈ar,−s|(q̃1/2)L0+L̄0−c/12|ar′,−s′〉 =
Θpr+p′s,pp′(τ̃)

η(τ̃)
κ′δr,r′δs,s′

= −
Θpr+p′s,pp′(τ̃)

η(τ̃)
δr,r′δs,s′ , (2.39)

and

〈ar,±s|(q̃1/2)L0+L̄0−c/12|ar′,∓s′〉 = 0. (2.40)

Here, we have assumed 1 ≤ r, r′ < p′ and 1 ≤ s, s′ < p. See App. A for our convention of

Jacobi theta functions. We have set κ′ = 1 in (2.38) and κ′ = −1 in (2.39). This means the

states |ar,s〉, 〈ar,s| belong to an unitary sector whereas |ar,−s〉, 〈ar,−s| belong to a non-unitary

sector. The amplitudes include all the theta functions appearing in the characters of minimal

models (1.94) and thus we have reproduced the necessary set of boundary states covering

the right hand side of Cardy’s consistency condition (1.201). We shall see this in detail for

the Ising model in the next section. It can be easily checked by using (2.38) - (2.40) and the
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character formula (1.94) that the states defined as sums of the coherent states,

|(r, s)〉〉 = |ar,s〉+ |ar,−s〉, (2.41)

〈〈(r, s)| = 〈ar,s|+ 〈ar,−s|, (2.42)

diagonalise the amplitude and reproduce the minimal characters. These states |(r, s)〉〉 may

then be regarded as the Ishibashi states.

Before discussing the Ising model, we have three points to make about the boundary

states {|ar,s〉, |ar,−s〉}. Firstly, the amplitudes (2.38), (2.39), (2.40) are diagonal, i.e. the

boundary states are all orthogonal to each other. This is a consequence of the diagonal

amplitude (2.33). Indeed, since the boundary charges k
√
pp′+αr,±s are all different for each

set of (r,±s, k) and the boundary states {|ar,s〉, |ar,−s〉} contain no charges in common, the

amplitudes (2.38), (2.39) must vanish unless (r, s) = (r′, s′). The second point is that these

boundary states are unique (besides the degeneracy (r, s) ↔ (p′ − r, p − s)) as long as we

want to reproduce the theta functions as amplitudes between such boundaries. The infinite

sum expressions (A.15) for the theta functions are power series of q, and the power is related

to the boundary charge through the expression (2.33). By superimposing the boundary

charges appearing in the expression of theta functions, the boundary states are constructed

without ambiguity. Third, the negative-norm states |ar,−s〉 seem to be unavoidable even for

the unitary minimal models. The highest-weight vector |α, ᾱ;α0〉 is built on the vacuum

|0, 0;α0〉 by operating with ei
√

2αϕ0 and ei
√

2ᾱϕ̄0 , and its norm κ′ is due to the normalisation

of the vacuum 〈0, 0;α0|0, 0;α0〉 = κ′. This κ′ may be rescaled to an arbitrary real number

as long as it is either positive or negative definite, but the sign cannot be changed by the

rescaling. The states with κ′ = 1 and κ′ = −1 (that is, |ar,s〉 and |ar,−s〉 above) therefore

belong to different sectors with no intersection.

4 Ising model boundary states

In this section we demonstrate that the boundary states constructed in the previous section

are enough to reproduce the known physical boundary states of the Ising model, by a parallel

discussion with Cardy’s original paper [79]. We shall follow the procedure of Subsec.1.4.3

using the coherent states on CBFS instead of the Ishibashi states.
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From the Rocha-Caridi formula (1.94) the characters for the three representations I, ε,

σ of the Ising model are expressed as

χI(q) = χ1,1(q) =
1

η(τ)
[Θ1,12(τ)−Θ7,12(τ)] , (2.43)

χε(q) = χ2,1(q) =
1

η(τ)
[Θ5,12(τ)−Θ11,12(τ)] , (2.44)

χσ(q) = χ2,2(q) =
1

η(τ)
[Θ2,12(τ)−Θ10,12(τ)] . (2.45)

These expressions are equivalent to (1.207)-(1.209) in Subsec.1.4.3 due to the relations (A.20)-

(A.22). Using the modular transformation formula of the theta and Dedekind functions

(A.24) they are written as

χI(q) =
Θ1,12(τ̃) + Θ5,12(τ̃)−Θ7,12(τ̃)−Θ11,12(τ̃)

2η(τ̃)

+
Θ2,12(τ̃)−Θ10,12(τ̃)√

2η(τ̃)
, (2.46)

χε(q) =
Θ1,12(τ̃) + Θ5,12(τ̃)−Θ7,12(τ̃)−Θ11,12(τ̃)

2η(τ̃)

−Θ2,12(τ̃)−Θ10,12(τ̃)√
2η(τ̃)

, (2.47)

χσ(q) =
Θ1,12(τ̃)−Θ5,12(τ̃)−Θ7,12(τ̃) + Θ11,12(τ̃)√

2η(τ̃)
.

(2.48)

These are the character functions appearing in the open-string channel (left hand side) of

the consistency equation (1.201). In the closed string channel (right hand side) of (1.201)

we expand the boundary states in terms of |ar,±s〉 and 〈ar,±s| defined in (2.34) - (2.37), with

1 ≤ r ≤ 2, 1 ≤ s ≤ 3, and 3s < 4r. In the Ising model the non-trivial amplitudes (2.38),
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(2.39) are

〈a1,1|(q̃1/2)L0+L̄0−c/12|a1,1〉 = Θ1,12(τ̃)/η(τ̃), (2.49)

〈a2,2|(q̃1/2)L0+L̄0−c/12|a2,2〉 = Θ2,12(τ̃)/η(τ̃), (2.50)

〈a2,1|(q̃1/2)L0+L̄0−c/12|a2,1〉 = Θ5,12(τ̃)/η(τ̃), (2.51)

〈a1,−1|(q̃1/2)L0+L̄0−c/12|a1,−1〉 = −Θ7,12(τ̃)/η(τ̃), (2.52)

〈a2,−2|(q̃1/2)L0+L̄0−c/12|a2,−2〉 = −Θ10,12(τ̃)/η(τ̃), (2.53)

〈a2,−1|(q̃1/2)L0+L̄0−c/12|a2,−1〉 = −Θ11,12(τ̃)/η(τ̃). (2.54)

Using these amplitudes and equating the coefficients of Θ1,12(τ̃)/η(τ̃), Θ2,12(τ̃)/η(τ̃),

Θ5,12(τ̃)/η(τ̃), Θ7,12(τ̃)/η(τ̃), Θ10,12(τ̃)/η(τ̃) and Θ11,12(τ̃)/η(τ̃) on both sides of (1.201),

we have

1
2
nI

α̃β̃
+

1
2
nε

α̃β̃
+

1√
2
nσ

α̃β̃
= 〈α̃|a1,1〉〈a1,1|β̃〉, (2.55)

1√
2
nI

α̃β̃
− 1√

2
nε

α̃β̃
= 〈α̃|a1,2〉〈a1,2|β̃〉, (2.56)

1
2
nI

α̃β̃
+

1
2
nε

α̃β̃
− 1√

2
nσ

α̃β̃
= 〈α̃|a1,3〉〈a1,3|β̃〉, (2.57)

1
2
nI

α̃β̃
+

1
2
nε

α̃β̃
+

1√
2
nσ

α̃β̃
= 〈α̃|a1,−1〉〈a1,−1|β̃〉, (2.58)

1√
2
nI

α̃β̃
− 1√

2
nε

α̃β̃
= 〈α̃|a1,−2〉〈a1,−2|β̃〉, (2.59)

1
2
nI

α̃β̃
+

1
2
nε

α̃β̃
− 1√

2
nσ

α̃β̃
= 〈α̃|a1,−3〉〈a1,−3|β̃〉. (2.60)

Let us find the coefficients assuming that they are real and 〈α̃|ar,±s〉 = 〈ar,±s|α̃〉. We

start by letting α̃ = β̃ = 0̃. The first equation (2.55) gives |〈0̃|a1,1〉|2 = 1/2 and we can

choose 〈0̃|a1,1〉 = 1/
√

2. Likewise, from (2.56) - (2.60) we find 〈0̃|a2,2〉 = 〈0̃|a2,−2〉 = 2−1/4,

〈0̃|a2,1〉 = 〈0̃|a1,−1〉 = 〈0̃|a2,−1〉 = 1/
√

2. Next, letting α̃ = ε̃ and β̃ = 0̃ we find 〈ε̃|a1,1〉 =

〈ε̃|a2,1〉 = 〈ε̃|a1,−1〉 = 〈ε̃|a2,−1〉 = 1/
√

2, and 〈ε̃|a2,2〉 = 〈ε̃|a2,−2〉 = −2−1/4. Lastly, putting

α̃ = σ̃ and β̃ = 0̃ we find 〈σ̃|a1,1〉 = 〈σ̃|a1,−1〉 = 1, 〈σ̃|a2,2〉 = 〈σ̃|a2,−2〉 = 0 and 〈σ̃|a2,1〉 =

〈σ̃|a2,−1〉 = −1. Then the consistent boundary states are expressed in terms of the coherent
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states as

|Ĩ〉 = |0̃〉 = 2−1/2(|a1,1〉+ |a1,−1〉+ |a2,1〉+ |a2,−1〉)

+2−1/4(|a2,2〉+ |a2,−2〉), (2.61)

|ε̃〉 = 2−1/2(|a1,1〉+ |a1,−1〉+ |a2,1〉+ |a2,−1〉)

−2−1/4(|a2,2〉+ |a2,−2〉), (2.62)

|σ̃〉 = |a1,1〉+ |a1,−1〉 − |a2,1〉 − |a2,−1〉. (2.63)

These are exactly the same result as (1.211) - (1.213), as the relation between the Ishibashi

states and the coherent states are given in (2.41) and (2.42). We have thus shown for the

Ising model that the coherent states constructed on CBFS are not merely a subspace of the

boundary states but they cover the space spanned by Cardy’s consistent boundary states.

In the case of the Ising model, a similar construction of the boundary states from coherent

states has been done using free Majorana fermions [85, 106, 107]. This is summarised in

App.B. In a sense the present analysis is a generalisation of such a construction to general

minimal theories.

5 Beyond minimal models

In this chapter we have constructed a set of coherent states on CBFS which preserve the

conformal invariance, and argued that Cardy’s consistent boundary states for minimal models

are expressed as linear combinations of such states. We have demonstrated this explicitly

in the example of Ising model. Our approach provides a new intuitive picture of boundary

states in CFT, in terms of the boundary charges which obey the charge neutrality conditions

with bulk screening operators.

Once consistent boundary states are expressed in terms of the coherent states, it is in

principle possible to compute boundary n-point functions on an annulus directly without

resorting to extra information on the boundary. The n-point function on the upper half

plane involving an operator φr,s is found in the conventional method of Subsec.1.4.2 by

solving the (r × s)-th order differential equations satisfied by the 2n-point function on the

full plane [78]. Solutions to such a differential equation are in the form A1F1 + A2F2 + · · ·
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where Fi represent the conformal blocks, and the coefficients Ai reflect boundary conditions

and are determined by considering e.g. the asymptotic behaviour of the n-point function.

In our Coulomb-gas approach, n-point functions on an annulus are obtained by inserting

vertex operators between the boundary-to-boundary amplitudes, with appropriate inclusion

of screening operators, leading to an integral representation of the correlation functions. In

practice, however, such expressions involving multiple integrals of theta-functions are not

always easy to evaluate.

We would like to conclude this chapter by mentioning applications of this formalism to two

classes of CFTs with extended symmetry, WZNW model and CFTs with W-symmetry. In

WZNW theories, the Sugawara-Sommerfeld (SS) energy-momentum tensor is expressed using

free-fields by employing the Wakimoto free-field representation [108] of current operators. It

is shown in [109] that bosonisation of this SS tensor leads to a sum of Coulomb-gas systems.

For example, SS energy-momentum tensor for the ŝl(2)k WZNW theory is expressed as

T (z) =
3∑

j=1

Tj(z), (2.64)

with

Tj(z) = −1
2
(∂ϕj)2 + i

√
2α(j)

0 ∂2ϕj , (2.65)

α
(1)
0 =

1
2
√

2
, α

(2)
0 =

1
2
√

2
, α

(3)
0 = − 1

2
√
k + 2

. (2.66)

The central charge of this model is c = 3−6/(k+2), which is the sum of the three Coulomb-

gas systems. It is also suggested in [110, 111] that CFTs involving W-algebra are realised

by multiple scalar fields. For the system with W-operators T , W (3), W (4), · · · , W (n), the

energy-momentum tensor takes the form

T (z) = −1
2
∂~ϕ · ∂~ϕ+ 2iα0~ρ · ∂2~ϕ, (2.67)

where ~ϕ is a (n−1)-component scalar field and ~ρ is a (n−1)-component constant vector. The

central charge is c = n− 1− 24α2
0~ρ · ~ρ. As these systems have been reduced to Coulomb-gas

formalism, such systems in the presence of boundaries should be able to analysed with the
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method presented in this chapter. An obvious merit for this is that the action of current

operators on boundary states is explicitly seen. We postpone these topics to publications

elsewhere.



Chapter 3

Logarithmic CFT with boundary

Happy conformal families are all alike; every unhappy family is unhappy in its own way.

– Leo Tolstoy, Anna Karenina (adapted).

In this chapter we discuss several features of logarithmic CFTs in the presence of bound-

ary. Our main result is the existence of consistent boundary states which are found by using

a free-field construction of the c = −2 triplet theory.

1 Boundary logarithmic CFT – Overview

For the past years the so-called logarithmic conformal field theories (LCFTs) have attracted

much attention, and there are good reasons for this. After the landmarking paper by Belavin,

Polakov and Zamolodchikov [1], the idea of conformal invariance in two-dimensional field

theory has been investigated with great interest and has achieved a remarkable success. The

interest in CFT is not restricted in physics but also spread in mathematics, as almost all

areas of mathematics, ranging from algebra, analysis, geometry, to number theory, are proved

to be related to CFT. After the successful establishment of the concept of rational CFTs,

it is natural to ask how far the standard mathematical results applies to less well-behaved

‘left-over’ models, that is, LCFT.

By now many problems in physics have been claimed to be solved using LCFTs. In string

theory context, it is argued that logarithmic operators may play important roles in several

situations, such as D-brane recoil [71,72] and dimensional up-grading [112]. Although these

theories are rather speculative due to the non-unitary nature of LCFT, they certainly deserve

68
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more serious investigation because they may lead to new physics. In statistical physics, non-

unitary theories are not exotic; a subsystem interacting with the outer environment may

in general be non-unitary. Indeed, there are a number of statistical systems which are

conjectured to be modelled by non-unitary, possibly logarithmic CFTs.

The current research on LCFT may be said to be driven by two motivations: to under-

stand the mathematical structure of LCFT, and to model a certain class of physical systems

using LCFT. From either point of view, it now seems to be both natural and rewarding to

consider boundary theory of LCFT. Regarding the enormous recent progress in the algebraic

study of boundary rational CFTs, it is quite interesting from the mathematical side to see

what is happening in the algebraic structure of boundaries in LCFT. In the field of statistical

physics, the study of polymers has become a big area and interesting boundary properties

have been found [113–115]. As certain universality class of critical polymers are conjectured

to be modelled by LCFT, we expect such boundary properties of polymers are somehow

related to boundary LCFT. Furthermore, boundaries is potentially essential for LCFT itself

because LCFTs are in general non-unitary and hence being far from a boundary does not

guarantee the irrelevance of the boundary effect; once we have a boundary, its effect may

change the system globally. Despite all this interest in the subject, the study of boundary

LCFT started only recently. This is probably because the bulk theory itself is fairly compli-

cated for LCFT and much of the attention had been focused on it. Now that the structure of

modules and fusion algebra are understood [47,48,77] and that a free-field representation is

available [49,50] at least for the simplest model, we are in a good position to start discussing

the theory with boundary.

Apart from the study of the surface critical behaviour of the O(n) model [114, 115], the

first paper that mentioned boundary in LCFT is by Moghimi-Araghi and Rouhani [116].

Soon after this, boundary theories are more extensively considered by Kogan and Wheater

[117], who obtained explicit boundary correlation functions in c = −2 and c = 0 models.

We shall review the c = −2 case in the next section. They also proposed a possible form

of boundary operators and addressed a problem in the standard Cardy’s construction of

boundary states applied to these models, which arises from the unconventional modular

transformation properties of characters. The main topic of this chapter is on the resolution

of this problem [118], which is discussed in Sec.3.4. Using a free-field representation, we
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show that boundary states with consistent modular properties are found by Cardy’s method.

Before discussing the boundary states, we review in Sec.3.3 algebraic [47,48,75,77] and free-

field [49,50] constructions of the so-called triplet model at c = −2. We summarise the results

and discuss physical implications in Sec.3.5.

2 Boundary correlation functions in LCFT

An important goal of boundary CFT is to find correlation functions near the boundary. In

the following we see this for the boundary 2-point function of h = −1/8 operators in c = −2

model, following [117].

The CFT at c = c2,1 = −2 is one of the logarithmic CFTs that has been studied most

intensively and are so far best understood. This was used by Gurarie [46] to discuss the

importance of logarithmic operators (see Subsec.1.3.7), and it is also claimed that certain

universality classes of two-dimensional statistical models (such as critical polymers in the

dense phase [44] and the Abelian sandpile model [65, 66]) are described by this theory. The

operator content of this theory is as given in the extended Kac table of Subsec.13.7, where

we assume 0 < r < 3 and 0 < s < 6. Although the Kac determinant for operators with

non-standard transformation properties (such as ω) must be suitably modified [74,119], the

original Kac formula still applies to operators like Ω and µ. For these operators, the structure

of singular vectors are the same as the Virasoro minimal models. Therefore the procedure in

Subsec.1.3.7 to find the bulk 4-point function of µ operators is indeed the correct calculation.

For the boundary theory defined on the half plane, boundary n-point functions of the

Virasoro minimal models are found by solving differential equations for the chiral 2n-point

functions on the plane, with the mirroring technique reviewed in Subsec.1.4.2. This method

safely applies to operators like µ in the c = −2 model [116, 117]. The boundary 2-point

function of the spin −1/8 operators 〈µµ〉B is then equivalent to the 4-point function,

〈µ(z1, z̄1)µ(z2, z̄2)〉B = 〈µ(z1)µ(z2)µ(z∗1)µ(z∗2)〉chiral. (3.1)

As is discussed in Subsec.3.7, this chiral 4-point function satisfies a second order differen-

tial equation, which reduces to a hypergeometric differential equation due to the Möbius
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symmetry. The general form of the solution is

〈µ(z1, z̄1)µ(z2, z̄2)〉B

= |z1 − z∗2 |1/2z1/4(1− z)1/4

{
AF (

1
2
,
1
2
, 1; z) +BF (

1
2
,
1
2
, 1; 1− z)

}
, (3.2)

where z is the cross ratio,

z =
(z1 − z2)(z∗1 − z∗2)
(z1 − z∗2)(z

∗
1 − z2)

=
|z1 − z2|2

|z1 − z∗2 |2
, (3.3)

and A and B are constants to be determined by boundary conditions. This is a single-valued

function since z is always real and 0 < z < 1.

If the points z1 and z2 are away from the boundary but the separation is kept fixed, we

have z → 0 and then

〈µ(z1, z̄1)µ(z2, z̄2)〉B → A|z1 − z2|1/2 + 2B|z1 − z2|1/2 ln |z1 − z2|. (3.4)

The first term is the same as the bulk 2-point function. Hence, we may let B = 0 if we want

to recover the bulk result by letting z1 and z2 away from the boundary. However, there is

no physical motivation to do so because our theory is not unitary and the 2-point function

grows with the separation, that is, being away from the boundary does not guarantee the

negligibility of the boundary effect.

If the two operators are close to the boundary, we have z → 1 and then F (1
2 ,

1
2 , 1; 1−z) →

1. The correlation function is dominated by the first term,

〈µ(z1, z̄1)µ(z2, z̄2)〉B ∼ 2A|z1 − z∗1 |1/2 ln
|z1 − z∗1 |
|z1 − z2|

, (3.5)

displaying a logarithmic behaviour. Therefore the 2-point function of µ operators exhibit

logarithmic divergences at least either away from or close to the boundary. This is, of course,

in a stark contrast with unitary cases.
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3 Triplet c = −2 model and symplectic fermions

Extension of the Kac table discussed in Subsec.1.3.7 allows us to find correlation functions

with or without boundary by solving differential equations. This method is quite powerful

and is apparently a correct approach at least for some cases. For example, in the percolation

problem reviewed in Subsec.1.4.5, the result obtained by solving such a differential equation

is supported by a remarkable agreement with numerical calculations.

It is however obviously necessary to stand on more solid ground, in order to discuss

the content and algebra of LCFT in detail. As logarithmic operators are not included in

the (extended) Kac table, one cannot treat logarithmic theories in a full analogy with the

minimal models. One desirable direction of research is to consider the structure of the

singular vectors in logarithmic theories and formulate logarithmic Kac tables. Such an

attempt has been recently made by Flohr [119], but at the moment this task has yet to be

completed.

Although it is not easy to discuss LCFTs in general, at c = −2 there exists a well-

understood model of LCFT, called the triplet model. This was found by Kausch [120] as one

of the series of CFTs characterised by a triplet of W-algebra, and has been studied in detail

for many years [47, 48, 75, 77]. The triplet model has many nice properties similar to the

minimal models, and hence it is speculated to be a proper realisation of a next-to-minimal

CFT, if such a theory does exist. There is also a free-field representation of a c = −2 CFT,

realised by the so-called symplectic fermions [49,50,121], which is basically a fermionic ghost

system with a modified zero-mode. It has been shown that the triplet model is realised by

the bosonic sector of the symplectic fermions.

In the following we review the algebraic and free-field (symplectic fermion) realisations of

the triplet model, and discuss the representations of the triplet model and collect the results

needed for later discussions.

3.1 The triplet model in the algebraic approach

The triplet algebra W(2, 3, 3, 3) is an extension of the Virasoro algebra by a triplet of spin 3

fields W a(z), which is identified with φ3,1(z) in the Kac table. The commutation relations
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for this algebra are

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0, (3.6)

[Ln,W
a
m] = (2n−m)W a

n+m, (3.7)

[W a
n ,W

b
m] = gab

[
2(n−m)Λn+m +

1
20

(n−m)(2n2 + 2m2 −mn− 8)Ln+m

− 1
120

n(n2 − 1)(n2 − 4)δn+m

]

+fab
c

[
5
14

(2n2 + 2m2 − 3mn− 4)W c
n+m +

12
5
V c

n+m

]
, (3.8)

where

Λ =: L2 : − 3
10
∂2L, V a =: LW a : − 3

14
∂2W a, (3.9)

and gab and fab
c are the metric and the structure constants of su(2), which are in an

orthonormal basis gab = δab and fab
c = iεabc.

A crucial ingredient of the triplet model is the existence of vacuum null vectors at level

6,

Na =
[
2L−3W

a
−3 −

4
3
L−2W

a
−4 +W a

−6

]
Ω, (3.10)

Nab =
[
W a
−3W

b
−3 − gab

(
8
9
L3
−2 +

19
36
L2
−3 +

14
9
L−4L−2 −

16
9
L−6

)

− fab
c

(
5
4
W c
−6 − 2L−2W

c
−4

)]
Ω, (3.11)

where Ω is the Möbius invariant vacuum. It can be shown that any highest weight state ψ

compatible1 with these null vectors must satisfy the following two conditions:

[
W a

0W
b
0 −

1
9
gabL2

0(8L0 + 1)− 1
5
fab

c(6L0 − 1)W c
0

]
ψ = 0, (3.12)

W a
0 (8L0 − 3)(L0 − 1)ψ = 0. (3.13)

1This implies that any correlation functions of ψ’s with a null vector must vanish.
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Multiplying (3.13) with W a
0 and using (3.12), we have

L2
0(8L0 + 1)(8L0 − 3)(L0 − 1)ψ = 0. (3.14)

It is important to notice that the L0 factor appears quadratically. This implies that irre-

ducible representations must have highest weights h = 0, −1/8, 3/8 or 1, but Jordan-cell

representations

L0ω = Ω, L0Ω = 0, (3.15)

are also allowed since L2
0 = 0 does not necessarily require L0 = 0.

These irreducible representations are classified by using the (rescaled) su(2) algebra

[W a
0 ,W

b
0 ] =

2
5
(6h− 1)fab

cW
c
0 , (3.16)

which follows from (3.12). Letting m and j(j+1) be the eigenvalues of W 3
0 and the quadratic

Casimir
∑

a(W
a
0 )2 after rescaling, we have j(j + 1) = 3m2 because of W a

0W
a
0 = W b

0W
b
0 (no

sum) which is obtained from (3.12). The only possible values of j are either 0 or 1/2, and

this restricts the allowed irreducible representations as [47,75,122]

V0 : the singlet (j = 0) representation at h = 0.

V−1/8 : the singlet (j = 0) representation at h = −1/8.

V1 : the doublet (j = 1/2) representation at h = 1.

V3/8 : the doublet (j = 1/2) representation at h = 3/8.

The above discussion is made mathematically more rigorous by resorting to Zhu’s algebra

[47,75,123].

The fusion rules of these irreducible representations are calculated using a comultiplica-

tion formula [47, 75]. It is shown that the fusions do not close for the irreducible represen-

tations but they involve ‘reducible but indecomposable’ representations R0 and R1. The



3 Triplet c = −2 model and symplectic fermions 75

explicit fusion results are summarised as follows:

Ri ×Rj = 2R0 + 2R1 i, j = 0, 1,

Ri × Vj = R0 (i, j) = (0, 0), (1, 1),

= R1 (i, j) = (0, 1), (1, 0),

= 2V−1/8 + 2V3/8 i = 0, 1; j = −1
8 ,

3
8 ,

Vi × Vj = V0 (i, j) = (0, 0), (1, 1),

= V1 (i, j) = (0, 1), (1, 0),

= V−1/8 (i, j) = (0,−1
8), (1, 3

8),

= V3/8 (i, j) = (1,−1
8), (0, 3

8),

= R0 (i, j) = (−1
8 ,−

1
8), (3

8 ,
3
8),

= R1 (i, j) = (−1
8 ,

3
8), (3

8 ,−
1
8).

(3.17)

The structure of the representations R0 and R1 are schematically depicted as (after [47,48,

75])

R0

Ω ω

ψ1 ψ2
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Q
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Q
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Q
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where the arrows indicate the action of the triplet algebra, Ln and W a
n . Each element

represents an irreducible representation. In both diagrams, the uppers rows are h = 1 and

the bottom are h = 0. In R0, the singlet Ω is the ground state of V0. The states ψ1 and ψ2

are actually four states L−1ω and W a
−1ω, forming two doublets under su(2). The elements in

R1 are generated from the doublet states φ± of weight h = 1, and ψ± are the highest weight

states of the su(2) doublet irreducible representation V1. The ground states of R1 are the

doublet ξ± at h = 0. The two doublets ψ± and φ± form an L0 Jordan block at h = 1. More

precisely, the subrepresentations in R0 and R1 are characterised by the following defining
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relations [47,48,75]:

L0ω = Ω, L0Ω = 0,

W a
0 ω = 0, W a

0 Ω = 0,
(3.18)

and

L1φ
α = −ξα, W a

1 φ
α = taα

β ξβ,

L0φ
α = φα + ψα, W a

0 φ
α = 2taα

β φβ ,

L0ξ
α = 0, W a

0 ξ
α = 0,

L−1ξ
α = ψα, W a

−1ξ
α = taα

β ψβ,

L0ψ
α = ψα, W a

0 ψ
α = 2taα

β ψβ,

(3.19)

where α and β are the su(2) doublet indices. In Cartan-Weyl basis, t0±± = ±1/2, t±∓± = 1.

Note that, for an instance, L−1ω is not null since L1L−1ω = [L1, L−1]ω = 2Ω 6= 0.

The fusion rules (3.17) indicate that they close for the four representations R0, R1, V−1/8

and V3/8. Thus the triplet model is regarded as a rational conformal field theory, with a

weakened definition of rationality [47]. The local and non-chiral representations of the triplet

model are discussed in [48], where the theory with finite multiplicity consists of three non-

chiral representations, namely, V−1/8 ⊗ V̄−1/8, V3/8 ⊗ V̄3/8 and R which is a combination of

(R0⊗R̄0)/N00̄ and (R1⊗R̄1)/N11̄, where N00̄ and N11̄ are subspaces to be quotiented out.

3.2 Symplectic fermions

It is well known that the Ising model at c = 1/2 is related to the free Majorana fermion of the

same central charge, through the Jordan-Wigner transformation. The triplet c = −2 model

discussed so far is similarly related to a two-component free fermion, called the symplectic

fermion. The correspondence is rather direct, and it has been shown that its bosonic sector

reproduces the triplet model [49,50].

The symplectic fermion is closely related to the simple ghost system of the same central

charge c = −2, whose action is

S =
1
π

∫
d2z(η∂̄ξ + η̄∂ξ̄). (3.20)

Here, η and ξ are fermionic ghosts with conformal dimensions hη = 1 and hξ = 0. The
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operator products are

η(z)ξ(w) ∼ ξ(z)η(w) ∼ 1/(z − w), (3.21)

reflecting the Grassmannian nature of the operators. Symplectic fermions are introduced as

operators of conformal dimensions hχ± = 1, defined as

χ+ ≡ η, χ− ≡ ∂ξ. (3.22)

The mode expansions,

χ±(z) =
∑
k∈Z

χ±k z
−k−1, (3.23)

define the mode operators χ±k with anti-commutation relations,

{χα
m, χ

β
n} = mdαβδm+n, (3.24)

where dαβ is antisymmetric and d±∓ = ±1. These symplectic fermions differ from the η-ξ

simple ghost system by the zero-mode of ξ. The absence of ξ0 enhances the symmetry and

realises the triplet model at c = −2.

The orbifold structure is obtained by considering twisted sectors as well as the untwisted

sector [44,49,50]. The twisted sectors are built on the vacuum by operating with a twisting

field σk/N , and the resulting theory becomes ZN invariant. It is argued that the ZN orbifold

model constructed like this has a W-algebra of type W(2, 3, N(N +1)/2, N(N +1)/2) [121].

In the case of N = 2 the model possesses W(2, 3, 3, 3) symmetry which is generated by the

stress tensor

T (z) =: χ−(z)χ+(z) + λ(λ− 1)/2, (3.25)

where λ = 0 for the untwisted and λ = 1/2 for the twisted sector, and a triplet of W-fields

with conformal dimension 3,

W 0 = −1
2
(: ∂χ+(z)χ−(z) : + : ∂χ−(z)χ+(z) :),

W± =: ∂χ±(z)χ±(z) : . (3.26)

In the following we only consider theN = 2 case which reproduces the triplet model. Virasoro
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operators and W -mode operators are found from these as

Ln =
1
2
dαβ

∑
m∈Z+λ

: χα
mχ

β
n−m : +

λ(λ− 1)
2

δn0, (3.27)

and

W 0
n = −1

2

∑
j∈Z+λ

j
{

: χ+
n−jχ

−
j : + : χ−n−jχ

+
j :
}
,

W±
n =

∑
j∈Z+λ

jχ±n−jχ
±
j . (3.28)

Derivation of these mode operators based on the twisted Borcherds identity is detailed in

App.C.

The irreducible representations with conformal weights −1/8, 0, 3/8 and 1 are reproduced

in the Fock space representations of the symplectic fermions as follows [48–50, 75]. The

ground state of the twisted sector which is obtained by operating with σ1/2 on the vacuum

is denoted by µ. This µ has conformal weight −1/8, and then the singlet representation

V−1/8 is defined as states built on µ. The doublet of the states ν± ≡ χ±−1/2µ has conformal

dimension 3/8 and this is the highest-weight state of the doublet representation V3/8. The

representations belonging to the untwisted sector are more complicated. Let ω be a state

annihilated by operations with χ±n>0. Then there are four ground states, ω, θ± = −χ±0 ω,

and Ω = χ−0 χ
+
0 ω = L0ω. As Ω is annihilated by further operations with zero modes, it

is identified as the Möbius invariant vacuum. The irreducible vacuum representation V0 is

built on the ground state Ω. Similarly, the irreducible doublet representation V1 at h = 1 is

built on the doublet ψ± = χ±−1Ω.

As is discussed in the previous subsection, these four irreducible representations V−1/8,

V3/8, V0 and V1 do not close under the fusion; extra representations R0 and R1 are necessary.

The ‘reducible but indecomposable’ representation R0 is obtained by extending the vacuum

V0 to include ω, L−1ω and W a
−1ω as well as Ω. The two bosonic ground states Ω and ω span

a two-dimensional Jordan cell on the action of L0, forming a ‘logarithmic pair.’ The repre-

sentation R1 is obtained likewise, by extending V1 to include φ± = χ±−1ω and ξ± = −L1φ
±

in addition to ψ± = χ±−1Ω. The doublet states ψ± and φ± form a logarithmic pair at h = 1.



3 Triplet c = −2 model and symplectic fermions 79

The four representations V−1/8, V3/8, R0 and R1 then close under the fusion. Now it is

obvious that neglecting the fermionic states (such as θ±), the symplectic fermion reproduces

the triplet model. The correspondence between the triplet model and the symplectic fermion

is summarised as follows:

Twisted sector

µ ↔ V−1/8

ν± ≡ χ±−1/2µ ↔ V3/8

Untwisted sector

Ω = L0ω ↔ V0

ψ± ≡ χ±−1Ω ↔ V1

ω, Ω, L−1ω, W a
−1ω ↔ R0

φ± ≡ χ±−1ω, ψ±, ξ± ≡ −L1φ
± ↔ R1

3.3 Modular invariants

The fusion rule of the triplet model (3.17) is quite unusual in that it is not diagonalisable.

This is in a sharp contrast with ordinary rational theories, where fusion matrices are always

diagonalised with modular S matrices through the Verlinde formula. As is expected from

the failure of the Verlinde formula, the characters of the triplet model are quite unusual as

well. They are calculated in [47,50,124,125] as

χV0(τ) =
Θ1,2(τ)
2η(τ)

+
1
2
η(τ)2,

χV1(τ) =
Θ1,2(τ)
2η(τ)

− 1
2
η(τ)2,

χV−1/8
(τ) =

Θ0,2(τ)
η(τ)

,

χV3/8
(τ) =

Θ2,2(τ)
η(τ)

,

χR0(τ) = χR1 =
2Θ1,2(τ)
η(τ)

, (3.29)
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where Θk,l(τ) and η(τ) are Jacobi theta functions and Dedekind eta function, respectively

(see App.A for definitions). Note that these character functions are not independent, χR0 =

χR1 = 2χV0 + 2χV1 . The mutual dependence of the character functions is reminiscent of

the minimal Virasoro theories with extra symmetry (such as the three-state Potts model).

What is pathological about these characters is their modular transformation property. Since

η(τ)2 → η(τ̃)2 = −iτη(τ)2 as τ → τ̃ = −1/τ , the character functions do not transform into

each other linearly under the modular transformation.

Nevertheless, we may construct a modular-invariant partition function from these char-

acter functions [48,75]. Indeed,

Z(τ, τ̄) = χV−1/8
χ̄V−1/8

+ χV3/8
χ̄V3/8

+ 2χV0χ̄V0 + 2χV0χ̄V1 + 2χV1χ̄V0 + 2χV1χ̄V1

= χV−1/8
χ̄V−1/8

+ χV3/8
χ̄V3/8

+ 2χR0χ̄R0 + 2χR0χ̄R1 + 2χR1χ̄R0 + 2χR1χ̄R1

=
1

|η(τ)|2
3∑

k=0

|Θk,2(τ)|2, (3.30)

is easily verified to be invariant under both τ → −1/τ and τ → τ + 1.

4 Boundary states of c = −2 triplet model

As c = −2 theory is expected to model statistical systems such as polymers, it is not

conceivable that this theory has no consistent boundary states. On the other hand, as is

expected from the failure of the Verlinde formula, we have a difficulty applying Cardy’s

method illustrated in Subsec.1.4.3 to the triplet model at c = −2. When we try to find

consistent boundary states as linear combinations of Ishibashi states, we immediately notice

that the modular S-matrices for the triplet model cannot be defined because the characters

(3.29) do not close under the modular S transformation. One way to circumvent this difficulty

is to add another character involving −iτη2(τ) and enlarge the set of character functions

[74, 124, 125]. This however introduces a mysterious extra representation which appears

neither in algebraic nor free-field construction of the triplet model.

In this section we analyse this problem carefully by using the symplectic fermion repre-

sentation of the triplet model. Our starting point is noticing that the closed string boundary

states in (1.201) may be expanded with any basis of boundary states, not necessarily Ishibashi
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states. Since the construction of Ishibashi states rely on the existence of well-defined con-

formal towers which are unavailable in the c = −2 triplet model, we shall construct more

‘sound’ boundary states in the Fock space using the symplectic fermions. As boundary

states in CFT must satisfy the conditions for diffeomorphism invariance (1.195), and it is

well known in string theory that such boundary states for boson, fermion and ghost fields are

found in the form of coherent states, we shall construct coherent states of symplectic fermion

and use them as a basis to span the boundary states of the triplet model. As we shall see

below in detail, it turns out that boundary states with consistent modular properties are ob-

tained as linear sums of such coherent states. In particular, the modular function −iτη2(τ)

naturally appears in the amplitudes between such coherent states, without introducing any

extra representations of the theory. The results of this section have been published in [118].

4.1 Boundary conditions for symplectic fermion

Let us consider a situation where CFT is defined on the upper ζ-plane and the action of a

general chiral field J on the boundary ζ = ζ̄ is given by

[
J(ζ)− ΓJ̄(ζ̄)

]
ζ=ζ̄

= 0. (3.31)

Here, Γ is an element of a gluing automorphism group, which tells how the holomorphic and

antiholomorphic J-operators are related on the boundary. When Γ = 1 (identity element),

this simply means the trivial continuity of J across the boundary. As we have done in

Subsec.1.4.3 and in Sec.2.2, we conformally map a semi-annular domain in the upper half

ζ-plane onto a full annulus in the z-plane, by z = exp(−2πiw/L) and w = (T/π) ln ζ. Under

this mapping the boundary ζ = ζ̄ is mapped to |z| = 1, exp(2πT/L), and the condition

(3.31) reads

zsJJ(z) = (−z̄)sJ ΓJ̄(z̄), (3.32)

on the boundary. Here, sJ is the spin of J . Now that the z-plane allows radial quantization,

the continuity of J may be translated into conditions on the boundary states at |z| = 1

as [79,93]

(Jm − (−1)sJ ΓJ̄−m)|B〉 = 0. (3.33)
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When J(z) is the energy-momentum tensor T (z), (3.33) becomes

(Lm − ΓL̄−m)|B〉. (3.34)

In this case, Γ must be the identity in order that the boundary be diffeomorphism invariant.

Now consider the action (3.20), defined on a cylinder of circumference L and length T .

Modular parameters are defined as q̃ = e−4πT/L and τ̃ = 2iT/L. Following the standard

construction of Dirichlet and Neumann boundary states in open superstring theory [126–128],

we assume that the boundary term in the action vanishes, ηξ + η̄ξ̄ = 0. Since η and ξ

have different scaling dimensions, this condition is decomposed into the linear conditions

that η = eiφη̄ and ξ = ei(π−φ)ξ̄ on the boundary. Here, φ is a phase factor reflecting the

U(1) symmetry of the system. These conditions are trivially consistent with the conformal

invariance. Although it might be possible to include non-trivial interactions between bulk

and boundary by introducing conformally invariant boundary terms, we do not consider such

terms here. These conditions are translated through radial quantisation into conditions on

the boundary states |B〉 as in (3.33). The difference of the η-ξ ghost and the symplectic

fermion is taken into account by neglecting the conditions involving ξ0 and ξ̄0. One may now

look for the conformally invariant symplectic fermion boundary states |B〉 and 〈B| as states

satisfying the conditions,

(
χ±m − e±iφχ̄±−m

)
|B〉 = 0,

〈B|
(
χ±m − e±iφχ̄±−m

)
= 0, (3.35)

where χ±m and χ̄±m are the symplectic fermion mode operators.

4.2 Conformally invariant boundary states

Again by analogy with open string theory, let us consider the coherent states,

|B0φ〉 = N exp

(∑
k>0

eiφ

k
χ−−kχ̄

+
−k +

e−iφ

k
χ̄−−kχ

+
−k

)
|0φ〉,

〈B0φ| = 〈0φ|N∗ exp

(∑
k>0

eiφ

k
χ−k χ̄

+
k +

e−iφ

k
χ̄−k χ

+
k

)
, (3.36)
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whereN andN∗ are normalization constants, and k runs over integers in the untwisted sector

and half-integers in the twisted sector. The non-chiral ground states |0φ〉 are annihilated by

the positive modes,

χ±k>0|0φ〉 = 0 = χ̄±k>0|0φ〉, (3.37)

and 〈0φ| by the negative modes,

〈0φ|χ±n<0 = 0 = 〈0φ|χ±n<0. (3.38)

It is easily shown that the states (3.36) indeed satisfy the conditions (3.35) as long as the

untwisted sector ground states |0φ〉 and 〈0φ| satisfy the conditions

(
χ±0 − e±iφχ̄±0

)
|0φ〉 = 0, 〈0φ|

(
χ±0 − e±iφχ̄±0

)
= 0. (3.39)

Then the states (3.36) satisfy the condition (1.195) and its bra counterpart.

In the untwisted (or NS) sector of the triplet model, the ground states are doubly degen-

erate (Ω and ω) and thus we have |Ω〉 and |ω〉. The ground state of the twisted (R) sector

is unique (µ) so we have |µ〉. We normalize these ground states to be

〈ω|ω〉 = κ,

〈Ω|ω〉 = 〈ω|Ω〉 = ρ ≡ −1,

〈Ω|Ω〉 = 0,

〈µ|µ〉 = 1. (3.40)

For the convenience of later discussions we have chosen ρ = −1. Although the negative

sign may look strange, this is the choice of the sign which simplifies the following results

enormously. We leave the value of κ unfixed2. The boundary states (3.36) are indexed by

the phase factor φ and the choice of ground state 0φ which may also depend on φ.

The phase factor φ is related to the gluing automorphism Γ of the triplet W-current W a.

The action of the triplet W-operators on the boundary,

[
W a − ΓW̄ a

]
ζ=ζ̄

= 0, (3.41)

2This κ may depend on the cutoff scale or geometry.
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leads to the conditions

(W a
m + ΓW̄ a

−m)|B〉 = 0, (3.42)

on the boundary states. Clearly, the simplest case is when the automorphism is trivial,

Γ = 1. This restricts the value of the phase φ to be either 0 or π. We will see that this

choice is sufficient to construct boundary states with consistent modular properties in the

triplet model, allowing the appearance of bulk representations V0, V1, V−1/8, V3/8, R0 and

R1. When we deal with e.g. Z4-orbifold symplectic fermion model, we need to consider

non-trivial automorphism as well as Γ = 1. The distinction of φ = 0 and π is analogous

to that of Dirichlet and Neumann boundary conditions for bosonic string. In the following

discussions of the triplet model which is realised by the Z2 orbifold symplectic fermion, we

restrict the values of φ to be either φ = 0 or φ = π. For simplicity we write φ = 0 as

+ and φ = π as −, and hence we shall consider the boundary states, |B0+〉 = |B0,φ=0〉,

|B0−〉 = |B0,φ=π〉, and 〈B0+| = 〈B0,φ=0|, 〈B0−| = 〈B0,φ=π|. Then we have six distinct

boundary states, |Bω+〉, |Bω−〉, |BΩ+〉, |BΩ−〉, |Bµ+〉 and |Bµ−〉, which we collectively write

|a〉 = |B0φ〉. Now that we have explicit expressions of the boundary states, we may calculate

the amplitudes 〈a|(q̃1/2)L0+L̄0+1/6|b〉 between them, which appear on the right hand side of

the consistency condition (1.201). Setting |N |2 = 1, they are summarized as follows:

Untwisted Sector

|b〉

〈a| Bω+ Bω− BΩ+ BΩ−

Bω+ (κ− ln q̃)η(τ̃)2 0 −η(τ̃)2 −Λ1,2(τ̃)

Bω− 0 (κ− ln q̃)η(τ̃)2 −Λ1,2(τ̃) −η(τ̃)2

BΩ+ −η(τ̃)2 −Λ1,2(τ̃) 0 0

BΩ− −Λ1,2(τ̃) −η(τ̃)2 0 0
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Twisted Sector

|b〉

〈a| Bµ+ Bµ−

Bµ+ Λ0,2(τ̃)− Λ2,2(τ̃) Λ0,2(τ̃) + Λ2,2(τ̃)

Bµ− Λ0,2(τ̃) + Λ2,2(τ̃) Λ0,2(τ̃)− Λ2,2(τ̃)

We have denoted Λk,l(τ) = Θk,l(τ)/η(τ). Strictly speaking, the boundary states (3.36)

are not normalisable. Their non-trivial inner products are

〈Bω±|Bω∓〉 = κ lim
τ̃→0

Λ1,2(τ̃),

〈BΩ±|Bω∓〉 = 〈Bω±|BΩ∓〉 = − lim
τ̃→0

Λ1,2(τ̃),

〈Bµ±|Bµ∓〉 = lim
τ̃→0

(Λ0,2(τ̃) + Λ2,2(τ̃)). (3.43)

The right hand sides of (3.43) are all divergent, which is a well-known feature of such

boundary states. Because of the conditions (3.39), the amplitudes between states built

on ω are non-vanishing only when the bra and ket have the same value of φ (for exam-

ple, 〈ωφ′ |χ±0 |ωφ〉 = e±iφ〈ωφ′ |χ̄±0 |ωφ〉 = e±iφ′〈ωφ′ |χ̄±0 |ωφ〉, leading to 〈ωφ′ |χ±0 |ωφ〉 = 0 unless

φ = φ′). An important point we would like to emphasize is that we cannot have all of the

four boundary states of the untwisted sector simultaneously; a GSO-type projection is nec-

essary to construct the triplet model from the symplectic fermions. In our case, either |Bω+〉

or |Bω−〉 must be excluded to make a consistent theory. Which one should be discarded is

purely a matter of choice, so for definiteness let us discard ω+ in the following calculation.

The same thing happens when we construct the Ising model using Majorana fermions, where

a suitable GSO projection is necessary.

4.3 Modular properties of the boundary states

Now that we have cylinder amplitudes between boundaries, we may discuss modular prop-

erties of boundary states and look for consistent boundary states as in Subsec.1.4.3. In the

following we show that, using the modular transformations of Jacobi and Dedekind func-

tions (see App. A), relations between |a〉 and |α̃〉 are found by comparing the coefficients of

functions on both sides of the duality relation (1.201). Some care is needed: in (1.201), 〈α̃|a〉
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and 〈b|β̃〉 should be understood merely as coefficients in the expansions 〈α̃| =
∑

a〈α̃|a〉〈a|

and |β̃〉 =
∑

b〈b|β̃〉|b〉, as ordinary orthonormal bra-ket operations are not possible in our

non-unitary case. Also, all non-diagonal contributions have to be considered since on the

right hand side amplitudes are not diagonalised into characters.

Equating the coefficients of Λ1,2(τ̃) ln q̃, η(τ̃)2 ln q̃, Λ1,2(τ̃), η(τ̃)2, Λ0,2(τ̃) + Λ2,2(τ̃) and

Λ0,2(τ̃)− Λ2,2(τ̃), we have

〈α̃|Bω+〉〈Bω−|β̃〉+ 〈α̃|Bω−〉〈Bω+|β̃〉 = 0, (3.44)

〈α̃|Bω+〉〈Bω+|β̃〉+ 〈α̃|Bω−〉〈Bω−|β̃〉 =
nV0

α̃β̃
− nV1

α̃β̃

4π
, (3.45)

〈α̃|Bω+〉〈BΩ−|β̃〉+ 〈α̃|Bω−〉〈BΩ+|β̃〉+ 〈α̃|BΩ+〉〈Bω−|β̃〉

+〈α̃|BΩ−〉〈Bω+|β̃〉 = n
V3/8

α̃β̃
− n

V−1/8

α̃β̃
, (3.46)

〈α̃|Bω+〉〈BΩ+|β̃〉+ 〈α̃|Bω−〉〈BΩ−|β̃〉

+〈α̃|BΩ+〉〈Bω+|β̃〉+ 〈α̃|BΩ−〉〈Bω−|β̃〉

−κ(〈α̃|Bω−〉〈Bω−|β̃〉+ 〈α̃|Bω+〉〈Bω+|β̃〉) = 0, (3.47)

〈α̃|Bµ+〉〈Bµ−|β̃〉+ 〈α̃|Bµ−〉〈Bµ+|β̃〉 =
n
V−1/8

α̃β̃
+ n

V3/8

α̃β̃

2
,

(3.48)

〈α̃|Bµ+〉〈Bµ+|β̃〉+ 〈α̃|Bµ−〉〈Bµ−|β̃〉

= nR0

α̃β̃
+ nR1

α̃β̃
+

1
4
(nV0

α̃β̃
+ nV1

α̃β̃
). (3.49)

Now following Cardy [79], let us find the consistent physical boundary states one by one. We

assume that bra and ket boundary states have the same real coefficients 〈a|α̃〉 = 〈α̃|a〉. We

start by looking for a reference state |Ṽ0〉 such that ni
Ṽ0α̃

= ni
α̃Ṽ0

= δi
α̃. Let α̃ = β̃ = Ṽ0 in

(3.44)-(3.49). In the untwisted sector, from (3.44) we have 〈Ṽ0|Bω+〉〈Bω−|Ṽ0〉 = 0. Since we

can exchange φ = 0 and φ = π as a consequence of Z2 symmetry, we may put 〈Ṽ0|Bω+〉 =

〈Bω+|Ṽ0〉 = 0 without loss of generality. Then from (3.45) we have |〈Ṽ0|Bω−〉|2 = 1/(4π),

so 〈Ṽ0|Bω−〉 = 〈Bω−|Ṽ0〉 = 1/(2
√
π). Substituting these values, (3.46) gives 〈Ṽ0|BΩ+〉 =

〈BΩ+|Ṽ0〉 = 0. From (3.47) we find 〈Ṽ0|BΩ−〉 = 〈BΩ−|Ṽ0〉 = κ/(4
√
π). In the twisted sector,

(3.48) becomes 〈Ṽ0|Bµ+〉〈Bµ−|Ṽ0〉 = 0, and again without losing generality we can choose

〈Ṽ0|Bµ+〉 = 〈Bµ+|Ṽ0〉 = 0. Then from (3.49) we find 〈Ṽ0|Bµ−〉 = 〈Bµ−|Ṽ0〉 = 1/2. Thus we
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found |Ṽ0〉 = (1/2
√
π)|Bω−〉+ (κ/4

√
π)|BΩ−〉+ (1/2)|Bµ−〉.

Next, we put α̃ = Ṽ1 and β̃ = Ṽ0. We find 〈Ṽ1|Bω−〉 = 〈Bω−|Ṽ1〉 = −1/(2
√
π),

〈Ṽ1|BΩ−〉 = 〈BΩ−|Ṽ1〉 = −κ/(4
√
π), 〈Ṽ1|Bµ−〉 = 〈Bµ−|Ṽ1〉 = 1/2, and 〈Ṽ1|Bω+〉 =

〈Bω+|Ṽ1〉 = 〈Ṽ1|BΩ+〉 = 〈BΩ+|Ṽ1〉 = 〈Ṽ1|Bµ+〉 = 〈Bµ+|Ṽ1〉 = 0. The rest of the states

are found similarly by putting α̃ = Ṽ−1/8, Ṽ3/8, R̃0, R̃1 one by one, all with β̃ = Ṽ0. Then

we find

|Ṽ0〉 =
1

2
√
π
|Bω−〉+

κ

4
√
π
|BΩ−〉+

1
2
|Bµ−〉,

|Ṽ1〉 =
−1
2
√
π
|Bω−〉 −

κ

4
√
π
|BΩ−〉+

1
2
|Bµ−〉,

|Ṽ−1/8〉 = |Bµ+〉 − 2
√
π|BΩ+〉,

|Ṽ3/8〉 = |Bµ+〉+ 2
√
π|BΩ+〉,

|R̃〉 ≡ |R̃0〉 = |R̃1〉 = 2|Bµ−〉. (3.50)

Since R̃0 and R̃1 are the same state3, we shall denote it as R̃. There are other solutions

obtained from the above by exchanging ω+ and ω−, Ω+ and Ω−, µ+ and µ− (first and

second pairs have to be exchanged simultaneously), as a consequence of the Z2 symmetry.

Apart from this, the solutions are unique. Therefore, the duality of open and closed string

channels provides strong enough constraints for the physical boundary states to be deter-

mined without ambiguity. Substituting these states back into the Cardy’s constraint (1.201),

possible ni
α̃β̃

on the left hand side are found. Note that ni
α̃β̃

cannot be determined uniquely

by this procedure, since the characters are not independent but χR0 = χR1 = 2(χV0 + χV1).

Up to this ambiguity ni
α̃β̃

is identical to the fusion matrix Njk
i of (1.51) for the fusion rule

of the triplet model (3.17).

4.4 Discussion

The essential point in our analysis is the appearance of the term η(τ̃)2 ln q̃ in the closed

string amplitude through the proper treatment of the zero-mode. Note that the five modular

functions η(τ̃)2, η(τ̃)2 ln q̃, Λ0,2(τ̃), Λ1,2(τ̃), Λ2,2(τ̃) close under the modular transformation

τ̃ → −1/τ̃ . Discarding either Bω+ or Bω− by a GSO-type projection, we obtained a set
3This simply comes from the fact that R0 and R1 have the same character functions. It is not clear if this

degeneracy may be resolved, as in the 3-state Potts model
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of boundary states including the reference state Ṽ0 which is necessary for the Cardy fusion

procedure. This situation is quite similar to what happens in the Ising model case [85, 106,

107], where one of the two R sector states has to be discarded to give three boundary states,

namely spin up, down, and free, which behave appropriately under modular transformations.

See App.B for detail.

However, our model differs from the Ising model in one important respect. Neglecting

the row and column involving the discarded state Bω+, the closed string amplitude of the

untwisted sector gives a matrix


(κ− ln q̃)η(τ̃)2 −Λ1,2(τ̃) −η(τ̃)2

−Λ1,2(τ̃) 0 0

−η(τ̃)2 0 0

 , (3.51)

which is not regular. Since one of the three eigenvalues is zero, the untwisted sector has only

two non-trivial partition functions on diagonalisation. This means that the net content of

the space spanned by |Bω−〉, |BΩ±〉, |Bµ±〉 consists of only four states, not five. Therefore

it is not possible to allocate five boundary states to the five modular functions.

This is related to the difficulty in expressing the physical boundary states in terms of

the Ishibashi states. In ordinary CFTs, the solutions to (3.34) are found in the form of the

Ishibashi states (1.196) which diagonalise the cylinder amplitudes to give characters. In our

model, we can find candidates for the Ishibashi states such as

|V0〉〉 =
1
2
|BΩ+〉+

1
2
|BΩ−〉,

|V1〉〉 =
1
2
|BΩ+〉 −

1
2
|BΩ−〉,

|V−1/8〉〉 =
1
2
|Bµ+〉+

1
2
|Bµ−〉,

|V3/8〉〉 =
1
2
|Bµ+〉 −

1
2
|Bµ−〉,

|R〉〉 ≡ |R0〉〉 = |R1〉〉 =
√

2|BΩ+〉, (3.52)
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and

〈〈V0| =
−1
2
〈Bω−| −

1
2
〈Bω+|,

〈〈V1| =
1
2
〈Bω+| −

1
2
〈Bω−|,

〈〈V−1/8| =
1
2
〈Bµ+|+

1
2
〈Bµ−|,

〈〈V3/8| =
1
2
〈Bµ−| −

1
2
〈Bµ+|,

〈〈R| ≡ 〈〈R0| = 〈〈R1| = −
√

2〈Bω−|, (3.53)

whereby the characters (3.29) are reproduced in the form (1.197), and the orthogonality holds

for V0, V1, V−1/8, and V3/8. Note that it is not possible to find such states with the same bra

and ket coefficients. It can be easily checked that the physical boundary states Ṽ0 and Ṽ1

cannot be expressed as linear combinations of the states (3.52), (3.53). As a consequence, it

is not possible to derive the Verlinde-type expression as in [101], since Ṽ0 plays an essential

role in such discussions. This result is consistent with the non-diagonalisable fusion rule

(3.17) which indicates the failure of the Verlinde formula.

Alternatively, the four representations R0, R1, V−1/8 and V3/8 can be regarded as fun-

damental constituents of the theory, since they themselves close under the fusion. As is

mentioned in Subsec.3.3.1, it is argued by Kausch and Gaberdiel [48] that local and non-

chiral bulk theory with finite multiplicity is given by three non-chiral representations, namely,

V−1/8⊗V̄−1/8, V3/8⊗V̄3/8, and R. This is analogous to our result that the physical boundary

states for R0 and R1 are identical. Considering the four representations R0, R1, V−1/8 and

V3/8, we see from (3.50) and (3.52) that the physical ket-states and Ishibashi ket-states are

related as

|R̃〉 = 2|V−1/8〉〉 − 2|V3/8〉〉,

|Ṽ−1/8〉 = |V−1/8〉〉+ |V3/8〉〉 −
√

2π|R〉〉,

|Ṽ3/8〉 = |V−1/8〉〉+ |V3/8〉〉+
√

2π|R〉〉. (3.54)

These are the combinations of |Bµ±〉 and |BΩ+〉. However, the boundary bra-states for

these representations cannot be expressed in terms of the corresponding Ishibashi bra-states
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(3.53), since the former are the combinations of 〈Bµ±| and 〈BΩ+|, whereas the latter are

of 〈Bµ±| and 〈Bω−|. The candidate of the Ishibashi states (3.52), (3.53) are not unique,

and alternatively, we can define such states so that the bra-states are linearly related to

the consistent boundary states, but then the ket-states cannot be. That is, it is possible to

express the consistent boundary states in terms of such Ishibashi states on either of the two

boundaries, but not on both.

We started from the free-field representation of the c = −2 LCFT model and presented

a possible solution for physical boundary states. Modular invariance imposes tight enough

constraints on the partition function to identify the boundary states which allow the ap-

pearance of bulk representations. Although we could find five consistent boundary states

R̃, Ṽ0, Ṽ1, Ṽ−1/8 and Ṽ3/8, their implication is still not evident. Although the three states

R̃, Ṽ−1/8, Ṽ3/8 may be considered as genuinely physical as they correspond to non-chiral

bulk representations, this speculation is not necessarily persuasive. In a recent study of

the Abelian sandpile model (ASM), it was suggested in [66] that open and closed boundary

conditions correspond to Ṽ0 and Ṽ−1/8, respectively. As the open boundary condition is

dissipative, ‘logarithmic’ boundary states corresponding to irreducible subrepresentations of

‘reducible but indecomposable’ representations might be associated with interfaces to exter-

nal systems. In order to investigate this conjecture and to see how general it can be, more

study on concrete statistical models is obviously needed.

Another issue which is important in Cardy’s construction is the completeness of the

boundary states. Among well-studied unitary minimal models, the 3-state Potts model

is known to possess a W-algebra, and its complete boundary states were found quite re-

cently [82–84]. In that model, only the fixed and mixed boundary states are obtained by

Cardy’s method from the W-invariant conformal towers; in order to obtain the complete set

including “free” and “new” boundary states, all chiral representations from the Kac table not

constrained by the W-symmetry had to be considered. Looking at our boundary states of the

triplet model in an analogy with the 3-state Potts model, the boundary states (3.50) we have

obtained may be considered as the W-invariant (diagonal) set, whose 3-state Potts model

counterpart is the fixed and mixed boundary states. Indeed, for all the states (3.50), the

gluing automorphism Γ associated with the triplet W-algebra is trivial. The compatibility of

the multiplicity matrix ni
α̃β̃

and the fusion matrix Njk
i also seems to suggest the similarity
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of our boundary states to the diagonal boundary states in Virasoro minimal models.

5 Summary

In this chapter we have discussed boundary theories of the simplest and so far the best

understood model of LCFT, the c = −2 triplet model. After seeing the behaviour of a

boundary correlation function calculated by the standard mirroring method, we reviewed

the algebraic and free-field constructions of the triplet model, and then discussed boundary

states in this model. As we do not know well-defined Ishibashi states in the c = −2 triplet

model, we used coherent states constructed from the symplectic fermion as the basis of the

states, and found boundary states which satisfy Cardy’s consistency condition.

Since boundary LCFT is a very young subject and its study has just started, it should be

appropriate to conclude this chapter by addressing some problems that have to be tackled

for the next step of its progress.

Now that we know the existence of consistent boundary states in the c = −2 triplet model,

the question of completeness, as is mentioned at the end of the last section, is obviously one

of the things to be considered next. The completeness of boundary conditions comes from

the complete solutions of the sewing relations, which can be spelled out when the bulk theory

is fully solved. Although our knowledge on the bulk theory for c = −2 triplet model has

increased in recent years, it is far from being fully solved since our algebraic understanding

of the model (corresponding to the quantum group structure in conventional CFTs) is still

limited. For example, the sewing relations rely on the existence of a bona-fide unity operator

in the theory, which is obviously absent in the c = −2 triplet model. In order to discuss the

completeness of boundary states in LCFT, we need to know the algebraic structure of the

theory which may be much more complicated than conventional CFTs.

Studying boundary LCFTs other than c = −2 is of course an important issue, but

at the moment this seems to be far beyond our reach. For studying boundary states of

general LCFT models where a free-field representation is not available, we need to construct

generalised Ishibashi states which can substitute for the coherent states used here, and

indeed, a candidate of such states for the c = −2 triplet model is proposed in [129–131]. It

is however not easy to discuss boundary theory of general LCFTs because representations

and especially characters are known in only a very few models. Before discussing boundary
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behaviour, we need to know more about bulk representations of such theories.

Regarding the applications of LCFTs, there are numerous examples of systems in sta-

tistical models and string theory which have been claimed to be modelled by LCFTs, and

boundary may become important in many cases. For example, the O(n) model with n < 1

has a ‘special’ transition, as well as ‘ordinary’ and ‘extraordinary’ transitions, and such be-

haviour may somehow be related to the boundary states of LCFT. The correspondences of

these models and LCFTs are however all quite speculative and it is difficult to make direct

connections between LCFT results and what is happening in a system which is believed to

be modelled. If a relation between some well-defined system and LCFT is established at

the operator-content level, we can expect feed back from e.g. numerical simulations and our

understanding of LCFT would be accelerated enormously.



Chapter 4

Conclusions

In this thesis we have employed the free-field construction as powerful tools to investigate

boundary states of CFTs.

In Chap.2 we presented a construction of boundary states in the Coulomb-gas formalism

of Dotsenko and Fateev [27]. We constructed coherent states on the charged bosonic Fock

space realising c < 1 minimal models and found that they preserve conformal symmetries

under certain conditions. We then calculated the closed string amplitudes of a cylinder be-

tween such boundary states and showed that linear sums of coherent boundary states satisfy

Cardy’s consistency conditions. In particular, we discussed the Ising model as an example

and wrote its consistent boundary states associated with the fixed (up and down) and free

boundary conditions using the coherent states we have constructed. Such a construction of

boundary states is potentially quite powerful; as they are expressed on the Fock space, we can

in principle calculate any correlation functions involving such boundaries, making a direct

connection between algebraically classified boundary conditions and correlation functions

which are observable.

In Chap.3 we discussed the behaviour of logarithmic CFT near boundaries, and the

c = −2 triplet model was studied in detail. The character functions of this model do not

themselves close under the modular S transformation and therefore the modular matrix S

cannot be defined. The fusion rules found by Kausch and Gaberdiel [47] are not diagonalis-

able and the Verlinde formula fails. Due to these features which are absent in conventional

rational CFTs, it is not possible to find consistent boundary states of this model by ap-

plying the standard Cardy method based on the Ishibashi construction of boundary states.
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In particular, even the existence of consistent boundary states was not clear in this model.

We studied this problem following the procedure similar to the one in Chap.2, by using

the symplectic fermion representation of the c = −2 triplet model. We found, despite the

pathological features mentioned above, a set of bona-fide boundary states with consistent

modular properties. These consistent boundary states are expressed as linear sums of co-

herent states built on the Fock space. There is however a difficulty defining Ishibashi states,

which is related to the fact that the cylinder amplitudes between boundaries are irregular.

We concluded that the difficulty we met when we try to apply the Cardy method to this

model is due to the absence of well-defined Ishibashi states.

The material discussed in this thesis may be regarded as generalisations of the boundary

CFTs for free bosons and fermions, which have been established for many years and well

understood. Compared to these theories, we must unfortunately admit that the boundary

theories of Coulomb-gas systems and logarithmic CFTs are still in the elementary stage of

developments. There are indeed many things to be understood, e.g. the treatment of the

zero-mode and truncation of non-unitary representations in the Coulomb-gas, completeness

of boundary conditions in LCFT, etc. We close this thesis by hoping that such issues will

be clarified in the near future and the free-field construction of boundary CFTs presented in

this thesis will become a truly useful tool in various physics applications.



Appendix A

Summary of conventions

1 Geometric conventions

For two-dimensional real coordinates (z1, z2) in the conformal gauge

gµν(z1, z2) = ρ(z1, z2)δµν , (A.1)

we define complex coordinates (z, z̄) as

z = z1 + iz2, z̄ = z1 − iz2. (A.2)

Derivatives with respect to these complex coordinates are

∂ = ∂z =
1
2
(∂1 − i∂2), ∂̄ = ∂z̄ =

1
2
(∂1 + i∂2). (A.3)

The metrics for the complex coordinates (z, z̄) are

gµν(z, z̄) = ρ(z, z̄)

 0 1/2

1/2 0

 , gµν(z, z̄) =
1

ρ(z, z̄)

 0 2

2 0

 , (A.4)

where µ = (z, z̄).

The scalar curvature R is defined such that R = 2/r2 for a sphere of radius r. More
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explicitly, we have used the Misner-Thorne-Wheeler [132] convention,

Γα
βγ =

1
2
gαδ(∂βgδγ + ∂γgδβ − ∂δgβγ), (A.5)

Rα
βγλ = ∂γΓα

βλ − ∂λΓα
βγ + Γα

δγΓδ
βλ − Γα

δλΓδ
βγ , (A.6)

Rµν = Rα
µαν , (A.7)

R = gµνRµν , (A.8)

except that we work in a two-dimensional Euclidean space.

Throughout this thesis we used the anharmonic ratio defined as

η =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

, (A.9)

except in Sec.3.2 where we used

z =
η

η − 1
=

(z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

, (A.10)

with z3 = z∗1 , z4 = z∗2 .

2 Elliptic modular functions

We summarise the definitions of elliptic modular functions and list formulas used in the main

text.

The Dedekind eta function is defined as

η(τ) = q1/24
∞∏

n=1

(1− qn). (A.11)
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We have used the basic Jacobi theta functions defined by

θ2(τ) =
∑
k∈Z

q(k+1/2)2/2, (A.12)

θ3(τ) =
∑
k∈Z

qk2/2, (A.13)

θ4(τ) =
∑
k∈Z

(−1)kqk2/2, (A.14)

as well as the generalised theta functions

Θλ,µ(τ) =
∑
k∈Z

q(2µk+λ)2/4µ, (A.15)

where q = e2πiτ . From this definition it is obvious that Θλ,µ(τ) has the following symmetries,

Θλ,µ(τ) = Θλ+2µ,µ(τ) = Θ−λ,µ(τ). (A.16)

These two definitions of theta functions are related to each other. For example, as is easily

verified,

θ2(τ) = 2Θ1,2(τ), (A.17)

θ3(τ) = Θ0,2(τ) + Θ2,2(τ), (A.18)

θ4(τ) = Θ0,2(τ)−Θ2,2(τ), (A.19)

and

√
η(τ)θ2(τ)/2 = Θ2,12(τ)−Θ10,12(τ), (A.20)√
η(τ)θ3(τ) = Θ1,12(τ) + Θ5,12(τ)−Θ7,12(τ)−Θ11,12(τ), (A.21)√
η(τ)θ4(τ) = Θ1,12(τ)−Θ5,12(τ)−Θ7,12(τ) + Θ11,12(τ). (A.22)

We have also used the notation

Λλ,µ(τ) =
Θλ,µ(τ)
η(τ)

. (A.23)

Under the modular S (τ → −1/τ) and T (τ → τ + 1) transformations, Θλ,µ(τ) and η(τ)
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transform as

Θλ,µ(−1/τ) =

√
−iτ
2µ

2µ−1∑
ν=0

eλνπi/µΘν,µ(τ),

η(−1/τ) =
√
−iτη(τ), (A.24)

and

Θλ,µ(τ + 1) = eλ
2πi/2µΘλ,µ(τ),

η(τ + 1) = eπi/12η(τ). (A.25)

The three functions θ2(τ), θ3(τ) and θ4(τ) transform into each other under S and T , as

θ2(−1/τ) =
√
−iτθ4(τ), (A.26)

θ3(−1/τ) =
√
−iτθ2(τ), (A.27)

θ4(−1/τ) =
√
−iτθ3(τ), (A.28)

and

θ2(τ + 1) =
√
iθ2(τ), (A.29)

θ3(τ + 1) = θ4(τ), (A.30)

θ4(τ + 1) = θ3(τ). (A.31)



Appendix B

Ising model boundary states

As one of the simplest statistical models of spin systems, the Ising model has been studied

extensively for more than three quarters of a century. The critical Ising model is described

by c = 1/2 Virasoro minimal conformal field theory, and via Jordan-Wigner transformation

it is also related to free Majorana fermions. It is therefore possible to construct consistent

boundary states from free fields, apart from the standard Cardy’s method based on Ishibashi

states. Although this has been studied by many authors [85, 106, 107], here we summarise

the result emphasizing the robustness of the procedure in a simple well-known example.

1 Boundary conditions and Jordan-Wigner transformation

We consider a one-dimensional spin chain with the Hamiltonian [133],

H = −1
2
λ
∑
m

σ1(m)− 1
2

∑
m

σ3(m)σ3(m+ 1), (B.1)

where we choose λ = 1 for the Ising model at criticality, and m indicates the location of a

spin. The matrices σi(m) are the Pauli spin matrices,

σ1 =

 0 1

1 0

 , σ2 =

 0 i

−i 0

 , σ3 =

 1 0

0 −1

 . (B.2)
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In this notation, a state of each spin is denoted by a two-component vector. In particular,

the spin up, down, and free states are respectively written as

(↑) =

 1

0

 , (↓) =

 0

1

 , (F ) =
1√
2

 1

1

 . (B.3)

The boundary conditions with all spins up, down, and free along the boundary are then

written as

|↑ 〉 =
∏
m

 1

0


m

, (B.4)

|↓ 〉 =
∏
m

 0

1


m

, (B.5)

|F 〉 =
∏
m

 1√
2

 1

1




m

. (B.6)

The Ising spin chain is mapped to a pair of fermions by the Jordan-Wigner transforma-

tion,

ψ1(n) =
1√
2

(
n−1∏

m=−∞
σ1(m)

)
σ2(n), (B.7)

ψ2(n) =
1√
2

(
n−1∏

m=−∞
σ1(m)

)
σ3(n), (B.8)

which satisfy the ordinary anticommutation relation of Majorana fermions, {ψi(m), ψj(n)} =

δijδmn, where i, j = {1, 2}. The holomorphic and antiholomorphic fermions defined by

ψ(n) =
1√
2
(ψ1(n)− ψ2(n)), (B.9)

ψ̄(n) =
1√
2
(ψ1(n) + ψ2(n)), (B.10)

then satisfy the anticommutation relations {ψ(m), ψ(n)} = δmn, {ψ̄(m), ψ̄(n)} = δmn,
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{ψ(m), ψ̄(n)} = 0, and in the continuum limit they coincide with the Majorana fermion

fields ψ(w), ψ̄(w̄) of Subsec.1.3.2. The complex coordinates are defined by w = t − ix,

w̄ = t + ix, where x is the position and t is the Euclidean time. As these fermions are

directly constructed from the Pauli matrices, we may find the action of fermions on the

boundary states (B.4) - (B.6). Such expressions are simplified by using equations of motion,

and in terms of the mode operators defined by

ψ(w) =

√
2π
L

∑
n

bne
−2πnw/L, (B.11)

ψ̄(w̄) =

√
2π
L

∑
n

b̄ne
−2πnw̄/L, (B.12)

we find

(bn − ib̄−n)| ↑, ↓〉 = 0,

(bn + ib̄−n)|F 〉 = 0. (B.13)

2 Majorana fermion boundary states

Now let us consider the system of the Majorana fermions with action

S =
1
2π

∫
d2x(ψ̄∂ψ̄ + ψ∂̄ψ), (B.14)

and consider the boundary states by a top-down approach. As we have been doing in the

main text, we consider a cylinder of length T and circumference L. The cylinder is mapped

to the complex z-plane by z = e2π(t−ix)/L, where t and x are now coordinates along and

around the cylinder, respectively. We assume that the boundary term in this action vanishes,

ψ2 + ψ̄2 = 0, which reduces to

ψ = ±iψ̄. (B.15)
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On the z-plane the mode expansions (B.11), (B.12) become

ψ(z) =
∑

n∈Z+λ

bnz
−n−1/2, (B.16)

ψ̄(z) =
∑

n∈Z+λ

b̄nz̄
−n−1/2, (B.17)

where λ = 0 for R and 1/2 for NS sectors. The anticommutation relations are {bm, bn} =

δm+n = {b̄m, b̄n} and {bm, b̄n} = 0. Then through the radial quantization on the z-plane the

boundary condition (B.15) at the boundary t = 0 becomes

(bn ∓ ib̄−n)|B±〉 = 0, (B.18)

which is satisfied by the coherent states [126–128]

|B±〉 =
∏
n>0

e±ib−nb̄−n |0±〉, (B.19)

where |0±〉 is annihilated by bn>0 and b̄n>0, and satisfies (b0∓ ib̄0)|0±〉R = 0 in the R sector.

The NS ground state is unique, |0±〉NS = |0〉NS . The two degenerate ground states |0±〉R

in the R sector are treated symmetrically by demanding [107]

b0|0±〉R =
1√
2
e±iπ/4|0∓〉R,

b̄0|0±〉R =
1√
2
e∓iπ/4|0∓〉R, (B.20)

and the distinction is absorbed in the definition of |B±〉 in (B.19). Thus we have four

conformally invariant free fermion boundary states

|B±〉NS =
∏

n≥1/2

e±ib−nb̄−n |0〉NS ,

|B±〉R =
∏
n≥1

e±ib−nb̄−n |0±〉R. (B.21)
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On the other end of the cylinder, the states satisfying the condition 〈B±|(bn± ib̄−n) = 0 are

found similarly as

NS〈B±| = NS〈0|
∏

n≥1/2

e±ibnb̄n ,

R〈B±| = R〈0±|
∏
n≥1

e±ibnb̄n . (B.22)

The Virasoro operators of Majorana fermions are written using the mode operators as

Ln =
1
2

∑
k∈Z+λ

(
n

2
− k) : bkbn−k : +aλδn0,

L̄n =
1
2

∑
k∈Z+λ

(
n

2
− k) : b̄k b̄n−k : +āλδn0,

where a1/2 = ā1/2 = 0 (R) and a0 = ā0 = 1/16 (NS). It is easily verified that the states (B.21)

are indeed conformally invariant, (Ln−L̄−n)|B±〉NS,R = 0. Defining the modular parameters

as τ̃ = 2iT/L and q̃ = e2πiτ̃ , the cylinder partition functions 〈a|(q̃1/2)L0+L̄0−1/24|b〉 for the

boundary coherent states |a〉 = |B±〉NS,R are calculated (in the order of |B+〉, |B−〉) as

〈a|(q̃1/2)L0+L̄0−c/12|b〉 =




√

θ3(τ̃)
η(τ̃)

√
θ4(τ̃)
η(τ̃)√

θ4(τ̃)
η(τ̃)

√
θ3(τ̃)
η(τ̃)

 in NS,


√

θ2(τ̃)
2η(τ̃) 0

0
√

θ2(τ̃)
2η(τ̃)

 in R.

(B.23)

We cannot have both the states of the R sector in a consistent (GSO projected) theory, and

either of |B±〉R has to be excluded. Which one is to be discarded is in fact a matter of choice,

depending on how we define the Jordan-Wigner transformation. For definiteness, we discard

|B−〉R and choose |B±〉NS and |B+〉R as the basis of the boundary states. Then we obtain

the three modular functions
√
θ2/η,

√
θ3/η, and

√
θ4/η which transform among themselves

under the modular transformations S and T .

Now we may follow the same procedure as Subsec.1.4.3, assuming the existence of the

state |0̃〉 such that ni
0̃α̃

= ni
α̃0̃

= δi
α̃, and obtain consistent boundary states expressed in terms
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of the coherent states defined above. We find

|0̃〉 = |Ĩ〉 =
1√
2
|B+〉NS +

1
4
√

2
|B+〉R, (B.24)

|ε̃〉 =
1√
2
|B+〉NS −

1
4
√

2
|B+〉R, (B.25)

|σ̃〉 = |B−〉NS . (B.26)

We can compare this with the direct result (B.13) and confirm Cardy’s identification

|Ĩ〉 = |↑ 〉, (B.27)

|ε̃〉 = |↓ 〉, (B.28)

|σ̃〉 = |F 〉, (B.29)

(up and down may be exchanged). The Ising model has two Z2 symmetries, namely, high-

temperature-low-temperature symmetry (P) and spin up-down symmetry (Q). Actions of P

and Q on the boundary states are

P :
|↑ 〉+ |↓ 〉√

2
↔ |F 〉, (B.30)

Q : |↑ 〉 ↔ |↓ 〉, |F 〉 ↔ |F 〉. (B.31)

In terms of the Majorana fermions, P exchanges |B+〉 and |B−〉. Q is blind about ±, but

flips the sign of |B〉R. The boundary conditions of the Majorana fermions (B.13) do not

resolve the degeneracy of Q since the distinction of up and down is encoded in the partition

function.



Appendix C

Vertex operator algebra

Expressions of normal ordering in the twisted vacua are conveniently calculated using the

twisted Borcherds identity in the vertex algebras [121, 134]. We collect the necessary def-

initions and formulae leading to the expressions for the energy-momentum tensor and W-

operators which are used in Chap.3.

Let U be a vector space. A field f(z) is defined as a power series

f(z) ≡
∑

n∈Z+λ

f(n)z
−n−1, (C.1)

where f(n) has the property that f(n)v = 0 for n � 0, ∀v ∈ U . The parenthesis in f(n)

is to emphasize the difference from the ordinary expansion f(z) =
∑

n fnz
−n−h with h the

conformal weight of f . A state |f〉 is defined on a SL(2, C) invariant vector |0〉 (denoted Ω

in Chap.3) as

|f〉 = f(−1)|0〉. (C.2)

A vertex operator Y is defined as a map from a state |f〉 to a field f(z),

Y : |f〉 7→ f(z) ≡ Y (|f〉, z). (C.3)

We define the twisted module as a vector accompanied by a vertex operator satisfying the
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following three axioms,

(M1) Y (|0〉, z) = 1l, (C.4)

(M2) Y (L−1|f〉, z) = ∂Y (|f〉, z), (C.5)

(M3)
∞∑

j=0

 m

j

Y (f(n+j)|g〉, z)zm−j

=
∞∑

j=0

(−1)j

 n

j

[f(m+n−j)Y (|g〉, z)zj − (−1)nεfgY (|g〉, z)f(m+j)z
n−j
]
, (C.6)

where n ∈ Z, m ∈ Z + λ, and εfg is defined to be −1 if f and g are both fermionic, and 1

otherwise. 1l is the identity. (M1), (M2), (M3) are called the vacuum axiom, the translational

covariance, and the twisted Borcherds identity, respectively. Putting m = λ and n = −1 in

(M3), we have a formula for the normal-ordered products in a twisted module

: Y (|f〉, z)Y (|g〉, z) : ≡
∑

k

[
λ−1∑

m=−∞
f(m)g(k−m−1) + εfg

∞∑
m=λ

g(k−m−1)f(m)

]
z−k−1

=
∞∑

j=0

 λ

j

Y (f(j−1)|g〉, z)z−j . (C.7)

Note that the last line of (C.7) gives only a finite number of terms. The energy-momentum

tensor and the W-operators of our model are defined in vertex algebra as

T (z) =
1
2
dαβY (χα

(−1)χ
β
(−1)|0〉, z), (C.8)

W a(z) = taαβY (χα
(−2)χ

β
(−1)|0〉, z), (C.9)

where t0±∓ = −1/2, t±±± = ±1. The Virasoro operators (3.27) are obtained by applying (C.7)

to (C.8). The W-operator (C.9) similarly leads to the expressions (3.28).
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