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Abstract

We discuss aspects of N = 4 Chern-Simons theories and their gravity duals. Our

study is summarized as that of the relation between wrapped M-branes and their

dual objects.

We propose the correspondence between wrapped M2-branes and monopole

operators in the twisted sector. To confirm this proposal, we compute a super-

conformal index for the Chern-Simons theories including monopole contribution.

We compare it to the corresponding multi-particle index for M-theory on the dual

geometry in the large N limit. The dual geometry has non-trivial two-cycles in

the internal space. M2-branes wrapped on them contribute to the multi-particle

index. We derive the contribution of wrapped M2-branes by constructing the

action of a seven-dimensional N = 2 vector multiplet on the singular locus and

performing Kaluza-Klein analysis. We establish one-to-one map between the data

of both theories such as magnetic charges of twisted monopole operators and the

wrapping number of wrapped M2-branes. By using the mapping, we confirm

the agreement of the indices for many sectors by using analytic and numerical

methods.

We establish the relation between an equivalent class of ranks and the three-

cycle homology of the dual geometry. We obtain the equivalent class of ranks by

classifying fractional D3-brane charges defined with taking account of D3-brane

creation due to Hanany-Witten effect. The third homology describes the charges

of fractional M2-branes, or M5-branes wrapped on three-cycles.

We also discuss the duality between baryonic operators and M5-branes wrapped

on five-cycles. Their degeneracy, the conformal dimension, decomposability to

mesons are reproduced in the gravity side. If the gauge group is the product

of unitary gauge groups, the baryonic operators cannot be gauge invariant. We

discuss that the gauge invariance cannot be imposed on all the counterparts cor-

responding to wrapped M-branes in AdS4/CFT3 correspondence.
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Chapter 1

Introduction

M means Membrane, Miracle, Mystery, Mother, Matrix, · · · .

1.1 M-theory

Why does the author study M-theory? His brief answer is that M-theory has

possibilities beyond superstring theory.

Superstring theory also has big possibilities: it might unify gauge interaction

and gravity in quantum level, reveal the thermodynamic property of black holes,

elucidate the dynamics of the origin of our universe. Superstring theory is well-

defined in ten-dimensional space-time and the rich dimension opens a possibility

to explain the structure of gauge interaction assumed in the standard model.

However, since well-known superstring theory is only defined perturbatively, non-

perturbative aspects of superstring theory remain as mysteries. One of such

mysteries is that superstring theory can be defined in at least five ways: type

I, type IIA, type IIB, SO(32) Heterotic, E8 × E8 Heterotic superstring theories.

To elucidate the relation to each other, it is necessary to study non-perturbative

effects in superstring theory.

M-theory has a possibility to solve such problems included in superstring

theory. M-theory is an eleven-dimensional theory including gravity to appear

when superstring theory goes to the strongly coupled region [1]. A new direction

appearing in this limit is often called “M-direction” or “M-circle.” Due to the

discovery of M-theory, the five superstring theories mentioned above have been

expected to be unified in the strongly coupled regime through duality. There

is more than that in M-theory. It unifies not only the five superstring theories,

but also extended objects appearing in superstring theory. In superstring theory,

there also exist NS-fivebranes and D-branes, which couple to NS-NS fields and

R-R fields [2], respectively. They are integrated into “M-branes” [3]: fundamental

5



6 CHAPTER 1. INTRODUCTION

strings and D-twobranes are integrated into membranes, which is extended to two-

dimensional space, and D-fourbranes and NS-fivebranes are into M-fivebranes,

which are objects extending to five-dimensional space. D-zerobranes are dissolved

into the M-circle as the Kaluza-Klein tower.

This fact implies that membranes should play a fundamental role in M-theory,

as in the case of strings in superstring theory. Unfortunately, however, the world-

volume theory of a membrane, which is also formulated to satisfy the general

coordinate transformation invariance on it, is not understood well as a quantum

theory compared to the world-sheet theory of a string [4]. For example, it has been

successful to quantize a string if the background has an enough big symmetry.

In addition, the guiding principle of the quantum field theory on a string world-

sheet is established. That is, all gauge symmteries existing in the classical action

should be respected in the quantum theory. In fact, this principle is so strong

that we can determine the target space-time dimension as ten. As for membranes,

however, both have not been established yet.

So can we proceed to the study of membranes and reveal mysteries of quantum

aspects of membranes? The answer is yes. The recent progress elucidates a

certain aspect of a multi-body system of membranes and the interaction in the

system.

1.2 Interaction between membranes

How is the interaction between membranes in M-theory described? It is instruc-

tive to see that the question is not so simple compared to the case of D-branes in

string theory. Let us consider the situation in which there are multiple D-branes

in the space-time. In this situation, the interaction occurs between D-branes in

general. This interaction is carried by open strings. Since open strings become

gauge field in their massless mode, the interaction is described by a certain gauge

theory. Open strings can attach any D-branes at their endpoints. This degree

of freedom of the end points (Chan-Paton degree of freedom) can be described

by a N × N matrix when there exist N D-branes. It accounts for non-abelian

gauge symmetry on the brane system. In the low energy scale, the interaction is

effectively described by supersymmetric Yang-Mills theories.

Probably this picture is also the case in M-theory, but it is more complicated.

For example, it is natural to consider that the interaction between M-branes

should be carried by membranes ending on them. The gauge degrees of freedom
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should be realized by the boundaries of membranes. This implies, however, that

it might not be appropriate to describe the gauge degrees of freedom by a matrix

and the gauge symmetry realized between membranes might not be usual Lie-

algebra any more. If this is the case, is it possible to construct such a theory

describing the interaction between membranes?

Recent progress in three-dimensional interacting conformal field theories (CFT)

enables us to answer the question in the low energy limit. The answer is that the

low energy effective actions describing gauge interaction between membranes are

given by superconformal Chern-Simons-matter theories.

1.3 Membrane field theories

One of non-trivial guiding principles to construct an effective field theory of mem-

branes is to possess the maximal supersymmetry or SO(8) R-symmetry [5]. This

is expected from AdS/CFT correspondence via membranes [6]. This obstacle is

first overcome by Bagger, Lambert and Gustavsson [7, 8, 9, 10]. To describe the

gauge interaction between membranes, they use a curious mathematical struc-

ture, so-called 3-bracket, which is a natural generalization of usual Lie-bracket.

The gauge invariance in their model (BLG model) requires 3-bracket to satisfy

the constraints including the generalized Jacobi identity. These rules are too

restrictive to describe finitely many membranes more than two [11, 12].

Their breakthrough opens new arena for study of M-theory. Many important

facts revealed in the past are reconfirmed: D-two and M-two relation [13, 14, 15],

M-two and M-five bound system [16, 17], relation between infinite M-two and an

M-five [18, 19, 20] by Myers-effect [21].

The study of superconformal Chern-Simons-matter systems is also highly

stimulated. A new class of N = 4 Chern-Simons theories coupling to hyper-

multiplets, which is characterized by a quiver diagram, is constructed in [22].

This work is generalized in [23] preserving N = 4 supersymmtries by introducing

another type of hyper-multiplets, called twisted hyper-multiplets. Their model

(HLLLP model) is given by a circular quiver diagram. These theories can be

deformed by adding a mass term [24, 25, 26].

Following their work, Aharony, Bergman, Jafferis and Maldacena first con-

struct N = 6 Chern-Simons theories [27], which can be understood both as a

generalization of the BLG model by relaxing anti-symmetricity on 3-bracket [28]
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and as a special case in [23] with one hyper and one twisted hyper-multiplet [29].

The crucial point in their model (ABJM model) is that it can describe finitely

many membranes. Their insight enables us to take the large N limit and study

the proposal of membrane field theory by AdS/CFT duality via membranes.

1.4 AdS/CFT duality via membranes

After the discovery of the ABJM model, their model has been generalized to var-

ious quiver superconformal Chern-Simons-matter theories by using techniques

such as orbifolding method [30], brane construction, brane-tiliing [31]. Such

techniques have been developed in constructing four-dimensional quiver gauge

theories.

Such models are constructed to have their moduli space as eight-dimensional

manifolds with a conical singularity. They are expected to be realized on a stack

of membranes at the conical singularity. This geometric interpretation can be

confirmed by using the AdS4/CFT3 correspondence. The dual geometry of a

Chern-Simons-matter theory whose moduli space is an eight-dimensional cone

C8 is given by AdS4 ×X7, where X7 is the fiber of the cone. We give a list with

respect to the study after the ABJM model in Table 1.1.

Table 1.1: A list of AdS4/CFT3 correspondence after the discovery of the ABJM
model. C8 means an eight-dimensional cone and X7 is the fiber of the cone.

N C8 X7 CSM theory
6 [32]
5 C4 orbifold S7 orbifold [29]
4 [33, 34, 35, 36]
3 Hyper-Kähler Tri-Sasakian [37]
2 Calabi-Yau Sasaki-Einstein [38, 39, 40, 41, 42]
1 Spin(7) Weak G2 [43, 44]

1.5 Why N = 4?

In Table 1.1, the study of the author has been focused on N = 4 Chern-Simons

theories given by [35] in the period of his doctor’s course. One might ask,

1. Why did the author start to study the very specific model? Was there any

physical motivation of the study?
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2. Why has he continued the study of it? Is there any physical importance in

N = 4 Chern-Simons theories compared to other model?

To answer the first question, it is expected to understand the fact that there

was an obstacle to construct three-dimensional N = 4 Chern-Simons theories.

Of course, it is not difficult to construct just three-dimensional N = 4 gauge

theories with manifest SO(4) R-symmetry by performing dimensional-reduction

of four-dimensional N = 2 gauge theories. However, if we add Chern-Simons

interaction in this system as the supersymmetric completion, then the SO(4) R-

symmetry breaks to the diagonal SO(3). This fact suggests that supersymmetry

reduces to N = 3 and it does [45]. In other words, Chern-Simons theories with

eight supercharges cannot coexist with Yang-Mills kinetic terms.

The situation drastically changes in the infra-red region. Since in three dimen-

sion the Yang-Mills coupling constants have the positive dimension 1/2 under the

canonical normalization, the theory goes to so strongly coupled region that the

supersymmetric Yang-Mills kinetic terms disappear from the action. As a result,

adjoint fields except for gauge fields in the vector multiplets become auxiliary

fields. After integrating them out, Chern-Simons terms and matter multiplets

remain. The remaining theories are nothing but superconformal Chern-Simons-

matter theories developed recently. The infra-red theory obtained in this way

often has new global symmetry, which cannot be seen from the ultra-violet the-

ory [22]. Global symmetry in the IR theory is often enhanced compared to that in

the UV theory. Indeed, eight supercharges of the N = 4 Chern-Simons theories

are realized in this way.1 It is quite natural to expect that there are attractive

issues in gauge theories attained by overcoming such difficulties.

The answer of the second question is the main issue in the thesis. He is sure

that there are new issues which cannot be investigated in higher supersymmetric

Chern-Simons-matter theories. One of new issues is the correspondence between

the monopole operators in the twisted sector and M2-branes wrapped on non-

trivial two-cycles in the internal manifold. He believes that this proposal has

been exactly confirmed in the BPS sector and a key to success of the exact result

might be eight supercharges. These issues are included in the dissertation.

1As guessed from these facts, eight supercharges of Chern-Simons theories require matter
fields. That is why we often abbreviate the word “matter” and assume the word implicitly in
N = 4 Chern-Simons theories.
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1.6 Organization of the thesis

The rest of the thesis is organized as follows. Our papers [46, 47, 48] are devoted

to the dissertation. For convenience, we give a list of key words or key phrases

explained in each section in each chapter.

In Chapter 2, we review aspects of N = 4 Chern-Simons theories. After

a brief review on a quiver gauge theory, we explain the fact mentioned in §1.5

(§2.1). In other words, by adding Chern-Simons interaction an super Yang-Mills

theory with SO(4)YM R-symmetry, the SO(4)YM R-symmetry is broken to the

diagonal SO(3). We present an N = 4 Chern-Simons theory as a circular quiver

gauge theory (§2.2). The broken SO(4)YM R-symmetry is recovered into new

SO(4)R R-symmetry in the model. We recapture these model by type IIB brane

configurations (§2.3). Such a brane setup is helpful to understand the theory and

physics intuitively. However, it is focused only in the UV region and thus not

suitable to see global symmetries only realized in the IR region.

Generalized by increasing the number of nodes compared to the ABJM model,

N = 4 Chern-Simons model have more monopole operators (§2.4). One is so-

called the diagonal monopole operator (§2.4.1). It also plays an important role in

other quiver Chern-Simons theories, for example in the BLG model [11, 12], in the

ABJM model [49, 50, 39, 51, 52], in more general quiver Chern-Simons theories

[53, 54, 31, 37, 41, 55, 56]. We see its importance through the analysis of the

moduli space and its geometric interpretation of M-circle. Moduli spaces ofN = 2

supersymmetric quiver Chern-Simons theories are studied in [40, 55, 56, 41]. In

general, an N = 4 Chern-Simons theory has other monopole operators. We

call them non-diagonal or twisted monopole operators (§2.4.2). They are new

ingredients compared to higher supersymmetric model. We discuss that they

belong to the twisted sector and also have their geometric counterparts in the

dual M-theory.

§2.1 Quiver diagrams, Quiver gauge theories, N3D = 4 super Yang-Mills theories,

SO(4)YM R-symmetry, SO(4)YM breaking.

§2.2 Lagrangian of N = 4 Chern-Simons theories, Global symmetries, Parame-

ters characterizing a model.

§2.3 Type IIB brane setup by D3-, NS5-, (1, k)5-branes.

§2.4 Definition of magnetic charges, Diagonal and non-diagonal monopole op-

erators, Relative magnetic charges, Dual photon, Moduli space and its ge-
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ometric interpretation, Linking number, M-theory brane setup, Twisted

sector.

In Chapter 3, we study gravity duals of N = 4 Chern-Simons theories. First,

we briefly review AdS5/CFT4 duality via D3-branes (§3.2). Next, we give the

eleven-dimensional supergravity and explain how to treat membranes in the grav-

ity theory (§3.2). Then, we derive dual geometries of N = 4 Chern-Simons

theories (§3.3). Finally, we discuss the homology of the dual geometry (§3.4).

§3.1 AdS5/CFT4 correspondence, Maldacena limit, ’t Hooft limit, Holography,

Bulk-boundary correspondence, Strong/Weak duality, Exact agreement be-

tween the BPS sectors.

§3.2 Lagrangian of D = 11 supergravity, 1/2 BPS black membrane solution,

Near brane geometry, Enhanced to maximal supersymmetry.

§3.3 Dual geometry of N = 4 Chern-Simons theories, Global symmetries, Orb-

ifold singularities, Localized vector-multiplets.

§3.3 Homology, A-type singularities, Exact sequence.

In Chapter 4, we confirm the correspondence between the non-diagonal monopole

operators and the M2-branes wrapped on two-cycles in the dual geometry. For

this purpose, we confirm the exact agreement of both indices including monopole

or wrapped M2-branes contribution.

In §4.2, we compute a gauge theory index for N = 4 Chern-Simons theories

with taking account of monopole contribution. To compute a gauge theory index,

we use several technical tools such as localization (§4.2.2) and radial quantization

method (§4.2.3). Combining the techniques, we compute an index Igauge in quiver

N = 4 Chern-Simons theories. We calculate the gauge theory index by taking

the large N limit and keeping the Chern-Simons level k fixed (§4.2.4). After the

large N calculation, we factorize the index three parts with respect to magnetic

charges (§4.2.5). This factorization property suggests that only BPS monopole

operators contribute to indices. We derive selection rules in the gauge theory side

(§4.2.6). They are useful in relating both data in the field theory side and in the

geometry sides.

In §4.3, we compute an AdS4 multi-particle index for a dual geometry. We

derive the contribution of the bulk sector by projecting the graviton index for the

universal cover, AdS4×S7 (§4.3.1). To determine the contribution of the twisted
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sector, we construct the action of a seven-dimensional N = 2 vector multiplet

in AdS4 × S3 (§4.3.2) and carry out the Kaluza-Klein analysis (§4.3.3). From

the spectrum, we derive the contribution of the twisted sectors by the orbifold

projection (§4.3.4). Performing the projection, we take account of the fact that

the gauge charges couple to the Wilson lines turned on the singular loci. Due to

this coupling, the Kaluza-Klein momenta are shifted along the cycles through the

Aharanov-Bohm effect. In M-theoretical points of view, this means that wrapped

M2-branes couple to the three-form torsion. We combine them to obtain the

multi-particle index.

In §4.4, we establish the relation between the independent magnetic charges

and the same number of charges on the gravity side: the M-momentum and

wrapping numbers (§4.4.1). We reproduce the relation between the discrete tor-

sions and the linking numbers [57] by requiring the agreement of indices for both

sides (§4.4.2). The AdS4 multi-particle index is also factorized into three parts

(§4.4.3). We analytically prove the agreement of the neutral part of the both

indices (§4.4.4). The agreement of the negative part follows from that of the

positive part. To compute the positive part of the gauge theory index, we use

numerical methods for several non-trivial examples (§4.4.5).

§4.1 Agreement of independent numbers, Agreement of spectra, Agreement of

indices.

§4.2 Large k and fixed k, Localization, Q-exact deformation, Decomposition into

each parts of a quiver diagram, Radial quantization, Large N computation,

Factorization, Selection rule.

§4.3 Action of a localized vector-multiplet, Kaluza-Klein analysis and KK-spectra,

Contributions from singularities, Wrapping number and magnetic charges,

Wilson lines and linking numbers, Factorization of multi-paricle index,

Comparison of both data.

In Chapter 5, we perform a classification of the class of N = 4 Chern-Simons

theories. The principle is whether or not they flow to the same infra-red fixed

point [46]. Such a study in the ABJM model is carried in [58]. In four-dimensional

case, the relation between two gauge theories which flow to the same IR CFT is

called Seiberg duality [59]. The two theories have different ranks of gauge groups.

In this sense, we classify the N = 4 Chern-Simons theories by Seiberg-duality in

three dimension.
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For the purpose, we use the type IIB brane system given in §2.3. We assume

that two theories related by a continuous deformation of a fivebrane are dual

to each other and flow to the same infra-red fixed point. The close relation

between interchange of branes and Seiberg duality is first pointed out in [60].

Indeed, under the deformation the parameter except for the ranks are invariant

by taking into account the Hanany-Witten effect. The Hanany-Witten effect

is the phenomenon that when a fivebranes pass through another D3-branes are

produced or annihilated for the theory to be consistent or anomaly-free [61, 62].

Such a brane exchange procedure is applied to three-dimensional Chern-Simons

theories in [63, 64, 65].

Through this classification, we obtain an equivalent class of the sets of the

ranks or the fractional D3-brane charges (§5.1). This equivalent class can be seen

in the dual geometry as discrete torsion described by the third homology (§5.2).

Actually, through the IIB/M duality, fractional D3-branes correspond to M5-

branes wrapped on three-cycles. Such wrapped M5-branes are called fractional

M2-branes. They couple to 3-form potential in eleven-dimensional supergravity.

We discuss the relation between the period integral of the three-form field on

three-cycles and the fractional D3-brane charges (§5.3). We also establish the

relation between the fractional brane charge and the torsion of the three-form

field up to the ordering dependent constants.

§5.1 Ranks of gauge groups, Fractional D3-brane charges, Hanany Witten effect.

§5.2 Three-cycles, Unwrapped by removing segments.

§5.3 Period of 3-form potential, Fractional M2-branes and fractional D3-branes.

In Chapter 6, we discuss the relation between M5-branes wrapped on five

cycles and baryonic operators. We define baryonic operators which carry baryonic

charges GB (§6.1). We identify them with M5-branes wrapped on five-cycles

(§6.2). We will see that homology relation is consistent with the decomposability

of products of baryonic operators into mesonic ones on the field theory side. We

also find that the conformal dimension of baryonic operators are consistent with

the mass of the wrapped M5-branes. This analysis itself is essentially the same

as the four-dimensional case [66], in which the baryonic operators [67] in the

Klebanov-Witten theory [68] was investigated.

We discuss this correspondence from the viewpoint of IIB/M duality through

the quark-baryon transition (§6.3). We show that in the type IIB setup N open



14 CHAPTER 1. INTRODUCTION

strings representing constituent bi-fundamental quarks can be continuously de-

formed into a D3-brane disk, which is dual to a wrapped M5-brane.

Note that it needs careful treatment in the case of p = q = 1, i.e. the ABJM

model, in which case there are only torsion 5-cycles in the internal space. In

this case, the only baryonic symmetry GB ' U(1) is spontaneously broken by

getting a vev of the dual photon field. The baryonic operators can be defined in

the gauge-invariant way by multiplying appropriate functions of the dual photon

field [69].

§6.1 GB charge, Decomposability to mesons, Degeneracy, Conformal dimension.

§6.2 Homology relation, Collective motion of the wrapped M5-branes, Mass of

wrapped M5-branes.

§6.3 Quark-baryon transition, Wrapped M5-branes and wrapped D3-branes.

In Chapter 7, we discuss the relation between monopole operators and bary-

onic operators. They cannot be gauge invariant simultaneously. Actually, differ-

ent from four-dimensional case, the baryonic symmetry in three-dimension does

not decouple in the infra-red region. As a result, it often remains gauge symme-

try and we have a choice to specify the gauge groups as unitary type or special

unitary type. This is the reason why baryonic operators in N = 4 model are not

always gauge invariant operators. We discuss that the choice of gauge groups

corresponds to that of boundary conditions of AdS4.

In Chapter 8, we make a brief summary and discussion of each chapter.

In Appendix, we collect up convention (§A), N = 2 superspace formula-

tion (§B), OSp(N|4) superconformal algebra (§C), 1/2 BPS representations of

OSp(8|4) and OSp(4|4) (§D). They can be read independently from the main

text.



Chapter 2

N = 4 Chern-Simons theory

A quiver is a case for carrying arrows. From a dictionary.

2.1 Quiver gauge theory

In this section, we briefly review basics of a supersymmetric quiver gauge theory.

Our convention of N3D = 2 superspace is given in Appendix B.1

A quiver gauge theory is characterized by a quiver diagram. A quiver di-

agram is constituted by nodes and arrows between them. In general, a node

represents both a gauge group and a gauge-multiplet, and an arrow represents a

bi-fundamental matter-multiplet. We use indices a for vertices and I for edges.

We give an example of a quiver diagram in Figure 2.2.

Figure 2.1: A generic quiver diagram.

Let us construct an N3D = 4 quiver Yang-Mills theory. Such a Lagrangian

can be obtained by giving each contribution by parts in a quiver diagram and

summing up all contributions.

First, we consider nodes in the quiver diagram. For each node, we at-

tach an N3D = 4 vector-multiplet and its Yang-Mills coupling constant. An

1The notation N3D means the number of supersymmetries in three dimension. For example,
N3D = 2 means N = 2 in D = 3 or four real supercharges. In this convention, N3D = 2N4D =
4N6D.

15
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N3D = 4 vector-multiplet V is constituted by an N3D = 2 vector-multiplet

v = (Ãµ, σ, λ,D) and a chiral multiplet Φ = (φ, χ, Fφ). Let us denote the vector-

multiplet and the coupling constant for the a-th node by Va and ga, respectively.

The Lagrangian for the a-th node is given by 1
g2a
LYMVa

, where

−LYMVa
= Tr

[∫
d4θΦ†

ae
vaΦae

−va +

∫
d2θ (−F 2

a )

]

= Tr

[
−1

4
FaµνFa

µν +
1

2
λa

AḂ[D/ , λaḂA]− 1

4
DµσaȦ

ḂDµσaḂ
Ȧ

+
1

2
Fa

A
BFa

B
A − 1

2
λa
†
ȦB

[λa
BĊσaĊ

Ȧ] +
1

4
[σaȦ

Ḃ, σaĊ
Ḋ][σaḂ

Ȧ, σaḊ
Ċ ]

]
.(2.1)

Here we set Ã = iA and

(qA) =

(
q
q̃†

)
, (ψȦ) =

(
ψ

ψ̃†

)
, (2.2)

(σȦ
Ḃ) =

(
σ

√
2φ√

2φ† −σ
)
, (λAḂ) =

(
λ 1√

2
χ̄

1√
2
χ −λ̄

)
, (2.3)

(FA
B) = (

1√
2
DA

B) =

(
1√
2
D′ F̄φ
Fφ − 1√

2
D′

)
, (D′ = D + [φ, φ†]). (2.4)

Next, we consider arrows. For each edge, we attach a bi-fundamental hyper-

multiplet HI . A hyper-multiplet is constituted by two chiral multiplets Q =

(q, ψ, Fq), Q̃ = (q̃, ψ̃, Feq). Let us denote the head of I-th of edge as h(I) and its

tail as t(I). Then the Lagrangian LBHI
is given by

−LBHI
= Tr

[∫
d4θ

(
Q†Ie

vh(I)QIe
−vt(I) + Q̃Ie

vh(I)Q̃†Ie
−vt(I)

)
+

∫
d2θ

(
Q̃IΦh(I)QI −QIΦt(I)Q̃I

)]

= Tr

[
−DµqI

†
AD

µqI
A +

1

2
ψI

†ȦD/ψI Ȧ +
1

2
(ψI

†Ȧσh(I)Ȧ
ḂψI Ḃ + ψI Ḃσt(I)Ȧ

ḂψI
†Ȧ)

+(ψI
†Ḃλh(I)

†
ḂA
qI
A + qI

†
Aλh(I)

AḂψI Ḃ) + qI
†
A(Dh(I)

A
B − δAB

1

2
σh(I)Ḋ

Ċσh(I)Ċ
Ḋ)qI

B

−(qI
Aλt(I)

†
ḂA
ψI

†Ḃ + ψI Ḃλt(I)
AḂqI

†
A) + qI

B(−Dt(I)
A
B − δAB

1

2
σt(I)Ḋ

Ċσt(I)Ċ
Ḋ)qI

†
A

+qI
†
Aσt(I)Ċ

ḂqI
Aσh(I)Ḃ

Ċ

]
. (2.5)

In this attachment, an orientation for each arrow is only a convention of Q and

Q̃ in the N = 2 notation and it is not important.

The total Lagrangian is obtained by summing all contributions.

∑
a

1

g2
a

LYMVa
+

∑
I

LBHI
. (2.6)

It can be easily seen that undotted indices (dotted indices) are contracted with

undotted (dotted) ones in the action. Therefore, this action has an SU(2) ×
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Table 2.1: SO(4)YM R-symmetry and field contents.

susy param vector-multiplet hyper-multiplet

(εBĊ) Aaµ (σaȦ
Ḃ) (λa

BĊ) (Da
A
B) qI

A ψI Ȧ
SU(2) 2 1 1 2 3 2 1
SU(2)• 2 1 3 2 1 1 2

SU(2)• R-symmetry and thus N = 4 supersymmetry. Let us denote this R-

symmetry as SO(4)YM . Charge assignment is summarized in Table 2.1.

Next, let us consider to add the Chern-Simons term in this Lagrangian (2.6)

in a supersymmetric form. To do this, we attach a supersymmetric Chern-Simons

Lagrangian given by (B.74) for each edge:

−LCSVa
= −Tr

[
1

4

∫ 1

0

dt

∫
d4θ (−va)D̄α(e

−tvaDαetva) +

∫
d2θ

1

2
Φ2
a

]

= −Tr

[
εµνρ

(
1

2
Aaµ∂νAaρ − i

3
AaµAaνAaρ

)

+
1

2
(λa

AḂλa
†
ȦB

+ σaȦ
ḂDa

B
A)− 1

6
σaȦ

ḂσaḂ
ĊσaĊ

Ȧ

]
, (2.7)

where ka is the Chern-Simons coupling constant associated of the a-th node.

Then, the contribution of the a-th node is totally

1

g2
a

LYMVa
+
ka
2π
LCSVa

. (2.8)

And the total Lagrangian is given by

∑
a

(
1

g2
a

LYMVa
+
ka
2π
LCSVa

)
+

∑
I

LBHI
. (2.9)

This time, due to existence of the Chern-Simons terms, some undotted indices

(dotted indices) are contracted with dotted (undotted) ones in the Lagrangian.

This is the reason why SO(4)YM is broken to the diagonal SO(3) and N = 4

supersymmetry is broken to N = 3.

This situation changes if we consider the infra-red region of the quiver gauge

theory. As mentioned in §1.5, the Yang-Mills coupling constants ga are relevant

in the IR limit. Hence, as the energy scale goes to the infra-red region, they go

to blow up and the Yamg-Mills terms vanish from the action:

∑
a

ka
2π
LCSVa

+
∑
I

LBHI
. (2.10)
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In the Lagrangian (2.10) adjoint fields included except for gauge fields in the

N3D = 4 vector-multiplets are all auxiliary fields. By integrating them out with

the auxiliary fields in the hyper-multiplets, we obtain the on-shell Lagrangian

realized in the IR limit constituted by the hyper-multipelts HI and the gauge

fields Aa.

2.2 IR symmetry

Let us give an N = 4 Chern-Simons theory with unitary-type gauge group.

As mentioned at the beginning of this section, such a Chern-Simons theory is

described by a circular quiver diagram. For brevity, we fix one oriention in the

circular quiver diagram: the left is bigger than the right modulo the number of

the nodes. This enables us to write the head and tail of the I-th arrow as

h(I) = L(I), t(I) = R(I), (2.11)

where L(I) and R(I) represent the vertices at the left and the right ends of an

edge I, respectively. Similarly, we define L(a) and R(a) for the edges on the left

and the right side of a vertex a.

N = 4 supersymmetries require the Chern-Simons coupling constant associ-

ated with the a-th node to be given by

ka = k(sL(a) − sR(a)), k ∈ Z, sI = 0, 1, (2.12)

where sI are integers assigned to edges in the quiver diagram, and they take only

two values 0 and 1. Here we define the Chern-Simons level k. Corresponding

to these two values, we classify the hyper-multiplets into two groups, untwisted

and twisted hyper-multiplets. If sI = 0 (sI = 1) the hyper-multiplet is called

untwisted (twisted) hyper-multiplet. Then, a function sI tells us the order of

two kinds of hyper-multiplets and we call a map sI an ordering. When we want

to distinguish these two kinds of hyper-multiplets, we use index i for untwisted

hyper-multiplets, and i′ for twisted ones. Let p and q be the numbers of untwisted

and twisted hyper-multiplets, respectively. Because the quiver diagram is circu-

lar, the total number of hyper-multiplets and the number of vector-multiplets are

the same:

r = p+ q. (2.13)

We give an example of a circular quiver diagram in Figure 2.2. Note that the

ABJM model is realized by setting p = q = 1 and the HLLLP model is also

included as a special case with p = q and sI = 0, 1 for I ∈ even, odd, respectively.
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0

0

k

k
H1

H2H3

H4

V1

V2

V3

V4

Figure 2.2: A circular quiver diagram of anN = 4 supersymmetric Chern-Simons
theory with (p, q) = (3, 1). The solid lines describe untwisted hyper-multiplets
and the broken line means a twisted hyper-multiplet.

The off-shell Lagrangian is given by (2.10) with suitable substitutions.

LCSN3D=4 =
r∑

a=1

ka
2π
LCSVa

+
r∑
I=1

LBHI
. (2.14)

The Chern-Simons Lagrangian is given by

−LCSVa
= −Tr

[
1

4

∫ 1

0

dt

∫
d4θ (−va)D̄α(e

−tvaDαetva) +

∫
d2θ

1

2
Φ2
a

]

= −Tr

[
εµνρ

(
1

2
Aaµ∂νAaρ − i

3
AaµAaνAaρ

)

+
1

2
(λa

ABλa
†
AB + σaA

BDa
B
A)− 1

6
σaA

BσaB
CσaC

A

]
, (2.15)

and the Lagrangian of the huper-multiplet HI is

−LBHI
= Tr

[∫
d4θ

(
Q†Ie

vL(I)QIe
−vR(I) + Q̃Ie

vL(I)Q̃†Ie
−vR(I)

)
+

∫
d2θ

(
Q̃IΦL(I)QI −QIΦR(I)Q̃I

)]

= Tr

[
−DµqI

†
AD

µqI
A +

1

2
ψI

†AD/ψIA +
1

2
(ψI

†AσL(I)A
BψIB + ψIBσR(I)A

BψI
†A)

+(ψI
†BλL(I)

†
BAqI

A + qI
†
AλL(I)

ABψIB) + qI
†
A(DL(I)

A
B − δAB

1

2
σL(I)D

CσL(I)C
D)qI

B

−(qI
AλR(I)

†
BAψI

†B + ψIBλR(I)
ABqI

†
A) + qI

B(−DR(I)
A
B − δAB

1

2
σR(I)D

CσR(I)C
D)qI

†
A

+qI
†
AσR(I)C

BqI
AσL(I)B

C

]
, (2.16)

where we omit the dots.

One of important facts in a circular quiver gauge theory is that the diagonal

U(1) subgroup does not couple to any bi-fundamental matter fields. Let us denote

the group as U(1)d. This fact enables us to take the dual of the gauge field and

obtain its dual scalar field, which is called the dual photon. This scalar field

plays an important role in the membrane field theories. It is discussed in detail

in §2.4.1.
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To specify gauge group of an N = 4 Chern-Simons theory, it is sufficient to

specify that of each node. In general, we can consider unitary or special unitary

gauge group for each node.2 One of the ways is to assign the unitary gauge group

U(Na)a for the a-th node. In this case, the gauge group is given by

G =

(
r∏

a=1

U(Na)a

)
/U(1)d = GSU ×GB, (2.17)

where GSU and GB are defined by

GSU =
r∏

a=1

SU(Na)a, GB =

( r∏
a=1

U(1)a

)
/U(1)d. (2.18)

The abelian part GB ' U(1)r−1 is called baryonic symmetry. This realization of

gauge group is used to discuss monopole operators in §2.4 and §4.

Another way to specify gauge group is to assign the special unitary gauge

group SU(Na)a for the a-th node. We also consider the U(1)d gauge field to keep

the dual photon. In this case, the gauge group is

GSU =
r∏

a=1

SU(Na)a. (2.19)

This realization of gauge group is used to discuss baryonic operators in §6. Note

that in this gauge group almost all Chern-Simons terms (2.7) vanish and gauge

fields become auxiliary fields. This suggests that N = 4 supersymmetries might

not be kept any more.

This model has the three dimensional conformal symmetry

SO(2, 3) ' Sp(4,R). (2.20)

To confirm this classically, it is sufficient to check that there does not exist any

dimensionful parameter. Furthermore, we expect that this symmetry is preserved

in the quantum level. The reason why we expect this is because the family of

the N = 4 Chern-Simons theories is totally discretized. This fact expects us that

N = 4 Chern-Simons theories do not have any exactly marginal operator and

have completely flown to the conformal fixed point [70].

The R-symmetry of this model is

SO(4)R ' SU(2)R × SU(2)′R. (2.21)

2We can also consider gauge group as an orthogonal group and a unitary symplectic group
for a pair of nodes adjacent to each other [29, 58].
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We also use the notation SU(2)U , SU(2)T instead of SU(2)R, SU(2)′R, respec-

tively. This is because two complex scalar fields which are included in untwisted

and twisted hyper-multiplets belong to a doublet of SU(2)U , SU(2)T , respectively.

Fermions are transformed in the opposite way from the scalar fields in the same

multiplet. See Table 2.2.

Table 2.2: SO(4)R R-symmetry and its charge assignment.

untwisted hyper-multiplet twisted hyper-multiplet

qi
A = (qi, q̃

†
i ) ψiA′ = (ψi, ψ̃

†
i ) qi′

A′ = (qi′ , q̃
†
i′) ψi′A = (ψi′ , ψ̃

†
i′)

SU(2)R 2 1 1 2
SU(2)′R 1 2 2 1
U(1)P 1 1 0 0
U(1)′P 0 0 1 1

As often mentioned, this R-symmetry is peculiar in the IR region and thus

becomes manifest after integrating out the adjoint fields except for gauge fields

in the N3D = 4 vector-multiplets. This fact has been confirmed in [71].

SO(4)R R-symmtry tells us that these models have theN = 4 supersymmtries.

In fact, due to the action (2.10) written in the N = 2 superfield formalism, a

supersymmetry is attained manifestly in these models. Since the supercharge

is charged under the R-symmetry, supersymmetry is enhanced to N = 4. The

supersymmetry variation is given in the literature.

These global symmetries are not always commutable to each other. This

suggests that these symmetries are enhanced to the algebraically closed one. The

symmetry algebra isOSp(4|4), which is given in Appendix C in a more generalized

form. The algebra OSp(4|4) includes a so-called special conformal supercharge,

denoted by S in Appendix C. It is not included in the three global symmetry

algebras above.

There also exists the flavor symmetry

U(1)P × U(1)′P . (2.22)

The component fields in the untwisted hyper-multiplets Hi and those of the

twisted hyper-multiplets Hi′ are transformed in different ways under the global

symmetries. See Table 2.2. Note that in p = q = 1 case, which is the ABJM

model, this flavor symmetry mixes with (2.21), and enhanced to SU(4) R-symmetry.
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Let us make a summary. N = 4 Chern-Simons theories have the following

global symmetry

OSp(4|4)× U(1)P × U(1)′P . (2.23)

We specify unitary or special unitary gauge group for each node. The theories are

characterized by a set of ranks of gauge groups Na, two numbers of untwisted and

twisted hyper-multiplets p, q, an ordering sI and a Chern-Simon level k. Given a

set of these parameters, we have an N = 4 Chern-Simons theory.

2.3 Type IIB brane setup

In this subsection, we give a type IIB brane configuration corresponding to an

N = 4 Chern-Simons theory with unitary or special unitary gauge group. As

mentioned before, it is characterized by the following data {Na, p, q, sI , k}. We

set r = p+ q.

Let us take an N = 4 Chern-Simons theory with the same rank of the gauge

groups Na = N . The rank N is realized by N coincident D3-branes wrapped on

S1, which is the compactified direction, say x6. U(N)r gauge group can be realized

by introducing r 5-branes intersecting with the D3-brane worldvolume at distinct

points in x6 direction and divide the S1 into r intervals. Let us label the intervals

by a = 1, 2, . . . , r. The vector multiplet Va is realized by an open string ending on

D3-branes at the a-th interval. The Yang-Mills coupling of Va is proportional to

the inverse root length of the a-th interval. Hence in the sufficiently low energy

scale compared to the lengths of the intervals, the Yang-Mills kinetic terms die

out and the theory can be described well in three-dimension. Let us label the

intersection points of D3-branes and 5-branes by I = 1, 2, . . . , r in order along

S1. We emphasize that when we use I as a label of 5-branes, it represents the

position of the fivebrane along S1.

In type IIB string theory, 5-branes are specified by two charges: the NS-NS

charge and the R-R charge. Let us call a 5-brane with α NS-NS charge and β

R-R charge as a (α, β)5-brane. Notice that a (1, 0)5-brane is an NS5-brane and

a (0, 1)5-brane is a D5-brane. In ten-dimensional space-time, a set of 5-branes

preserve N = 3 supersymmtries if a (α, β)5-brane is inclined with the definite

angle θ = arctan(α/β) [72].

The two kinds of hyper-multiplets are obtained by restricting the kinds of

5-branes to two: (1, kI)5-branes, where kI = ksI . We introduce p NS5-branes

labeled by i = 1, 2, . . . , p, and q (1, k)5-branes labeled by i′ = 1, 2, . . . , q. We
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place them around the S1 according to a given ordering sI . Then the I-th hyper-

multiplet HI arises from massless modes of an open string stretched between a

L(I)-th D3-brane and a R(I)-th D3-brane, which steps over the I-th 5-brane.

See also Figure 2.3.

NS5

NS5 NS5

(1,k)5

Figure 2.3: The type IIB brane configuration corresponding to an N = 4 Chern-
Simons theory with (N, p, q) = (3, 3, 1). There are 3 D3-branes, 3 NS5-branes
and 1 (1, k)5-brane inclined with the definite angle θ = arctan(k) relative to
NS5-branes.

In this setup, the Chern-Simons terms are induced from the boundary inter-

action of D3-branes ending on 5-branes. The Chern-Simons coupling is given by

the difference of the R-R charges of 5-branes on the boundaries [72, 73]. As a

result, we realize the Chern-Simons coupling ka as (2.12).

Finally, we obtain the type IIB brane setup corresponding to an N = 4 model

whose gauge groups are unitary or special unitary groups with the same rank.3

Let us summarize the type IIB brane configurations in Table 2.3.

Table 2.3: The type IIB brane configuration. (1, k)5-branes are inclined with the
definite angle θ = arctan(k) in the 37, 48 and 59 planes.

0 1 2 3 4 5 6 7 8 9
N D3-branes ◦ ◦ ◦ ◦
p NS5-branes ◦ ◦ ◦ ◦ ◦ ◦
q (1,k)5-branes ◦ ◦ ◦ [37]θ [48]θ [59]θ

Once we obtain the type IIB brane setup corresponding to an N = 4 model

with the same rank of gauge groups, we can easily obtain that for one with the

different ranks of gauge groups Na by permitting fractional D3-branes, which are

ending on different 5-branes. Let N be the minimum in Na. Then the setup of

the different ranks can be realized by adding (Na − N) D3-branes at the a-th

interval into the former setup.
3To realize an orthogonal group and unitary symplectic group for a pair of nodes, we add

an orientifold and an anti-orientifold three-plane for the corresponding intervals [58].
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2.4 Monopole operators

In three-dimensional euclidean space, local operators in general carry magnetic

charges. Such operators are called monopole operators. Monopole operators

correspond to instantons in three-dimensional space-time and become key objects

to understand a rich structure of effective field theories of membranes.

Let us first classify monopole operators in a quiver gauge theory. For this

purpose, we use gauge invariant magnetic charges defined by

ma =
1

2π

∮
TrFa, a = 1, . . . , r. (2.24)

The integral is carried out on a two-cycle in the euclidean space. These magnetic

charges are defined in each node in quiver gauge theories, so r coincides with the

number of the nodes. In other words, a generic monopole has a magnetic charge

specified by r integers, whose set forms a lattice:

(m1,m2, · · · ,mr) ∈ Zr. (2.25)

We call this lattice the magnetic charge lattice. For clearness, we consider a

generic abelian quiver Chern-Simons-matter theory. We label verices by a and

denote the corresponding gauge group by U(1)a. We assume that the levels ka

satisfy
r∑

a=1

ka = 0.4 (2.26)

Let us consider a monopole operator with magnetic charges ma ∈ Z. The gauge

invariance of the operator requires the Gauss law constraint

maka +Qa = 0, (2.27)

where Qa is the U(1)a electric charge carried by matter fields included in the

monopole operator. This guarantees the invariance of the operator under the

gauge symmetry. By summing up this over all a, we obtain the constraint

∑
a

maka = 0. (2.28)

4Chern-Simons-matter theories which do not satisfy the relation (2.26) have also been con-
sidered [74, 75, 76, 77]. It is discussed that the total sum of the Chern-Simons couplings
corresponds to 0-form flux, or the Roman mass. Therefore, the holographic dual of such a
theory is the massive IIA theory. It is pointed out the massive IIA theory cannot be lifted to
M-theory in [78]. This corresponds to the fact that a diagonal monopole operator cannot be
gauge-invariant in the boundary CFT language.
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This relation decreases the rank of the magnetic charge lattice by one, which

means that gauge-invariant monopole operators are labeled by r − 1 indepen-

dent magnetic charges. Let us denote the charge lattice of the gauge-invariant

magnetic charges as ΓM :

ΓM = Zr/(2.28) ∼= Zr−1. (2.29)

It is easily seen that a magnetic charge which has the same component for

each node always satisfies (2.28), due to (2.26). In other words, a vector with

the same component always in the lattice ΓM . A monopole operator with such a

magnetic charge is called a diagonal monopole operator. Let us call the residual

ones, which have a different magnetic charge for a pair of nodes, as twisted or

non-diagonal monopole operators.

We show how to decompose a generic monopole charge into the contribution

coming from the diagonal monopole operator and that of non-diagonal monopole

operators. Actually, for later use, we only have to show it for the monopole

operators whose components of magnetic charge are all positive. Let us denote

the lattice of them as Γ
(+)
M . Let us take such an element from Γ

(+)
M , then there

is the minimum in the components. We choose a node which take the minimum

and denote it as a = •. We identify m• with the contribution of the diagonal

monopole operator in the positive magnetic operator. Under this identification,

(ma−m•) is an element of Γ
(+)
M , and this is the contribution coming from the non-

diagonal monopole operators. In a circular quiver gauge theory, it is convenient

to define the relative magnetic charges, which is independent of the diagonal

magnetic charge, as

µI = mL(I) −mR(I). (2.30)

By definition µI satisfy
r∑
I=1

µI = 0. (2.31)

Combining this and the relation (2.12), (2.28), we obtain the gauge-invariant

condition for the relative magnetic charge as

p∑
i=1

µi = 0,

q∑

i′=1

µi′ = 0. (2.32)

Hereafter, we often focus only on gauge-invariant monopole operators and assume

gauge-invaricance of them implicitly.
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2.4.1 Diagonal monopole operators

Let us discuss a diagonal monopole operator in more detail. In quiver Chern-

Simons-matter theories, a diagonal monopole operator typically appears as a dual

scalar field of the U(1)d gauge field, which is called a “dual photon”. In other

words, the U(1)d gauge field decouple to the matter fields. By taking the dual of

the diagonal U(1) gauge field strength Fd, we obtain a dual scalar field denoted

by ã as

dã =
1

2π
∗ Fd, (2.33)

where ∗ is the Hodge dual in three dimension. From the definition (2.33), ã is

the canonical conjugate to Fd, so by the first quantization rule we obtain

[ ã, m̂d ] = i, (2.34)

where m̂d is given by (2.24) for the diagonal U(1)d. This means that the operator

eimã changes the flux m̂d by m. Namely, eimã is an operator carrying a diagonal

magnetic charge, which is the same magnetic charge ma = m for all the U(1)a

gauge groups. The Hodge dual in (2.33) is calculated from (2.14) as

1

2π
∗ Fd =

n∑
a=1

kaAa. (2.35)

Therefore, under the gauge transformation δAa = dλa the dual photon field is

transformed by

δã = kaλa. (2.36)

This means that the operator eiã carries the U(1)a electric charge by ka.

Here let us place an important assumption with respect to the dual photon.

That is, the dual photon is a periodic scalar field with the period 2π [40].

ã ∼ ã+ 2π. (2.37)

This assumption is equivalent to requiring that the diagonal magnetic charge md

is quantized by an integer. This assumption does not seem to be derived only by

the circular quiver gauge theory given in §2.2. This is because the diagonal U(1)d

does not couple to any matter fields in the theory and the Dirac quantization

condition does not seem to be applied. We expect that this assumption can be

derived beyond effective field theories of membranes by including higher derivative

corrections. This assumption implies that the dual photon gets a non-trivial vev

and one of U(1)s included in U(1)B, precisely speaking
∑

a kaU(1)a, break to the

discrete subgroup:

U(1)B → U(1)r−2 × Z(ka)a , (2.38)
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where (ka)a is the greatest common devisor of ka.

Under this assumption, the dual photon field has a clear interpretation in

M-theory. That is, the dual photon describes the “M-circle” mentioned in §1.1

and the diagonal magnetic charge is identified with the Kaluza-Klein momentum

along the M-direction or “M-momentum”. In this picture, the diagonal monopole

operators, which are combined by eima and matter fields in the gauge-invariant

way, correspond to the Kaluza-Klein mode with the M-momentum proportional

to m. This interpretation is quite natural since this is also the case in just one

membrane world-volume theory obtained from one D2-brane theory in the flat

background [3].

Let us discuss the interpretation of the dual photon by studying the vacuum

moduli space [35, 34, 36], since the vacuum moduli space has also geometric infor-

mation. That is, the vacuum moduli space can be identified with the transverse

direction of a stack of membranes. In general, in a supersymmeteric gauge the-

ory, the moduli space can be obtained by solving F-term and D-term conditions

and fixing gauge symmetry. Actually, it is known that the moduli space can be

also obtained by solving only F-term conditions and fixing complexified gauge

symmetry [79]. Here we take the latter procedure. From the F-term conditions

of QI and Q̃I , we obtain

φL(I) = φR(I). (2.39)

Here we consider the Higgs branch, in which qI and q̃I get non-trivial vacuum

expectation values. This means that all φa take the same value. We denote it by

φ. The F-term condition for Φa is

qL(a)q̃L(a) − ksL(a)φ = qR(a)q̃R(a) − ksR(a)φ. (2.40)

This means that qI q̃I − ksIφ is a constant independent of the index I. In other

words, the product qI q̃I takes two values according to sI . We can define “meson

operators” M and M ′ by

M = qiq̃i, M ′ = qi′ q̃i′ . (2.41)

The suffixes i and I ′ are associated with untwisted and twisted hyper-multiplets,

respectively. Now, we have 2r complex variables qI and q̃I constrained by (2.41).

φa are dependent fields. The number of independent complex variables is r +

2. In addition to these, we need to take account of the dual photon field a.

The dual photon field is combined with the scalar field σ in the diagonal U(1)
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vector-multiplet into a complex scalar field belonging to a chiral multiplet. It is

convenient to define eiã+σ.

Now we have r + 3 independent complex variables. We have to divide this

space by complexified gauge symmetry U(1)r−1
C to obtain a complex 4-dimensional

moduli space. Under the gauge transformation, the complex scalar fields trans-

form as

qI → eiλIqI , eiã+σ → e−ik
P

I sIλIeiã+σ, (2.42)

where we defined

λI = λL(I) − λR(I). (2.43)

By definition, parameters λI are constrained by

r∑
I=1

λI = 0. (2.44)

Let us rewrite the parameters λI by ϕ, θi, θi′ as

λi =
ϕ

p
+ θi, λi′ = −ϕ

q
+ θi′ , (2.45)

where θi and θi′ satisfy
p∑
i=1

θi =

q∑

i′=1

θi′ = 0. (2.46)

Then, the gauge transformation becomes

qi → eiϕ/peiθiqi, qi′ → e−iϕ/qeiθi′qi′ , eia+σ → e−ikϕeiã+σ (2.47)

We can fix the continuous part of this gauge symmetry by

eia+σ = 1 (2.48)

and

qi=1 = · · · = qi=p ≡ z1, qi′=1 = · · · = qi′=q ≡ z3. (2.49)

(2.48) fixes ϕ transformation and two equations in (2.49) fix the θi and θi′ trans-

formations. If (2.49) hold, the relations in (2.41) guarantee

q̃i=1 = · · · = q̃i=p ≡ z2, q̃i′=1 = · · · = q̃i′=q ≡ z4. (2.50)

After the gauge fixing, we have four independent complex variables. Even after

the gauge fixing above, we still have residual gauge symmetry with the parameters

λi =
2πN

kp
+

2πm

p
, λi′ = −2πN

kq
+

2πn

q
, (2.51)



2.4. MONOPOLE OPERATORS 29

Table 2.4: Actions of generators of global symmetries on the coordinates z1, z2,
z3, and z4.

z1 z2 z3 z4

T3 +1/2 +1/2 0 0
T ′3 0 0 +1/2 +1/2
P +1 −1 0 0
P ′ 0 0 +1 −1

where N , m, n are arbitrary integers. Due to this residual gauge symmetry the

global rotations

exp(2πiP/p), exp(2πiP ′/q), exp(2πiPM), (2.52)

are gauge equivalent to 1, where P and P ′ are the generators of U(1)P and U(1)′P ,

respectively. Their actions on the coordinates are shown in Table 2.4. PM is the

linear combination of P and P ′;

PM =
1

kq
P ′ − 1

kp
P. (2.53)

The three actions (2.52) are explicitly given by

(z1, z2, z3, z4) 7→ (e
2πi
p z1, e

− 2πi
p z2, z3, z4), (2.54)

(z1, z2, z3, z4) 7→ (z1, z2, e
2πi
q z3, e

− 2πi
q z4), (2.55)

(z1, z2, z3, z4) 7→ (e−
2πi
pk z1, e

2πi
pk z2, e

2πi
qk z3, e

− 2πi
qk z4), (2.56)

respectively. The shift generated by PM is gauge equivalent to the shift of dual

photon field up to the gauge symmetry associated with the parameter ϕ, and

we regard PM as the M-momentum. By taking account of the discrete residual

gauge symmetry (2.52), we obtain the moduli space

C4
p,q,k := ((C2/Zp)× (C2/Zq))/Zk. (2.57)

Especially in the special case with p = q = 1, the moduli space reduces to

C4
1,1,k = C4/Zk, (2.58)

which agrees with that of ABJM model. In non-abelian case with the same rank

Na = N , we can obtain the moduli space as the symmetric product of N copies

of the orbifold.

It is instructive to see that the vacuum moduli space obtained in this way is

spanned by a basic set of chiral gauge-invariant operators. Now the gauge groups
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are abelian, so we only take care of the baryonic symmetry GB. First, we consider

the k = 1 case. We already constructed mesonic operators M,M ′ in (2.41). In

addition to them, the dual photon enables us to construct the following mesonic

operators

b = e−iã
p∏
i=1

(qi), b′ = eiã
q∏

i′=1

(qi′), b̃ = eiã
p∏
i=1

(q̃i), b̃′ = e−iã
q∏

i′=1

(q̃i′). (2.59)

The mesonic operators are related by

bb̃ = Mp, b′b̃′ = M ′q. (2.60)

These are just the defining equations of Ap and Aq type singularities, respectively.

They describe the space (C2/Zp)× (C2/Zq). In fact, the defining equations can

be solved by using free complex variables zl (l = 1, 2, 3, 4) as

b = T̃ zp1 , b′ = Tzq2, b̃ = Tzp3 , b̃′ = T̃ zq4, M = z1z3, M ′ = z2z4, (2.61)

where T T̃ = 1. However, this parametrization has a redundancy, which is de-

scribed by the transformation (2.54), (2.55). By identifying the points moved to

each other by them, we obtain the space mentioned above. As for a general k,

the period of the dual photon becomes 2π/k and T, T̃ are identified with e2πi/kT ,

e−2πi/kT̃ , respectively. This change gives another constraint on zl to be identi-

fied under the transformation (2.56). Dividing the space by it, we reproduce the

vacuum moduli space above.

In the geometric point of view, the moduli space describes the transverse

direction of a stack of membranes. In other words, N = 4 Chern-Simons theories

are expected to describe multiple membranes at the orbifold singularity of (2.57).

This fact is important to obtain the dual geometry in §3.3.

Let us see this fact from the brane setup. We start from the type IIB brane

system in Table 2.3. We first perform T-duality transformation along x6 and

then lift the system to M-theory configuration. After a coordinate transforma-

tion which makes two-torus at infinity diagonal [27], we have the configuration

shown in Table 2.5. Through this duality chain, D2-branes are transformed into

membranes, and NS5-brane i and (1, k)-fivebrane i′ are mapped to purely geomet-

ric objects, Kaluza-Klein (KK) monopoles. We have already assumed implicitly

this correspondence between the 5-branes and singular loci when we used indices

i and i′ to label the singular loci. In general, Q coincident KK monopoles are

described as an orbifold with AQ−1-type singularity. The geometry shown in Ta-

ble 2.5 is the product of Ap−1 and Aq−1 singularities, which is nothing but the

moduli space obtained above.
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Table 2.5: The dual M-theory geometry. “./” in the column means that S1

fibration shrinks at the core of the KK monopoles.

0 1 2 3 4 5 6 7 8 9 M
N M2-branes ◦ ◦ ◦

p KK monopoles ◦ ◦ ◦ ./ ◦ ◦ ◦ ◦
q KK monopoles ◦ ◦ ◦ ◦ ◦ ◦ ◦ ./

Notice that with respect to two kinds of hyper-multiplets, the moduli space

depends only on their number and independent of their ordering. To classify

two inequivalent theories with the same moduli space, it is useful to define the

topological invariant, called the linking number [61], for each hyper-multiplet by

li = ni + k
∑

i<j′<•
1, li′ = ni′ − k

∑

•<j<i′
1. (2.62)

Here it is necessary to choose a reference node to define the linking numbers and

we choose it as the node • for later convenience. Two theories with different sets

of linking numbers are inequivalent to each other even though they share the

same moduli space. A classification of the class of N = 4 Chern-Simons theories

is studied in detail in §5.

In the end, we have a comment on another role of the diagonal monopole

operators. That is the enhancement of global symmetry in the highly strongly-

coupled region. To reveal the full global symmetry which cannot be seen from

the Lagrangian, we need to take into account non-perturbative effects. Therefore,

monopole operators play a key role in such an issue. Indeed, it is often discussed

that the supersymmetry of the ABJM model is enhanced to N = 8 with the

Chern-Simons level k = 1, 2 by taking diagonal monopole operators into account

[96, 97, 98, 99, 100, 101].

2.4.2 Twisted monopole operators

In the previous subsection, we discussed that the diagonal monopole charge can

be identified with the M-momentum or the D-particle charge from the standpoints

of M-theory or type IIA theory, respectively. A natural question is what corre-

sponds to the residual r−2 non-diagonal monopole charges, or twisted monopole

operators.

We proposed the answer of this question in [46], and our proposal was con-

firmed in the BPS sector [80, 47, 48]. Our proposal is that twisted monopole
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operators correspond to M2-branes wrapped on non-trivial two-cycles in the in-

ternal space of the dual geometry. This is one of the main topics in the doctoral

thesis.

Here, let me mention where the name of twisted monopole operators come

from. We call operators with non-diagonal magnetic charges twisted monopole

operators just since they are in the twisted sector. In the perspective of string

theory, the twisted sector arises when the flat space-time is divided by a discrete

group. In this case, the twisted sector is characterized by the set of the string

states with “non-trivial” boundary conditions, which would not be imposed in

the flat space-time. In the viewpoint of the field theory, a state in the twisted

sector is specified by a non-vanishing charge under the discrete action.

Let us discuss the above things for an N = 4 Chern-Simons theories, which

is described by a circular quiver diagram. The discrete actions Zp,Zq correspond

to the shift symmetries in the quiver diagram. Namely, the Zp or Zq action

shifts the part of the diagram including p untwisted hyper-multiplets or q twisted

hyper-multiplets, respectively. It is easy to see that non-diagonal charges are not

invariant under such shift symmetries and that non-diagonal monopole operators

are in the twisted sector.

This situation with respect to the twisted sector is reminiscent of that in the

four-dimensional case. In other words, the similar phenomena happen in N4D = 2

super Yang-Mills theory, which can be obtained as a Zm orbifold of the N4D = 4

one. It is described by the Am−1 type quiver diagram, and has Zm symmetry

shifting the diagram. The twisted sector in N4D = 2 models was studied in the

context of AdS5/CFT4 correspondence [81, 82]. Its contribution in the field theory

side was identified with that coming from the orbifold singularity in geometry side

by using the field-operator correspondence. The above proposal in AdS4/CFT3

correspondence is quite similar to their result in AdS5/CFT4 correspondence. In

fact, non-trivial two-cycles in the internal space of the dual geometry, on which

M2-branes can be wrapped, come from its orbifold singularity. We will discuss

this in detail in §4.
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M-theory dual

Duality is often understood as equivalence of two different viewpoints

of one object.

3.1 AdS/CFT duality

In this section, we briefly review AdS/CFT duality [6]. For details, see reviews

[83, 84, 85, 86].

Let us discuss this statement in the novel case of AdS5/CFT4 duality. The

duality claims that two different points of view of a stack of D3-branes are equiva-

lent under certain limits. One viewpoint of a pile of D3-branes is an object which

open strings are attached. Since open strings can behave as gauge particles as

the massless excitation, a stack of D3-branes is an object on which a non-abelian

gauge theory is realized. The other viewpoint of multiple D3-branes is an object

which emits and absorbs closed strings. Since closed strings include graviton as

their massless mode, they have their own mass and curve the geometry. In this

picture, the stack of D3-branes is described by a black threebrane solution in type

IIB supergravity.

The key to realize such an idea is in how to take the certain limits. In general,

open strings and closed strings couple to each other. To make two viewpoints

of the branes independent, it is necessary to decouple their interaction, which

is realized by turning off the string coupling constant gs. It is possible to take

this limit since in black threebrane solutions the dilaton and thus the string

coupling constant are free parameters. To avoid making the theory trivial in

this limit, Maldacena takes the large N limit with gsN fixed. The large N limit

means the number of D3-branes increases infinitely and it can be expected to

keep non-trivial gravitational effect of them. Under this limit Maldacena studied

the infra-red physics happening on D3-branes coming close to the D3-branes.

33
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Under these limits, the gauge theory realized on the D3-branes flows to a certain

conformal field theory. In the gravity side, the black three-brane solution become

AdS5 ×X5, where X5 is a five dimensional compact manifold. He proposes that

two theories obtained in these limits are equivalent.

We summarize the limits he proposed as follows:

gs → 0, N →∞, gsN : fixed. (3.1)

r ¿ R¿ lIR. (3.2)

Here R is the curvature radius of the black three brane solution, lIR is the length

scale considered here and r describes the radial direction of the D3-branes. In

a case with the string scale ls much smaller than lIR, we can ignore the stringy

excitation and use supergravity approximation. This limit is sometimes called the

“Maldacena limit” [86]. His claim is that under these limits the gauge/gravity

duality conceived by ’t Hooft [87] is realized via the D3-branes. Actually, the

string coupling constant gs and the gauge coupling constant gYM are related by

gs ∼ g2
YM . (3.3)

From this fact the limit (3.1) is nothing but the ’t Hooft limit and λ = g2
YMN is

just ’t Hooft coupling constant [87].

This gauge/gravity duality can be considered as a kind of holography [88].

Here holography means the phenomenon that all the information of an object

(a theory) can be encoded into a less dimensional one just by one. In this con-

text, the hologram of the gravity theory is the theory realized on the boundary.

Actually, the stack of probe D3-branes can be considered to exist on the bound-

ary. The five-dimensional anti-de-Sitter space is asymptotically conformally flat.

Therefore, a four-dimensional conformal field theory in the flat space-time can

couple to gravity consistently on the boundary [89]. This four-dimensional CFT

realized on the boundary is identified with that realized on a piles of D3-branes.

In this sense, this correspondence is also called bulk-boundary correspondence.

The crucial point of the gauge/gravity correspondence lies in a strong/weak

duality. Indeed, an effective coupling constant in the largeN gauge theory is given

by λ. This means that perturbation is perfomed by positive powers of λ and thus

the region where perturbation is well-defined is λ ∼ 0. On the other hand, an

effective coupling constant in the gravity theory is given by inverse powers of λ,

and thus the well-defined perturbative region is λ ∼ ∞. To see this intuitively,
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remember that an effective coupling constant in the curved background is given

by the inverse of its curvature radius. This is obvious from the fact that the

curvature radius becomes smaller as the gravity force gets stronger. Black three

brane solutions tell us the curvature radius of AdS5 as follows.

R4
AdS5

∼ gsNl
4
s ↔

(
ls

RAdS5

)4

∼ 1

λ
. (3.4)

Combining these facts, the effective coupling constant of supergravity on the AdS5

background is given by some negative power of the ’t Hooft coupling constant

λ. Indeed, as seen from (3.2), the radial direction of D3-branes can describes

the energy scale of the boundary field theory. It plays a role to connect the

ultra-violet and infra-red region [90].

This means that the strong/weak duality always has the strong/weak point.

The strong point is that by using the duality one theory in the strongly coupled

region can be analyzed by the other theory in the weakly coupled regime. The

weak point is that it is always difficult to prove the duality since we cannot take

the perturbative approach by using the coupling constant λ in the proof. Since

one of our motivations to study AdS/CFT duality is to confirm the proposals

with respect to membranes, we need to avoid this difficulty in a certain way.

One of the ways to avoid this difficulty is to restrict the region of our interest

to the BPS sector. In other words, our analysis is focused only on the states or

operators which preserve a supersymmetry. Such states are called BPS states.

Due to supersymmetry, quantum numbers of a BPS state are often free from

quantum correction and become independent of the coupling constant λ. In

the region, assuming that AdS/CFT duality is correct, we can expect the exact

agreement of the spectrum in the BPS sector [91, 89].

We assume that the above discussion is also the case with membranes in

M-theory, whose near-brane geometry is AdS4×X7, where X7 is a seven dimen-

sional compact manifold. In the next section, we consider the eleven-dimensional

supergravity and study how membranes are described as black objects.

3.2 Eleven-dimensional supergravity

In a sufficiently small energy scale, M-theory is well-described by eleven-dimensional

supergravity [92]. The eleven-dimensional supergravity is constituted by D =

11 vielbein eÂ
A, Majorana gravitino ΨA and three-form gauge field C3. Here



36 CHAPTER 3. M-THEORY DUAL

A,B, · · · are the indices of eleven-dimension and Â, B̂, · · · are the local Lorentz

indices. The action is given by

S11D =
1

2κ2
11

[∫
d11x e

(
Le + LΨ + LG + LΨG

)
+

∫
LWZ

]
, (3.5)

where 2κ2
11 is the eleven-dimensional Newton constant given by 2κ2

11 = (2πlP )9

2π
, e

is the determinant of the vierbein and

Le = R, (3.6)

LΨ = −1

2
Ψ̄AΓABCDBΨC , (3.7)

LG = − 1

2 · 4!
G4ABCDG4

ABCD, (3.8)

LΨG =
1

8
Ψ̄AΓ[AG/ 4Γ

B]ΨB, (3.9)

LWZ = − 1

3!
C3 ∧G4 ∧G4. (3.10)

Here G4 is the field strength of the gauge field C3, G4 = dC3, and G/ 4 is contracted

by D = 11 Γ-matrices as 1
4!
G4ABCDΓAΓBΓCΓD. This action is invariant under

the following supersymmetry transformation.

δeÂ
B =

1

4
Ψ̄ÂΓBε, (3.11)

δΨA = DAε+
1

4!
(ΓAG/ 4ε− 3G/ 4ΓA)ε, (3.12)

δC3ABC =
1

4
(ε̄ΓABΨC + ε̄ΓBCΨA + ε̄ΓCAΨB). (3.13)

Let us construct a black membranes solution. We consider the case which

membranes are extending to x1, x2 direction in the flat space-time. Such co-

incident membranes should be invariant under the three-dimensional Poincare

transformations and under the rotations around the position. Such transforma-

tion groups are SO(1, 2) n R3 and SO(8), respectively. Such a metric is given

by

H− 2
3ηµνdx

µdxν +H
1
3 (dr2 + r2d~Ω2

S7). (3.14)

For four-form field strength, we assume Freund-Rubin ansatz [93]

G4 = dt ∧ dx ∧ dy ∧ dH−1. (3.15)

To respect the above symmetries, H should be a function of r. H is determined

by the equation of motion of the four-form flux.

d ∗G4 = −1

2
G4 ∧G4, (3.16)
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where ∗ is the D = 11 Hodge dual. From the ansatz, we can easily see that

dG4 = G4 ∧ G4 = 0. Therefore, from the equation of motion, G4 becomes a

harmonic four-form. This is easily solved and we obtain

H = 1 +
R6

S7

r6
. (3.17)

Here RS7 is a constant, and we set the boundary condition that H → 1 as r →∞.

We can determine the constant RS7 by the flux quantization condition.

− 1

(2πlp)6

∫

S7

∗G4 = N, (3.18)

where N is an integer corresponding to the number of membranes. We can easily

solve this as

R6
S7 =

(2πlp)
6

2π4
N. (3.19)

We can show that this solution has 16 supersymmetries. In other words, this

solution is a half BPS membrane solution.

Let us consider the near region to the membranes. Then the metric (3.14)

goes to AdS4 geometry

(3.14) →
(
RS7

2

)2
ηµνdx

µdxν + dz2

z2
+R2

S7d~Ω2
S7 , (3.20)

and four-form flux

(3.15) → −3R3
S7

8z4
dt ∧ dx ∧ dy ∧ dz. (3.21)

Here we do a coordinate transformation such that r2 =
R3

S7

2z
. We find that the

space-time symmetry is changed into SO(2, 3) × SO(8). Furthermore, we can

show that this background has 32 supersymmetries. To see this, we solve the

BPS equation δΨA = 0 in this background. Plugging (3.20) and (3.21) into

(3.12), we obtain the Killing spinor equations

∇aε =
1

2RAdS4

Γaγε, (3.22)

∇mε = − 1

2RS7

Γmγε. (3.23)

Here the indices a and m describe coordinates of AdS4 and S7, respectively. We

also set γ = −Γt̂r̂θ̂φ̂, where r, θ, φ are the radial coordinate of AdS4, and

RAdS4 =
RS7

2
. (3.24)
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We can solve the Killing spinor equations by using a constant Majorana spinor

ε0 with a fixed coordinate by

ε =

(
e

ρ
2
Γρ̂γe

t
2
Γt̂γe−

θ
2
Γθ̂

ρ̂

e−
φ
2
Γρ̂

θ̂

)(
e−

α1
2

Γ1γe−
α2
2

Γ2γe−
α3
2

Γ3γ

)(
e

β1
2

Γ1
4+

β2
2

Γ2
5+

β3
2

Γ3
6−β4

2
ΓMγ

)
ε0.

(3.25)

See [94, 95] for details. Therefore, AdS4 × S7 geometry have 32 supersymme-

tries. These supersymmetries are mixed with the above global symmetries, as

mentioned in §2.2, and enhanced to OSp(8|4). We give the algebra of OSp(N|4)

in Appendix C.

This discussion is easily generalized to membranes at the tip of an eight-

dimensional cone C8 in Table 1.1. In this case, if we denote its fiber by X7, the

near-brane metric of membranes at such a background is given by

R2
AdS4

ds2
AdS4

+R2
X7ds2

X7 . (3.26)

The X7 radius is given by

R6
X7 =

(2πlp)
6

6Vol(X7)
N, (3.27)

where Vol(X7) is the volume of X7. The AdS4 radius is given by (3.24) replacing

S7 with X7.

3.3 Dual of N = 4 Chern-Simons theories

In this section, we consider the gravity dual of N = 4 Chern-Simons theories.

From the analysis of the moduli space of N = 4 Chern-Simons theories, we read

off the background of membranes described by them. An eight-dimensional cone

is given by C4
p,q,k and the eleven-dimensional space-time is given by

R1,2 ×C4
p,q,k. (3.28)

N = 4 Chern-Simons theory with fixed p, q, k describes a pile of membranes at

the tip of the orbifold C4
p,q,k and extending in R1,2.

We apply AdS4/CFT3 duality via membranes to this system by taking the

limits (3.1), (3.2) discussed in the previous section. By lifting superstring theory

to M-theory, the string coupling constant gs describes the size of M-circle, which

is proportional to k−1. The parameter k is quantized by the gauge symmetry,
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so we can fix it.1 As N goes to large, the number of membranes is blowing up.

In this limit, we cannot ignore the gravitational effect of membranes any more,

and the space-time (3.28) gets curved according to the mass of membranes. With

taking into account the back-reaction of membranes, the dual geometry of this

system emerges as the near-brane limit of the black-membranes solution given by

AdS4 × S7
p,q,k, (3.33)

S7
p,q,k is the seven-sphere divided by the discrete subgroups defined by (2.52).

S7
p,q,k = (S7/(Zp × Zq))/Zk. (3.34)

The metric is given by (3.26). Here the radius of S7
p,q,k is given by

R6
S7

p,q,k
= kpqR6

S7 . (3.35)

Let us move on to global symmetry of this dual geometry. For this purpose,

it is convenient to start with the un-orbifolded background, AdS4×S7. Isometry

of this geometry is

Sp(4,R)× SO(8), (3.36)

which should be identified with the three-dimensional conformal group and R-

symmtry in the field theory side. This geometry possesses the maximal super-

symmetry.2

To obtain the M-theory dual of an N = 4 Chern-Simons theory, we divide

the space by the discrete action (2.54), (2.55). Correspondingly, we define the

subgroup SO(4) × SO(4)′ ⊂ SO(8), which rotate two C2 spanned by z1, z2 or

z3, z4, respectively. Because each SO(4) is a product of two SU(2) factors, we

have in total four SU(2) factors in this subgroup. We denote these four factors

as follows.

SO(4) = SU(2)R × SU(2)F , SO(4)′ = SU(2)′R × SU(2)′F . (3.37)
1Of course, we can take the zero size limit of M-circle, k →∞. In this limit, the dual theory

goes to type IIA theory on AdS4 ×CP3
p,q, where CP3

p,q is given by the orbifolded CP3:

|z1|2 + |z2|2 + |z3|2 + |z4|2 = 1, (3.29)
(z1, z2, z3, z4) ∼ (e−iθz1, e

iθz2, e
iθz3, e

−iθz4), (3.30)

where the coordinates zl are identified as follows.

(z1, z2, z3, z4) ∼ (e
2πi

p z1, e
− 2πi

p z2, z3, z4), (3.31)

(z1, z2, z3, z4) ∼ (z1, z2, e
2πi

q z3, e
− 2πi

q z4), (3.32)

2Actually, in the case of k = 1 and 2, ABJM model is expected to haveN = 8 supersymmetry
more than N = 6.
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The supercharges of the N = 8 theory belong to the spinor representation 8s of

SO(8), and its branching in the subgroup SU(2)R×SU(2)F ×SU(2)′R×SU(2)′F
is

8s → (2,1,2,1)⊕ (1,2,1,2). (3.38)

If we perform the orbifold projection by using an appropriate abelian discrete

subgroup of SU(2)F × SU(2)′F , the latter half on the right hand side in (3.38) is

projected out, and we are left with N = 4 supersymmetry. The remaining four

supercharges are transformed as a vector of

SO(4)R = SU(2)R × SU(2)′R. (3.39)

This group is nothing but the R-symmetry (2.21) in the field theory side. Note

that SO(4)R is not any of two SO(4) groups in (3.37). The orbifolding breaks

SU(2)F and SU(2)′F into abelian subgroups which commute with the orbifold

groups. We denote them by U(1)P ⊂ SU(2)F and U(1)′P ⊂ SU(2)′F . We iden-

tify these symmetries with the global symmetry (2.23) in N = 4 Chern-Simons

theories.

An important feature of this dual geometry is that it includes orbifold singu-

larities. The Zp orbifolding in (3.34) generates Ap−1 type singularities. The con-

tinuous set of the fixed points forms the fixed locus with topology AdS4×S3/Zqk

in the total space. Similarly, the fixed locus associated with Zq is AdS4×S3/Zpk.

We refer to these two fixed loci as S and S ′, respectively. We also use the notation

SU(ST ) instead of S(S ′), whose singularity is originated in untwisted (twisted)

hyper-multiplets.

On S there exists a seven-dimensional N = 2 SU(p) vector-multiplet. Its

Cartan part arises from the localized zero modes of the supergravity fields, while

the non-Cartan part arises from M2-branes wrapping on vanishing 2-cycles at the

singular locus. This fact can be also seen through duality chain. As discussed in

§2.4.1, the orbifold singularity are produced by KK monopoles. By taking M/IIA

duality, KK monopoles are mapped to D6-branes and M2-branes wrapping on the

2-cycles are transformed to open strings which are ending on D6-branes. Such

open strings account for the non-abelian gauge group and the vector-multiplet

mentioned above. We also have an SU(q) vector-multiplet localized at the other

singular locus S ′. These two loci can be treated in a similar way, and we mainly

focus on the vector-multiplet in S. We define the gauge groups

GS×S′ = GS ×GS′ = SU(p)× SU(q) (3.40)
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and their Cartan parts

HS×S′ = HS ×HS′ = U(1)p−1 × U(1)q−1 (3.41)

for later convenience.

As we mentioned above, S is Zqk orbifold of its covering space S̃ = AdS4×S3.

Once we obtain the Kaluza-Klein spectrum in S̃, we can derive the spectrum in S
by an appropriate projection. Among global symmetries in (3.37), only SU(2)′R
and SU(2)′F act on S̃ transitively, while SU(2)R and SU(2)F do not move the

locus. This means that from the viewpoint of the seven-dimensional theory on

the locus, SU(2)R and SU(2)F are internal symmetries while the other two are

parts of the isometry group

Sp(4,R)× SU(2)′R × SU(2)′F , (3.42)

of the seven-dimensional spacetime. The last factor in this group, SU(2)′F , is

broken to U(1)′P by the orbifolding, and the other part, Sp(4,R)× SU(2)′R, is a

part of the bosonic subgroup Sp(4,R)×SU(2)R×SU(2)′R of the superconformal

group OSp(4|4).

3.4 Homology

We investigated the homology H∗(S7
p,q,k,Z) in [46]. Our motivation of this study

was to classify M-branes wrapped on non-trivial cycles in the internal space,

which is expected to have their counterparts in the field theory side. The results

are given by

H0 = Z, H1 = Zk, H2 = Zp+q−2, H3 = (Zq−1
kp ⊕ Zp−1

kq ⊕ Zkpq)/(Zp ⊕ Zq),

H4 = 0, H5 = Zp+q−2 ⊕ Zk, H6 = 0, H7 = Z. (3.43)

Let us explain how these homologies can be obtained. First, let us focus on

the free part of this homology. H0 and H7 are easily obtained by the fact that

S7
p,q,k is a connected manifold. The free parts of H2 and H5 originate in the

p+ q−2 2-cycles coming from the Ap×Aq type singularity of the manifold S7
p,q,k.

To justify this fact mathematically, homology algebra is a useful tool. First, we

consider the k = 1 case. Actually, the free part of the homology is independent

of k. We use the Mayer-Vietoris exact sequence given by

· · · ∂∗−→ H∗(X1 ∩X2)
(ρ1∗,−ρ2∗)−→ H∗(X1)⊕H∗(X2)

j1∗+j2∗−→ H∗(X1 ∪X2)
∂∗−→ · · · .

(3.44)
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As usual, we divide S7
p,q,k into two parts: one is the hemisphere including the

north pole, the other is including the south pole. More concretely, we introduce

a real coordinate 0 ≤ t ≤ 1 in S7
p,q,k as

|z1|2 + |z2|2 = t, |z3|2 + |z4|2 = 1− t. (3.45)

At a generic value of t, this defines two 3-spheres, and the orbifold actions (2.54),

(2.55) makes them Lens spaces Lp and Lq, respectively. Then the former hemi-

sphere is described by t ≤ 1
2
, the latter is t ≥ 1

2
. We choose X1 and X2 in (3.44) as

the two hemisphere, in which case S7
p,q,k is realized by X1 ∪X2. Hence, the prob-

lem to obtain H∗(S7
p,q,k) reduces to that of the homologies of X1, X2 and X1∩X2.

These manifolds have rather simpler homologies because they are topologically

equivalent to the product spaces of lower-dimensional manifolds:

X1 ∼ D4
p × Lq, X2 ∼ D4

q × Lp, X1 ∩X2 ∼ Lp × Lq, (3.46)

where D4
p is a 4d compact disk with the Ap−1 type singularity, and Lp is a lens

space. The homologies of these manifolds are given in Table 3.1. To derive the

homology of a product manifold, the universal coefficient theorem is useful, which

is given by the following splitting exact sequence

0 −→ (H(A)⊗H(B))∗ −→ H∗(A×B) −→ ⊕
a+b=∗−1

Tor1(Ha(A), Hb(B)) −→ 0.

(3.47)

As a result, we obtain the homologies of D4
p × Lq and Lp × Lq, which are also

listed in Table 3.1. In the table, (p, q) means the greatest common devisor of p

and q.3 Combining these data and the exact sequence (3.44), the free part of the

homology (3.43) is easily reproduced. This result is consistent with the Poincare

duality

bq = bd−q, Tq−1 = Td−q, (3.49)

where d is the dimension of the manifold, bq is the rank of the q-th homology,

called the q-th betti number, and Tq is the torsion part of the q-th homology. Of

course such non-trivial cycles can be constructed concretely by using a coordinate

system such as {zl, t} constrained by (3.45). In fact, we will construct 5-cycles

in H5(S
7
p,q,k) by using the coordinate system in §6, to determine the volume of

them.

3For derivation, we use the following formulas.

Zp ⊗ Zq = Z(p,q), Z⊗ Zq = Zq, Tor1(Zp,Zq) = Z(p,q), Tor1(Z,Zq) = 0. (3.48)
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Table 3.1: The homologies of a 4d compact disk with the Ap−1 type singularity,
a lens space, and some product spaces.

D4
p Lq D4

p × Lq Lp × Lq
H0 Z Z Z Z
H1 0 Zq Zq Zp ⊕ Zq

H2 Zp−1 0 Zp−1 Z(p,q)

H3 0 Z Z⊕ Zp−1
q Z2 ⊕ Z(p,q)

H4 0 0 0 Zp ⊕ Zq

H5 0 0 Zp−1 0
H6 0 0 0 Z
H7 0 0 0 0

As for the torsion part, we use the Poincare duality. For general k, we can

obtain some of the torsion parts of S7
p,q,k by hand as

T0 = 0, T1 = Zk, T2 = 0. (3.50)

Combining this fact and the Poincare duality for the torsion (3.49), we finally

get the homology of S7
p,q,k such as (3.43), except for H3(S

7
p,q,k). It seems a bit too

complicated to determine H3(S
7
p,q,k) just by diagram chasing of the above exact

sequences, so we will derive it by careful search of the manifold S7
p,q,k in §5.2.





Chapter 4

Wrapped M2-branes and
monopole operators

The strategy to confirm the proposal is to use indices.

4.1 Clues

Before studying indices, let us have a comment on some clues on the correspon-

dence in the title of this chapter.

One of evidences of this correspondence is the agreement of the independent

numbers in both sides [46]. The independent number of wrapped M2-branes can

be obtained by counting the independent 2-cycles in the internal space. The

number is given by the second Betti number b2(S
7
p,q,k) := rankH2(S

7
p,q,k) = r− 2.

It is evident that this number is identical to that of the independent non-diagonal

monopole operators.

Another evidence is the agreement of BPS spectra in both sides. As mentioned

in §3.1, the reason why we restrict BPS spectrum is because it is independent

of coupling constants and thus we can expect the exact agreement on AdS/CFT

correspondence, which is the strong/weak duality.

One approach is to check the agreement between Kaluza-Klein modes of mass-

less fields in the bulk geometry and chiral operators in the corresponding bound-

ary CFT. Such analysis in the ABJM model was performed in [27, 49, 39]. For

abelian N = 4 Chern-Simons theories, the agreement of the both spectra of

the twisted monopole operators and the wrapped M2-branes was confirmed by

constructing a basis of chiral twisted monopole operators explicitly [80].

We generalized the result in [80] to the non-abelian case in another way. That

is, we confirmed the agreement of indices calculated in both sides independently

45



46CHAPTER 4. WRAPPED M2-BRANES AND MONOPOLE OPERATORS

[47, 48]. An index is a kind of a character with respect to global symmetries

in a supersymmetric theory and free from quantum correction. By using this

property, the BPS spectrum in a supersymmetric theory can be encoded into an

index. Therefore the agreement of both indices in two theories leads to that of

BPS spectra in both theories. Note that our generalization is necessary to use

AdS/CFT correspondence, since it requires the large N limit as discussed in the

previous chapter.

4.2 Gauge theory index

4.2.1 Overview

Let us overview works on indices for three-dimensional superconformal Chern-

Simons-matter theories. Our analysis of indices highly depends on their works.

The study of indices of superconformal Chern-Simons theories was triggered

by [102] for the ABJM model. Let (h1, h2, h3) be the SU(4)R weight vector and

h4 be the U(1)B charge. Notice that h4 is nothing but the M-momentum on the

gravity side. The superconformal indices investigated in [102] are defined by1

Igauge(x, y2, y3) = Tr
[
(−1)F e−β

′{Q,S}x2(D+j)yh2
2 y

h3
3

]
(4.1)

where Q is one component of supercharge with R-charge (h1, h2, h3) = (1, 0, 0),

and S is its Hermitian conjugate, D is the dilation, j is the spin component. On

the gauge theory side, the trace in (4.1) is regarded as the summation over gauge

invariant operators.

To be curious, the indices defined by (4.1) are independent of β′ as in the

four-dimensional case [103]. In other words, only BPS states, which is saturating

the BPS bound

{Q,S} = ∆− j − h1 ≥ 0, (4.2)

contribute to the indices. In calculation, they took the large N and large k limit

with the ’t Hooft coupling λ = N/k fixed. As a result, they succeeded to take

the weak coupling limit λ→ 0 and perform the path integral. The explicit form

is

Igauge(x, y2, y3) =
∞∏
n=1

(1− x4n)2

(1− x2nyn2 )(1− x2n

yn
2

)(1− x2n

yn
3

)(1− x2nyn3 )
. (4.3)

In exchange for success of path integral calculation, however, all the monopole

contribution decouple in the large k limit. On the gravity side, this corresponds to

1We replace the variable x commonly used in the literature by x2 to avoid fractional power.
And we denote the variable for hl as yl.



4.2. GAUGE THEORY INDEX 47

the decoupling of Kaluza-Klein modes with non-vanishing M-momentum h4. The

corresponding graviton index is obtained by a projection of the graviton index

for AdS4 × S7, which restricts to the sector without M-momentum contribution.

The single particle index is given as

IGCP3 =
x2

y2 − x2
+

1

1− x2y2

+
x2

y3 − x2
+

1

1− x2y3

− 2

1− x4
. (4.4)

This index is derived in §4.3.1. By deriving the multi-particle index from (4.4),

they confirmed the agreement of both indices.

This result can be generalized in two ways. One way is to apply for more

generic superconformal Chern-Simons-matter theories. Such a generalization is

performed in [104]. They compute a superconformal index for N = 4 theories ob-

tained as ZM orbifold of ABJM model. Due to less supersymmtries, the definition

of the index is changed from (4.3) by setting y2 = 1:

Igauge(x, y3) = Tr
[
(−1)F e−β

′{Q,S}x2(D+j)yh3
3

]
. (4.5)

The result is given by

Igauge(x, y3) =
∞∏
n=1

[
(1− x4n)2

(1− x2nM)2(1− x2n

yn
3

)(1− x2nyn3 )

]M
. (4.6)

This result is consistent with the index of the ABJM model (4.3) by setting

y2 = M = 1.

From this result, the corresponding single particle index can be read off as

follows.

Isp(x, y3) =
1

1− x2y3

+
1

1− x2/y3

− 2

1− x4
+

2x2M

1− x2M

+(M − 1)

(
1

1− x2y3

+
1

1− x2/y3

− 2

1− x4

)
. (4.7)

An interesting feature of this result is that this index consists of two parts of

different origins. The first line in (4.7) is obtained from the single-particle index

(4.4) by the projection which leaves only terms invariant under the ZM rotation

y2 → e2πi/My2:

The first line in (4.7) =
1

M

M∑
m=1

IGCP3 (x, e
2πim/My2, y3)|y2→1. (4.8)

Thus, the first line is regarded as the bulk contribution. On the other hand, the

second line is interpreted as the contribution of twisted sectors:

∆I twist = (M − 1)

(
1

1− x2y3

+
1

1− x2/y3

− 2

1− x4

)
. (4.9)
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They discuss that the contribution of the twisted sectors comes from the HS×S′

vector-multiplets, which arises as localized mode at the singular loci. They did

not derive the contribution in the gravity side. We derived the contribution in

[48] including that of HS×S′ charged part. We discuss it in §4.3.4.

Another way to generalize the result (4.3) is to include the contribution of

monopole operators. Such a generalization is performed in [105] for the ABJM

model. The index is defined by

Igauge(x, y2, y3, y4) = Tr
[
(−1)F e−β

′{Q,S}x2(D+j)yh2
2 y

h3
3 y

h4
4

]
, (4.10)

where y4 is introduced as the chemical potential for the charge h4, which is related

to the monopole charge m by h4 = km. To include the contribution of monopole

operators, the Chern-Simons level k needs to be finite. The trick to compute the

index (4.10) without taking the large k limit is to use the localization method by

deforming the action by adding Q-exact terms (Q-exact deformation) [105]. As

a result, the index can be computed in the weak coupling limit. It is confirmed

that this agrees with the multi-particle index.

Combining the techniques developed by them, we computed an index in

generic N = 4 Chern-Simons theories with taking account of the monopole con-

tribution in [47]. The gauge theory index Igauge is defined by

Igauge(x, z, z′;~τ) = Tr

[
(−)F e−β

′{Q,S}x2(D+j)zP z′P
′
r∏

a=1

τma
a

]
, (4.11)

where we introduce chemical potentials τa for the magnetic charges ma defined

by (2.24). Q is a certain component of the supercharges and S is its Hermitian

conjugate. This choice of the two supercharges breaks the R-symmetry SO(4)R

down to SO(2) × SO(2): H1 = T3 + T ′3 is the R-charge rotating Q. The global

symmetries commuting with this R-charge is generated by P , P ′, and H2 =

−T3 + T ′3. Among these three U(1) symmetries, the last one is broken when we

deform the theory. This is the reason why we insert chemical potentials only for

the charges P and P ′.

4.2.2 Localization

In this subsection, we discuss the localization method in a general N = 2 super-

conformal field theory [106]. By using this technique, we can calculate a gauge

theory index in the free theory limit.
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A basic fact to localization is that a function of β′ in the following form

IR = TrR

(
(−)F e−β

′{Q,S}C
)

(4.12)

is independent of β′. Here TrR means a trace of a unitary representation R

of the superconformal group, F is the fermion number operator, Q is a certain

supersymmetry generator, S is its hermitian conjugate, and C is a hermitian

operator which commutes with Q. To see this, we first consider the case C = 1.

It is sufficient to see that the states which contribute to (4.12) are only the Q-

invariant ones. In other words, the contribution from the other states is totally

cancelled. Since Q and S are nilpotent,2 ∆ = {Q,S} commutes with Q and S.

This means that any eigenspace of ∆, except for the space of the ground states,

splits into two. One can be written as the image of Q, or Q-exact form, the

other is that of S, or S-exact form. The two spaces are transformed to each

other by a linear map S or Q (with a certain normalization). Therefore, there is

one-to-one correspondence between the two spaces. In particular, a pair of states

transformed to each other have different statistics. Therefore, the contributions

from these two spaces are totally cancelled due to insertion (−)F . This means

that only ∆-invariant states contribute to (4.12). A ∆-invariant state is nothing

but a Q-invariant one in a unitary representation. Next, we consider C 6= 1

case. Since C is hermitian and commutes with Q, it also commutes with S and

thus with ∆. Therefore, by making the states diagonal with respect to ∆ and C

simultaneously, the above discussion can be applied as it is.

By using this fact, it is not difficult to see that the function (4.12) such as

(4.11) is invariant under a Q-exact deformation, or adding a Q-exact term into

the Lagrangian. To see this, it is useful to rewrite the trace in (4.12) as the path

integral form on S2×S1. For this purpose, we first map the conformal field theory

on R3 to that on S2 ×R1 in the usual way. In particular, the radial direction of

R3, denoted by r, is related to that of R1, τ , by

r = eτ ↔ τ = log r. (4.13)

A local operator in R3 is mapped to a state in the Fock space in S2 × R. To

read off the charges of the fields and calculate the trace in (4.12), we compactify

the “time” direction τ with the period β. Then, (4.12) can be written as a path

integral form as

IR =

∫
[dΨ]e−S[Ψ], (4.14)

2Nilpotency of Q can be easily checked by (B.9) or (C.21).
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where Ψ is a collective set of the fields in the theory on S2 × S1 with a suitable

boundary condition. Here let us deform the action S[Ψ] by adding a Q-exact

term

S[Ψ] → S[Ψ, t] = S[Ψ] + t

∫
QV [Ψ], (4.15)

where t is a deformation parameter and Q means the supersymmetry transfor-

mation acting on the fields. Then (4.14) is changed as

IR → IR(t) =

∫
[dΨ]e−S[Ψ,t]. (4.16)

Let us rewrite IR(t) by the operator formalism.

IR(t) = Tr

(
(−)F e−β

′{Q,S}e−t[Q,
R
V̂ [Ψ]]C

)

=
∑

k:∆=0

〈k|
(

(−)F e−β
′{Q,S}e−t[Q,

R
V [Ψ̂]]C

)
|k〉. (4.17)

Here the state |k〉 is annihilated by ∆ or Q. Since C commutes with Q, the

insertion of e−t[Q,
R
V [Ψ̂]] becomes trivial and the right hand side is identical to IR.

We can realize kinetic terms of vector and chiral multiplets as Q-exact terms

in a conformally flat background [107]. Indeed, the kinetic term of a vector-

multiplet (B.48) on R3 can be written as

−LYMv =
1

4ε̄2
∆2
ε=0,ε̄λ̄

2. (4.18)

Here we set the supersymmetry transformation ∆WZ
ε in (B.27) to ∆ε,ε̄. For a

chiral multiplet on R3 such as (B.53), (B.55), (B.57),

−LQ = − 1

4ε̄2
∆2
ε=0,ε̄(Fq

†). (4.19)

It is evident that they are written as Q-exact forms.

These facts are also the case with a conformally flat background. In such

a background, the supersymmetry transformation is corrected from that in the

flat background since it becomes covariant under the Weyl transformation. The

explicit form of a vector-multiplet is given by

∆ε,ε̄Aαβ = (∆ε,ε̄Aαβ)
R3

, (4.20)

∆ε,ε̄σ = (∆ε,ε̄σ)R
3

, (4.21)

∆ε,ε̄λα = (∆ε,ε̄λα)
R3

+
2

3
(∇µε)γ

µ
ασ, (4.22)

∆ε,ε̄λ̄α = (∆ε,ε̄λ̄α)
R3

+
2

3
(∇µε̄)γ

µ
ασ, (4.23)

∆ε,ε̄D = (∆ε,ε̄D)R
3

+
1

3
(∇µε̄)γ

µλ+
1

3
(∇µε)γ

µλ̄, (4.24)
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where (∆Ψ)R
3

is the susy transformation in the flat euclidean space given by

(B.30), (B.31), (B.32), (B.33) and (B.33), respectively. ε is a killing vector on

the conformally flat background. For a chiral multiplet,

∆ε,ε̄q = (∆ε,ε̄q)
R3

, (4.25)

∆ε,ε̄ψα = (∆ε,ε̄ψα)
R3

+
4

3
(∇µε̄)γ

µ
αq, (4.26)

∆ε,ε̄F = (∆ε,ε̄F )R
3

+
2

3
(∆q − 1

2
)(∇µε̄)γ

µψ, (4.27)

where ∆q is the conformal dimension of q. The first term of the right hand side

in each equation is the susy transformation in the flat background, which is given

by (B.39), (B.40) and (B.41), respectively. For an anti-chiral multiplet,

∆ε,ε̄q̄ = (∆ε,ε̄q̄)
R3

, (4.28)

∆ε,ε̄ψ̄α = (∆ε,ε̄ψ̄α)
R3

+
4

3
(∇µε)γ

µ
α q̄, (4.29)

∆ε,ε̄F̄ = (∆ε,ε̄F̄ )R
3

+
2

3
(∆q − 1

2
)(∇µε)γ

µψ̄. (4.30)

See (B.42), (B.43) and (B.44) for the susy transformation in the flat background.

Notice that they are consistent with the case of the flat background, where the

killing spinors are constant.

The supersymmetric Lagrangians for a vector-multiplet and a chiral multiplet

are the same forms as (4.18) and (4.19), respectively. The killing spinor equation

on S2 × S1 is given by

∇µε̄ =
1

2r
γµγ3ε̄, (4.31)

where r is the S2 radius. The other two ε satisfy the equation with opposite

sign. By using (4.31), we can compute the supersymmetric Lagrangians for a

vector-multiplet and a chiral multiplet as follows.

−LYMv = (−LYMv )R
3

+
1

r
F12σ − 1

2r2
σ2 − 1

2r
λ̄γ3λ, (4.32)

−LQ = (−LQ)R
3

+
∆q − 1

2

r

(
2(D3q)†q +

1

2
ψ̄γ3ψ

)
+

∆q(∆q − 1)

r2
q̄q. (4.33)

The Lagrangians in the flat background are given by (B.48), (B.53), respectively.

Again, we can add these terms into the original Lagrangian without changing the

index.

Let us find Lorentz invariant vacua or saddle points in the deformed action

(4.15). Lorentz invariance requires the fermions to vanish. The potential mini-

mum of scalar fields q,D, F is also trivial. Other component fields in a vector-

multiplet get non-trivial vevs. The equation of motion with respect to σ is

F12 − i

r
σ = 0. (4.34)
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This equation is a monopole equation on S2 × S1. Solutions are given by a

superposition of Dirac monopoles [108]

A1 = 0, A2 =
−M
2r

cot θ, σ =
M

2r
=
s

r
. (4.35)

where M = 2s is a magnetic charge, which takes values in the Cartan algebra of

the gauge group. It is quantized by the Dirac quantization condition. For A3, we

can turn on zero-mode (holonomy) in the S1 direction:

∫

S1

A3dτ = −α → A3 =
−α
β
, (4.36)

where β is the S1 circumference. With taking account of the equation of motion of

the gauge field, the gauge field configuration gets correction at the order O(t−1).

Actually, such a correction vanishes under the limit of the coupling constant t to

infinity.

We take into account GNO monopoles as saddle points. After an appropriate

gauge fixing, α and M take values in the Cartan part of the Lie algebra of the

gauge group G. When we perform the Gaussian integral, all fields in this back-

ground is decomposed into vacuum expectation values Ψ(0) and the fluctuations

Ψ′ as

Ψ = Ψ(0) +
1√
t
Ψ′. (4.37)

Substituting this into the total action S[Ψ, t], all interaction terms including more

than two fluctuations vanish in t → ∞ limit. After taking the limit, we are left

with

IR =
∑
M

[∫
[dΨ′]e−S

(0)

e−S
′[Ψ′]

]
. (4.38)

Here S(0) is the expectation value of the original action. Almost all terms in the

original action vanish when the expectation values are substituted. If the action

includes Chern-Simons terms, it gives the non-vanishing contribution

S
(0)
CS =

i

4π

∫
Tr′

(
A(0)dA(0) − 2i

3
A(0)A(0)A(0)

)
= 2iTr′(αs). (4.39)

The definition of the trace “Tr′” here includes Chern-Simons levels and it does

not have to be positive definite. S ′[Ψ′] is the quadratic action of the fluctuation

fields with the monopole background. For a vector-multiplet, the Lagrangian is

given by

−L′v = Tr

[
−1

2
VµV

µ +
1

2
D2 + λ̄[D/ +

s

r
, λ]− 1

2r
λ̄γ3λ

]
. (4.40)
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where Vµ is set to

Vµ =
1

2
εµνρF

νρ + [Dµ, σ] + [Aµ,
s

r
]− εµ12

σ

r
. (4.41)

Here ε123 = 1 and Di (i = 1, 2) is the covariant derivative in the monopole

background

Di = ∂i − iSeffωi, (4.42)

where ωi is the spin connection in S2, which coincides with Ai in (4.35) with the

unit magnetic flux and Seff is given by sum of spin S and background flux s.

Seff = S +
M

2
= S + s. (4.43)

For a chiral multiplet,

−L′Q = −q̄DµD
µq +

1

r2
q̄ssq +

∆q(1−∆q)

r2
q̄q +

1− 2∆q

r
q̄D3q + F̄F

+
1

r
(ψsψ) + (ψγµDµψ) +

2∆q − 1

2r
(ψγ3ψ). (4.44)

Here we denote the field Ψ′ as Ψ. Therefore, the final result of IR can be decom-

posed into each contribution of the fields.

IR =
∑
M

[∏
v

Ive−S
(0)

∏
Q

IQ
]
, (4.45)

where Iv, IQ is given by

Iv =

∫
[dv]e−

R
d3x

√
gL′v , IQ =

∫
[dQ]e−

R
d3x

√
gL′Q . (4.46)

This is the localization method on S2 × S1. Since the Lagrangians Lv,LQ are

given by the quadratic expression of the fields, the path integral reduces to the

products of gaussian integrals.

Let us apply the localization method to an index of an N = 4 Chern-Simons

theory (4.11). In this case, the magnetic charge M and holonomy α are given for

each node:

M → diag(ma
1, · · · ,ma

N), α→ diag(αa1, · · · , αaN). (4.47)

The index (4.11) is given by

Igauge(x, z, z′;~τ) =
∑
M

[∏
a

IVa(x, z, z′)eikama
sα

a
s

∏
I

IHI (x, z, z′)
r∏

a=1

τma
a

]
, (4.48)

where we use s, t as suffixes of U(N)a gauge group. Here IVa(x, z, z′) and IHI (x, z, z′)

are the contributions from a-th vector-multiplet or I-th matter-multiplet, respec-

tively.

IVa(x, z, z′) = TrVa

[
(−)F e−β

′{Q,S}x2(D+j)zP z′P
′
]
, (4.49)

IHI (x, z, z′) = TrHI

[
(−)F e−β

′{Q,S}x2(D+j)zP z′P
′
]
. (4.50)
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4.2.3 Radial quantization

In this subsection, we perform the path integral (4.46) up to the over all constant.

Since the path integral reduces to gaussian integral, we can perform the path

integral exactly.

For this aim, let us fix the boundary condition of the S1 direction. The Killing

equation (4.31) implies ε1 ∝ eτ/(2r), and we cannot impose the periodic boundary

condition on ε1. Instead, it satisfies

ε(τ + β) = eβ/(2r)ε(τ). (4.51)

We interpret the extra factor eβ/(2r) on the right hand side as an insertion of a

twist operator. Namely, by using the quantum numbers

R(ε1) = −1, j3(ε1) =
1

2
, Fi(ε1) = 0, (4.52)

we can rewrite (4.51) as

ε1(τ + β) = e(−R−j3)β1+j3β2+Fiγiε1(τ), (4.53)

where β1, β2, and γi are real parameters satisfying β/r = β1 + β2. For the

consistency, the same boundary condition should be imposed on all fields in the

theory. Namely, we impose

Ψ(τ + βr) = e(−R−j3)β1+j3β2+FiγiΨ(τ) (4.54)

for an arbitrary field Ψ. The path integral over S2×S1 with this twisted boundary

condition gives the index IR defined in (4.12) with C = x(D+j)zFi
i . The variables

x′, x, and zi are related to β1, β2, and γi by

x′ = e−β1 , x = e−β2 , zi = e−γi . (4.55)

First, we perform the path integral for a scalar field q. The integration of the

auxiliary field F gives a constant factor and we can simply drop it. The path

integral of the complex scalar field q gives the determinant factor (det ¤q)
−1 with

the differential operator

¤q = −D3D3 −DiDi +
1

r2
s2 +

∆q(1−∆q)

r2
+

1− 2∆q

r
D3. (4.56)

Let us focus on a component of the scalar field with weight ρ ∈ Rq. Although

the spin of scalar field is S = 0, the coupling to the background flux shifts the
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effective spin to Seff = ρ(s). We can expand a field with spin S and weight ρ in

the background flux s by spin Seff spherical harmonics Y Seff
j,j3

:

Y Seff
j,j3

, j ≥ |Seff |, −j ≤ j3 ≤ j. (4.57)

The eigenvalue of the Laplacian DiDi corresponding to Y Seff
j,j3

is

DiDiY
Seff
j,j3

= − 1

r2
[j(j + 1)− S2

eff ]Y Seff
j,j3

. (4.58)

Substituting (4.58) into (4.56), we obtain the eigenvalue

¤q =
1

r2
(j + ∆q + rD3)(j + 1−∆q − rD3). (4.59)

In this expression D3 should be understood to be its eigenvalue. By taking the

twisted boundary condition (4.54) into account, the eigenvalues of D3 are given

by

D3 =
1

βr

[
2πin− iρ(α) + (−R− j3)β1 + j3β2 + Fiγi

]
, n ∈ Z (4.60)

For the scalar field q the charge R in (4.60) is replaced by ∆q. Taking the product

of all the eigenvalues, we obtain the scalar field contribution to the Gaussian

integral.

Iq =


 ∏
ρ∈Rq

∞∏

j=|ρ(s)|

j∏
j3=−j

∞∏
n=−∞

(j + ∆q + rD3)(j + 1−∆q − rD3)



−1

. (4.61)

Next, let us consider Gaussian integral of the fermion field ψ. The differential

operator acting on ψ in the action (4.44) is

Dfer = γµDµ − 1− 2∆q

2r
γ3 +

s

r
. (4.62)

We focus on a component with weight ρ ∈ Rq. Including the shift due to the

background flux, the upper and lower components of the spinor ψ have the effec-

tive spins Seff = ρ(s)−1/2 and Seff = ρ(s)+1/2, respectively. They are expanded

by spherical harmonics Y
ρ(s)−1/2
j,j3

and Y
ρ(s)+1/2
j,j3

. Let us focus on a mode with spin

j.

In the case with j ≥ |ρ(s)| + 1/2, both Y
ρ(s)−1/2
j,j3

and Y
ρ(s)+1/2
j,j3

exist. The

differential operator Dfer acting on ψ takes the matrix form

Dfer =

(
D3 − 1−2∆q

2r
+ ρ(s)

r
−iD−

iD+ −D3 + 1−2∆q

2r
+ ρ(s)

r

)
, (4.63)
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where D± = D1 ± iD2. The determinant of the matrix (4.63) is

det ′Dfer =
ρ(s)2

r2
−

(
D3 − 1− 2∆q

2r

)2

−D+D−. (4.64)

det′ in (4.64) represents the determinant of the 2 × 2 matrix. Note that D+

and D− do not commute with each other and D+D− and D−D+ are different

operators. If we adopt D+D− as in (4.64) we should regard it as an operator

acting on the upper component of ψ, which has the effective spin ρ(s)−1/2. The

eigenvalue is

D+D−Y
ρ(s)−1/2
j,j3

= − 1

r2

[(
j +

1

2

)2

− ρ(s)2

]
Y
ρ(s)−1/2
j,j3

. (4.65)

We can also use D−D+ acting on Y
ρ(s)+1/2
j,j3

, and obtain the same eigenvalue as

(4.65). By substituting this eigenvalue into (4.64) we obtain

detDfer =
1

r2
(j + ∆q + rD3)(j + 1−∆q − rD3). (4.66)

In the case with j = |ρ(s)| − 1/2, on the other hand, only one of Y
ρ(s)−1/2
j,j3

or Y
ρ(s)+1/2
j,j3

exists. Therefore, only top-left or bottom-right component in the

matrix (4.63) exists. The eigenvalue in this case is

Dfer =
1

r
(j + ∆q + rD3). (4.67)

Here we ignore the sign factor. It is not relevant if the matter fields are bifunda-

mental for the gauge group. Combining (4.66) and (4.67), we obtain

Iψ = detDfer =
∏
ρ∈Rq

∞∏

j=|ρ(s)|−1/2

j∏
j3=−j

∞∏
n=−∞

(j + ∆q + rD3)

×
∏
ρ∈Rq

∞∏

j=|ρ(s)|+1/2

j∏
j3=−j

∞∏
n=−∞

(j + 1−∆q − rD3). (4.68)

Recall that the differential operator D3 should be understood as its eigenvalue

given in (4.60). For the fermion field ψ R in (4.60) is replaced by ∆q − 1.

As a result, we obtain an index for a chiral superfield IQ = IqIψ as follows.

IQ =
∏
ρ∈Rq

[∏
F1

∏∞
n=−∞(j + ∆q + rD3)

∏
F2

∏∞
n=−∞(j + 1−∆q − rD3)∏

B
∏∞

n=−∞(j + ∆q + rD3)(j + 1−∆q − rD3)

]
.

(4.69)

Here F1,F2, B mean

F1 : j ≥ |ρ(s)| − 1/2, |j3| ≤ j, (4.70)

F2 : j ≥ |ρ(s)|+ 1/2, |j3| ≤ j, (4.71)

B : j ≥ |ρ(s)|, |j3| ≤ j. (4.72)



4.2. GAUGE THEORY INDEX 57

Let us regularize the infinite product of the eigenvalues in a standard way. One

of the eigenvalues is of the following form

j+∆q +rD3 =
r

β

(
2πin− iρ(α)+(−R+∆q + j− j3)β1 +(j+∆q + j3)β2 +Fiγi

)
.

(4.73)

We set z1 to be the right hand side with 2πin removed. The other is

j−∆q+rD3+1 =
r

β

(
2πin+iρ(α)+(R−∆q+j+j3+1)β1+(j−∆q−j3+1)β2−Fiγi

)
.

(4.74)

We define z2 to be the right hand side with 2πin removed. We first carry out the

product over the integer n by using the formula

∞∏
n=−∞

(2πin+ z) = 2 sinh
z

2
= e

z
2 (1− e−z) = e

z
2 exp

[
−

∞∑
m=1

1

m
e−mz

]
. (4.75)

At the first equality we neglect a divergent constant. With this formula all the

products in the definition of IQ other than
∏∞

n=−∞ can be rewritten by the

summation.

∏
X

∞∏
n=−∞

(2πin+ z)−(−)F

= e−
P
X (−)F z

2 exp

[ ∞∑
m=1

1

m

∑
X

(−)F e−mz
]
. (4.76)

F is the fermion number of the corresponding field. We define a function f by

f(eiα, x′, x, zi) =
∑
X

(−)F e−z. (4.77)

We call this a letter index because this can be regarded as an index for elementary

excitations, which are often called letters. For the eigenvalue (4.73) for a scalar

field, e−z is given by

e−z1 = eiρ(α)−(j−j3)β1−(j+∆q+j3)β2−Fiγi = eiρ(α)x′j−j3xj+∆q+j3zFi
i , (4.78)

and the corresponding letter index is

f =
∑
B
e−z1 = eiρ(α)x∆qzFi

i

∞∑

j=|ρ(s)|

j3∑
j=−j3

(x′x)j
( x
x′

)j3
. (4.79)

We compute the letter index for other series of eigenvalues in the integrand in

(4.69) in the same way. We give only the results. From the other factor (j + 1−
∆q − rD3) in Iq we obtain

f = e−iρ(α)x−∆qz−Fi
i

∞∑

j=|ρ(s)|

j∑
j3=−j

(x′x)j+1

(
x′

x

)j3

. (4.80)
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The factor (j + ∆q + rD3) in Iψ gives

f = −eiρ(α)x∆qzFi
i

∞∑

k=|ρ(s)|

k−1∑

l=−k
(x′x)k

( x
x′

)l
, (4.81)

and the other factor (j + 1−∆q − rD3) in Iψ gives

f = −e−iρ(α)x−∆qz−Fi
i

∞∑

k=|ρ(s)|

k∑

l=−k−1

(x′x)k+1

(
x′

x

)l

. (4.82)

By summing up (4.79), (4.80), (4.81), and (4.82) we obtain the letter index for

a chiral multiplet Q. Finally we sum up the letter index for all chiral multiplets,

and obtain

fQ(eiα, x, zi) = eiρ(α)zFi
i

x2|ρ(s)|+∆q

1− x2
− e−iρ(α)z−Fi

i

x2|ρ(s)|+2−∆q

1− x2
. (4.83)

This does not depend on the variable x′. This is consistent with the fact that

only BPS states contribute to the index IR. When ∆q = 1/2 (4.83) agrees with

the corresponding function in [105].

We also need to evaluate the first factor in (4.76). It is a monomial of the

variables eiα, x, and zi. We define b0, ε0, and q0i by

exp

(
−

∑
X

(−)F
z

2

)
= eib0(a)xε0zq0i

i . (4.84)

ε0 and q0i are zero-point contribution to the energy and the flavor charges. b0(a)

is a linear function of a which represents the zero-point charge coupling to the

gauge fields. The zero-point energy is given by

ε0 =
1

2

∂fQ

∂x

∣∣∣∣
eiα=x=zi=1

= (1−∆q)|ρ(s)|. (4.85)

The zero-point flavor charges q0i are also obtained in the same way.

q0i =
1

2

∂fQ

∂zi

∣∣∣∣
eiα=zi=1

= −Fi
[

1

2(x− 1)
+

(
1

4
+ |ρ(s)|

)
+O(x− 1)

]
. (4.86)

Since this is divergent, we need to regularize and normalize (renormalize) it suit-

ably. Because (4.86) does not depend on ∆q, it is plausible that after an appro-

priate regularization q0i does not depend on ∆q. Thus we take zero-point charges

for canonical fields,

q0i = −|ρ(s)|Fi. (4.87)

Similarly, b0(a) is given by

b0(α) = −|ρ(s)|ρ(α). (4.88)
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(4.88) can be regarded as the 1-loop correction to Chern-Simons levels. This

vanishes when the matter representation is vector-like.

Finally, the index of a chiral superfield (4.69) is written as follows.

IQ =
∏
ρ∈Rq

[
e−i|ρ(s)|ρ(α)x(1−∆q)|ρ(s)|z−|ρ(s)|Fi

i exp

[ ∞∑
m=1

1

m
fQ(xm, zni , e

imρ(α))

]
.

(4.89)

The letter index of vector multiplets is also obtained in a similar way. The

contribution of the bosonic part of a vector-multiplet IA,σ,D is given by

IA,σ,D =


 ∏

ρ(α)=0

∫
dα


 (FPD)

∏
ρ∈G

[
1∏

B1

∏∞
n=−∞(j + 1− rD3)

∏
B2

∏∞
n=−∞(j + rD3)

]
,

(4.90)

where B1, B2 are

B1 : j ≥ |ρ(s)| − 1, |j3| ≤ j, (4.91)

B2 : j ≥ |ρ(s)|+ 1, |j3| ≤ j. (4.92)

∏
ρ∈G represents the product over all roots. The factor (FPD) is the Faddev-

Popov determinant for a certain gauge fixing. When the gauge group is unitary

group, (FPD) is given by

(FPD) =
∏

ρ(α) 6=0
ρ(s)=0

2i sin

(
ρ(α)

2

)
. (4.93)

The contribution of the gaugino Iλ is given by

Iλ =
∏
ρ∈G

[∏
F1

∞∏
n=−∞

(j + 1 + rD3)
∏
F2

∞∏
n=−∞

(j − rD3)

]
. (4.94)

F1,F2 are given by (4.70), (4.71), respectively.

Combining these results, we obtain the index for a vector-multiplet Iv =

IA,σ,DIψ.

Iv =


 ∏

ρ(α)=0

∫
dα


 (FPD)

∏
ρ∈G

[∏
F1

∏∞
n=−∞(j + 1 + rD3)

∏
F2

∏∞
n=−∞(j − rD3)∏

B1

∏∞
n=−∞(j + 1− rD3)

∏
B2

∏∞
n=−∞(j + rD3)

]
.

(4.95)

We can regularize the infinite product in the same way before. Because any

vector multiplet carries no flavor charges, it is a function of only s, eiα and x.

The result is

Iv =


 ∏

ρ(α)=0

∫
dα


 (FPD)

∏
ρ∈G

[
x−|ρ(s)| exp

[ ∞∑
m=1

1

m
f v(xm, eimρ(α))

]]
. (4.96)
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where the letter index f v is given by

f v(x, eiα) = −eiρ(α)x2|ρ(s)|, (4.97)

and the factor x−|ρ(s)| is the zero-point energy.

Let us apply this result to an indices of an N = 4 Chern-Simons theory

(4.49) and (4.50). Remember that the definition of x is x2 in (4.49) and (4.50).

First, we give the contribution of an N = 4 vector-multiplets V a. The conformal

dimension of the chiral superfield φ is 1. The index is given by

IVa = Iv
a

Iφ
a

=

(
N∏
s=1

∫
dαas

)
N∏

s,t=1

[
x−|m

a
s−ma

t | exp

[ ∞∑
n=1

1

n
fVa(xn, einβ

a
st)

]]
.

(4.98)

Here we set βast = αas − αat (αas := αas,s) and

fVa(x, eiβ
a
st) = −(1− δst)x

2|ma
s−ma

t |eiβ
a
st . (4.99)

Next, we consider the contribution of the bi-fundamental hyper-multiple HI . The

conformal dimension of the chiral superfields is ∆q = 1/2. We obtain the index

as

IHI = IQII
eQI =

N∏
s,t=1

[
x|m

L(I)
s −mR(I)

t | exp

[ ∞∑
n=1

1

n
fHI (xn, znI , e

inβI
st)

]]
, (4.100)

where we set βIst = α
L(I)
s − α

R(I)
t , zI = z (z′) for sI = 0 (1), and

fHI (x, zI , e
iβI

st) =
x(x2|mL(I)

s −mR(I)
t |)

1 + x2

(
eiβ

I
stzI +

1

eiβ
I
stzI

)
. (4.101)

This result correctly encodes the spectrum obtained from the radial quanti-

zation method [109, 110].

4.2.4 Large N computation

Let us perform the holonomy integrals of the index under the large N limit.

I{ma
s}(x, z, z

′) =
∏
a

IVa(x, z, z′)e−S
(0)

∏
I

IHI (x, z, z′) (4.102)

=

(
r∏

a=1

N∏
s=1

∫
dαas
2π

)
Igauge(x, z, z′). (4.103)
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where Igauge(x, z, z′) is given by

Igauge(x, z, z′) = x2ε0({ma
s}) exp

(
i

r∑
a=1

N∑
s=1

kam
a
sα

a
s

)

×
r∏

a=1

N∏
s,t=1

exp

[ ∞∑
n=1

1

n
fVa(xn, einβ

a
st)

]

×
r∏
I=1

N∏
s,t=1

exp

[ ∞∑
n=1

1

n
fHI (xn, znI , e

inβI
st)

]
. (4.104)

Here we use (4.98) and (4.100). ε0({ma
s}) is the zero point energy due to the

vacuum polarization in S2, which is given by

ε0({ma
s}) = −1

2

r∑
a=1

N∑
s,t=1

|ma
s −ma

t |+
1

2

r∑
I=1

N∑
s,t=1

|mL(I)
s −m

R(I)
t |. (4.105)

To obtain the gauge theory index which can be compared with the graviton

index, we should take the large N limit. This limit is taken by adding vanishing

entries to the monopole charges {ma
s}. For each a, the monopole charge is de-

scribed by N integers ma
s (s = 1, . . . , N). Let Ma be the number of non-vanishing

components among them. When we take the large N limit, we keep Ma at O(1).

For this limit to be well defined, the zero-point energy should not diverge in the

limit. This is indeed easily confirmed by rewriting (4.105) as

ε0({ma
s}∗) = −1

2

r∑
a=1

∑
s∈Ma

∑
t∈Ma

|ma
s −ma

t |+
1

2

r∑
a=1

∑
s∈ML(I)

∑
t∈MR(I)

|mL(I)
s −m

R(I)
t |

+
1

2

r∑
a=1

(2Ma −Ma+1 −Ma−1)
∑
s∈Ma

|ma
s |, (4.106)

where {ma
s}∗ is the collection of non-vanishing components in {ma

s}, and
∑

s∈Ma

represents the summation over Ma non-vanishing components in the magnetic

charges. This expression is manifestly independent of N , and well behaves in the

large N limit.

The integration with respect to angular variables αas associated with vanishing

magnetic charges ma
s can be carried out by introducing the variables λan by

λan =
1

N −Ma

N∑
s=Ma+1

einα
a
s , n = ±1,±2, . . . . (4.107)

The exponential factors in the second and the third lines in (4.104) can be rewrit-

ten as a Gaussian factor including

exp

(
−

∞∑
n=1

1

n

r∑

a,b=1

λanMab(x
n, zn, z′n)λb−n + · · ·

)
(4.108)
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where · · · include the first and the zeroth order terms of λan, and the matrix M

is

M(x, z, z′) =




. . . − xz−1
r

1+x2

1 −xzI−1

1+x2

−xz−1
I−1

1+x2 1 − xzI

1+x2

− xz−1
I

1+x2 1 −xzI+1

1+x2

−xz−1
I+1

1+x2 1

− xzr

1+x2

. . .




. (4.109)

After the Gaussian integral with respect to λan, we are left with the following

expression including the finite number of integrals.

I{ma
s}(x, z, z

′) = I(0)(x, z, z′)I(∗)
{ma

s}∗(x, z, z
′), (4.110)

where I(0) is the determinant factor associated with the Gaussian integral of λan:

I(0)(x, z, z′) =
∞∏
n=1

1

detM(xn, zn, z′n)
, (4.111)

and I
(∗)
{ma

s}∗ is given by

I
(∗)
{ma

s}∗(x, z, z
′) =

x2ε0({ma
s}∗)

(symmetry)

(
r∏

a=1

Ma∏
s=1

∫
dαas
2π

)
exp

(
i

r∑
a=1

Ma∑
s=1

kam
a
sα

a
s

)

×
∏
a

∏
s,t

[
exp

∞∑
n=1

1

n
fVa(xn, einβ

a
st)

]

×
∏
I

∏
s,t

[
exp

∞∑
n=1

1

n
fHI (xn, znI , e

inβI
st)

]
. (4.112)

Here fvec
ast and fhyp

Ist are given by

fVa(x, eiβ
a
st) =

(−(1− δst)x
2|ma

s−ma
t | + x2(|ma

s |+|ma
t |)

)
eiβ

a
st , (4.113)

fHI (x, zI , e
iβI

st) =
x(x2|mL(I)

s −mR(I)
t | − x2(|mL(I)

s |+|mR(I)
t |))

1 + x2

(
zIe

iβI
st +

1

zIeiβ
I
st

)
.(4.114)

4.2.5 Factorization

We have already finished the calculation in the large N limit. The index (4.112)

can be factorized three parts in neutral, positive and negative parts with respect

to magnetic charges.

For later convenience we divide the magnetic charges {ma
s}∗ into the collection

of positive charges, denoted by {ma
s}+, and the collection of negative charges,

{ma
s}−. Using the convention in §2.4, we write as

{ma
s}+ ∈ Γ

(+)
M , {ma

s}− ∈ −Γ
(+)
M . (4.115)
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Each of {ma
s}+ and {ma

s}− can be represented as a set of r Young diagrams by

reordering the magnetic charges by decending order. For example,

{ , } = (diag(2, 1, 1), diag(4, 2, 2, 1)) (4.116)

We also introduce M+
a (M−

a ), the number of positive (negative) components

in ma
s for each a. The symmetry factor in (4.112) is the product of the symmetry

factors of the 2r Young diagrams. The symmetry factor for a single Young

diagram is defined as the product of the factorial of the number of the lines

with the same length in the Young diagram. For example, the symmetry factor

for and are 1!2! and 2!3!, respectively.

We can easily see that I
(∗)
{ma

s}∗ is further factorized into I
(+)
{ma

s}+ depending only

on {ma
s}+, and I

(−)
{ma

s}− depending only on {ma
s}−. To show the factorization of

the zero-point energy contribution x2ε0 , we divide the range of all the summations

of color indices s and t in (4.106) into two parts as
∑

s∈Ma
=

∑
s∈M+

a
+

∑
s∈M−

a
.

The first term in (4.106) is decomposed as

−
r∑

a=1

∑

s∈M+
a

∑

t∈M+
a

|ma
s −ma

t | −
r∑

a=1

∑

s∈M−
a

∑

t∈M−
a

|ma
s −ma

t |

−
r∑

a=1


2M−

a

∑

s∈M+
a

|ma
s |+ 2M+

a

∑

s∈M−
a

|ma
s |


 . (4.117)

In the first line, the contributions of {ma
s}+ and {ma

s}− decouple from each other.

The two terms in the second line depend on both {ma
s}+ and {ma

s}−, and for the

factorization, these terms should be canceled by other terms. Actually, these

terms are precisely canceled by the mixed terms arising from the
∑

2Ma

∑ |ma
s |

term in the second line in (4.106). In this way, all the mixed terms cancel, and

the zero-point energy is represented as

ε0({ma
s}∗) = ε0({ma

s}+) + ε0({ma
s}−). (4.118)

The factorization of the second and the third lines in (4.112) is shown by using

the fact that the factors in the form x2|m−m′| − x2(|m|−|m′|) appearing in (4.113)

and (4.114) vanish when m and m′ have opposite signatures.

Now we have shown that the gauge theory index factorizes into the three

parts:

I{ma
s}(x, z, z

′) = I(0)(x, z, z′)I(+)
{ma

s}+(x, z, z′)I(−)
{ma

s}−(x, z, z′). (4.119)
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Because the summations over {ma
s}+ and {ma

s}− are independent in the large N

limit, the total index also factorizes into three parts

Iguage(x, z, z′;~τ) = I(0)(x, z, z′)I(+)(x, z, z′;~τ)I(−)(x, z, z′;~τ), (4.120)

where I(±) (x, z, z′;~τ) is defined by

I(±)(x, z, z′;~τ) =
∑

{ma
s}±

I
(±)
{ma

s}±(x, z, z′)τm1
1 · · · τmr

r . (4.121)

We also define the index for a specific gauge invariant monopole charges {ma} as

the sum of contributions of all the monopole backgrounds with the same {ma}.
For example, the index for {ma} = {2, 2} is the sum of four contributions:

I
(+)
{2,2} = I

(+)
{ , } + I

(+)
{ , } + I

(+)
{ , } + I

(+)
{ , }, (4.122)

where we used the Young diagrams to represent the charges {ma
s}+.

4.2.6 Rule of selection

The integration with respect to the angular variable αia leaves only terms whose

P and P ′, the numbers of z and z′ in the terms, satisfy certain selection rules,

which correspond to conditions of gauge-invariance of operators. For operators

which carries only the diagonal U(1) magnetic charge, the selection rules are

expected to be
1

p
P ∈ Z,

1

q
P ′ ∈ Z, (4.123)

which means that such operators are invariant under the residual gauge transfor-

mations (2.52). In this subsection, we derive selection rules for general magnetic

charges, which will be compared to the spectrum of the Kaluza-Klein momenta

derived on the gravity side.

Let us start from (4.104). For every vertex (U(N) gauge group) a, we have

N angular variables αas (s = 1, . . . , N). Instead of these, let us take αa1 and βa1s

(s = 2, . . . , N) as N independent angular variables. We replace all αas (s ≥ 2)

in (4.104) by αa1 − βa1s. By this replacement, the exponential factor including the

levels ka becomes

exp

(
i

r∑
a=1

N∑
s=1

kam
a
sα

a
s

)
= exp

(
i

r∑
a=1

kamaα
a
1

)
× exp

(
−i

r∑
a=1

N∑
s=2

kam
a
sβ

a
1s

)
.

(4.124)

The variables βIst in fhyp
Ist (x, zIe

iβI
st) become

βIst = βI11 − β
L(I)
1s + β

R(I)
1t . (4.125)
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As a result, the parameter zI is always accompanied by eiβ
I
11 . After integrating

out βa1s (s ≥ 2), we obtain

I{ma
s}(x, z, z

′) =

(
r∏

a=1

∫
dαa1

)
exp

(
i

r∑
a=1

kamaα
a
1

)
f(zIe

iβI
11), (4.126)

where f(zIe
iβI

11) is a certain function of r variables zIe
iβI

11 (I = 1, . . . , r). This

function also depends on x, but we do not take care about it here.

We now have r angular variables αa1 to be integrated. Instead of these, let us

use α•1 and βI11 as r independent variables, where a = • is the reference vertex,

which is given in §2.4. By definition βI11 satisfy

r∑
I=1

βI11 = 0. (4.127)

To treat all βI11 as independent variables, we insert the δ function

δ(
r∑
I=1

βI11) =
∞∑

d=−∞
exp(−id

r∑
I=1

βI11) (4.128)

into (4.126). (δ(θ) in this equation is the δ-function for an angular variable.

Namely it has the periodic support θ = 2πn.) We rewrite the exponential factor

in (4.126) by using

r∑
a=1

kamaα
a
1 = k

r∑
I=1

cIβ
I
11 − kα•1

r∑
I=1

sIµI , (4.129)

where µI is the relative magnetic charge defined by (2.30) and cI is defined by

cI =
∑
•<J<I

(sI − sJ)µJ −m•sI . (4.130)

As a result, we obtain

I{ma
s}(x, z, z

′) =
∞∑

d=−∞

∫
dα•1

(
r∏
I=1

∫
dβI11

)
F (zIe

iβI
11)

× exp

(
i

r∑
I=1

(kcI − d)βI11 − kα•1
r∑
I=1

sIµI

)
. (4.131)

The integration of α•1 gives the constraint

r∑
I=1

sIµI = 0, (4.132)

imposed on µI . This is equivalent to (2.28), which comes from the gauge-

invariance of monopole operators.
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For every I, the βI11 integration picks up terms proportional to zd−kcII . There-

fore, P and P ′, the total numbers of z and z′, are given by

P =

p∑
i=1

(d− kci) = pd+

q∑

i′=1

li′µi′ , (4.133)

P ′ =

q∑

i′=1

(d− kci′) = qd+ kqm• −
p∑
i=1

liµi, (4.134)

where lI are the linking numbers defined by (5.35). We number edges in the linear

quiver diagram in ascending order from left to right. Here nI = NL(I) − NR(I)

represents the number of D3-branes ending on the fivebrane I. In this subsection,

we only consider the case of nI = 0, and the linking numbers are multiples of k.

From these equations, we can see that the selection rules in (4.123) are corrected

when the relative magnetic charges µI are non-vanishing.

The charge PM is calculated by using (2.53) as

PM = m• − 1

kq

p∑
i=1

liµi − 1

kp

q∑

i′=1

li′µi′ . (4.135)

The right hand side of this equation is independent of d, and a function of the

magnetic charges ma. Although each of three terms in (4.135) separately depends

on the choice of the reference point, the sum of them is independent of the choice.

We can obtain the relation (4.135) in more direct way from (4.104). The reason

why PM is related to ma is that the flavor rotation generated by PM is gauge

equivalent to the shift of the dual photon field ã. The gauge invariance of an

operator requires its charges associated with these two shifts to be the same.

When the gauge group is U(1)r, the gauge symmetry connecting these two shifts

are parameterized by ϕ defined in (2.45). For U(N)r gauge group we can define

such a parameter ϕ by

∂ϕβ
i
st =

1

p
, ∂ϕβ

i′
st = −1

q
, ∂ϕβ

a
st = 0. (4.136)

The action of ∂ϕ on the parameters αas is

∂ϕα
a
s = γa, (4.137)

where γa are constants satisfying

γL(i) − γR(i) =
1

p
, γL(i′) − γR(i′) = −1

q
. (4.138)

These conditions determine γa up to overall shift. Integration of ϕ leaves only the

contribution of operators which are invariant under the ϕ gauge transformation,
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and reproduces the relation (4.135) as we see below. Let us perform the integra-

tion over ϕ orbit in (4.104). A term proportional to zP zP
′
is accompanied by the

factor e−ikPMϕ. The other factor including ϕ is the exponential factor including

the Chern-Simons levels. It includes

exp

(
iϕ

r∑
a=1

kamaγa

)
. (4.139)

Therefore, for the term to survive after ϕ integration, the following relation must

hold.

PM =
1

k

r∑
a=1

kamaγa. (4.140)

This is equivalent to (4.135). This expression is manifestly independent of the

reference point. Due to the constraint (2.28), (4.140) is not changed by the overall

shift of γa, and is determined unambiguously. We can easily show (1/k)
∑

a kaγa =

1, and PM is a weighted average of the magnetic charges.

4.3 AdS4 particle index

The indices we consider in gravity side are defined by

I(x, z, z′;~t,~t′) = Tr
[
(−)F e−β

′{Q,S}x2(D+j)yh3
3 z

P z′P
′~t~ρ~t′~ρ

′
]
, (4.141)

We here introduced new chemical potentials ~t = (t1, . . . , tp),~t
′ = (t′1, . . . , t

′
q) for

the HS , HS′ charges ~ρ, ~ρ′, respectively. The meaning of the last part in (??) is

~t~ρ~t′~ρ
′
=

p∏
i=1

tρi

i

q∏

i′=1

t
ρi′
i′ . (4.142)

In addition, we insert the chemical potential y3 for the charge h3, which is set to

1 in comparing the gauge theory index.

By this definition (4.141), we can define two indices: One is the single-particle

index Isp, which is defined by taking the trace over all single-particle states, the

other is the multi-particle index Imp, which is also defined by the same equation by

summing up all the multi-particle states including single- and no-particle states.

We compare the gauge theory indices obtained in the previous section with this

corresponding multi-particle indices for M-theory in the dual geometry AdS4 ×
S7
p,q,k. In general, a single-particle index and the corresponding multi-particle

index are related by

Imp(·) = exp
∞∑
n=1

1

n
Isp(·n), (4.143)
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where “(·)” represents the sequence of the arguments corresponding to additive

charges and “(·n)” on the right hand side is the sequence with every argument

replaced by its n-th power. This index does not depend on β′, and only operators

saturating the BPS bound

{Q,S} = D − j − (T3 + T ′3) ≥ 0 (4.144)

contribute. We will compute a superconformal index of the Kaluza-Klein modes.

We denote generators of these two SO(2) symmetries by H1 and H2. They are

related to T3 and T ′3 by

H1 = T3 + T ′3, H2 = −T3 + T ′3. (4.145)

See (D.19) in Appendix D.

As we have already mentioned, the internal space S7
p,q,k includes two fixed loci

SU and ST , and we should take account of the twisted sectors associated with

these. The two sectors can be treated in parallel ways, and we first consider the

contribution of the SU sector in detail. Because SU is the Ap−1 type singularity,

we expect that there exists an SU(p) vector-multiplet localized on the locus.

With the coordinates defined in (3.45), SU is given by t = 0, or z1 = z2 = 0, and

is spanned by two complex coordinates z3 and z4 constrained by

|z3|2 + |z4|2 = 1. (4.146)

This equation together with the identification by the Zkq generated by the third

generator in (2.52) defines the Lens space S3/Zkq. Because this orbifold does not

have fixed points, we can obtain the single-particle index for a vector-multiplet

in this manifold by the Zkq projection from the index for the covering space S3.

The HS×S′ charges are represented as a vector in the GS×S′ root lattice, and we

can regard them as wrapping numbers of M2-branes on the vanishing two-cycles

at the singularities.

By summing these contribution coming from the twisted sectors and that of

bulk particles, we can obtain the single-particle index as follow:

Isp(x, z, z′;~t,~t′) = IB(x, z, z′) + ISU (x, z′;~t) + IST (x, z;~t′). (4.147)

For convenience, we give our result of these indices in advance. To do this, let us

denote the coefficient of a function I∗(x, z, z′;~t,~t′) in the expansion ~t,~t′ and a new

variable c, which is used to pick up the specific M-momentum, as I∗(PM ,~ρ,~ρ′)(x, z, z
′):

I∗(x, c−
1

kp z, c
1

kq z′;~t,~t′) =
∑

(PM ,~ρ,~ρ′)

I∗(PM ,~ρ,~ρ′)(x, z, z
′)cPM~t~ρ~t′~ρ

′
. (4.148)
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In this notation, the single-particle index is given by

Isp
(PM ,~ρ,~ρ′)(x, z, z

′) = δ~ρ,~0δ~ρ′,~0I
B
PM

(x, z, z′) + δ~ρ′,~0I
SU

(PM ,~ρ)(x, z
′) + δ~ρ,~0I

ST

(PM ,~ρ′)(x, z),

(4.149)

where each contribution on the right hand side is

IBPM
(x, z, z′) =

∞∑
a=−∞

Igrav
pa,q(a+kPM )(x)z

paz′q(a+kPM ), (4.150)

ISU

(PM ,~ρ)(x, z
′) = deg(~ρ)Ivec

kqPM
(x)z′kqPM , (4.151)

IST

(PM ,~ρ′)(x, z) = deg(~ρ′)Ivec
−kpPM

(x)z−kpPM . (4.152)

Here deg(~ρ) is the degeneracy for the adjoint representation at ~ρ in the SU(p)

root lattice. Namely,

deg(~ρ) =





1 (|~ρ|2 = 2)
p− 1 (~ρ = 0)

0 (others).
(4.153)

We derive this expression in this subsection.

As noted, once we obtained the single-particle index, the corresponding multi-

particle index is straightforward by (4.143). In this case, the relation is given by

Imp(x, z, z′;~t,~t′) = exp
∞∑
n=1

1

n
Isp(xn, zn, z′n;~tn,~t′n). (4.154)

4.3.1 Bulk sector

First, we discuss the bulk sector. In general, the index for bulk particles in an

orbifold can be obtained from the index for its covering space by the projection

which leaves modes invariant under the orbifold action. The single-particle index

for bulk gravitons in AdS4 × S7 was obtained by [111] as follows3:

IGS7 (x, y2, y3, y4) = Tr
[
(−)F e−β

′{Q,S}x2(∆+j)yh2
2 y

h3
3 y

h4
4

]
=

(numerator)

(denominator)
,

(4.156)

3The single-particle index for the orbifold AdS4 × S7/Zk in the large k limit is obtained
from (4.156) by picking up y4 independent terms as

IGCP3 := IGS7 |y4=0. (4.155)
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where the numerator and the denominator are given by

(numerator) = (y3y2 + y2y4 + y4y3 + y3y2y4(y3 + y2 + y4))(x
6 − x2)

+
√
y3y2y4(1 + y3y2 + y2y4 + y4y3)x

−√y3y2y4(y3 + y2 + y4 + y3y2y4)x
7, (4.157)

(denominator) = (1− x4)(
√
y4 − x

√
y3y2)(

√
y3 − x

√
y2y4)

×(
√
y2 − x

√
y4y3)(

√
y3y2y4 − x). (4.158)

For the aim to be self-contained, we derive this index in Appendix D.

To obtain the index for S7
p,q,k given by (3.34), let us first rewrite the index

(4.156) as a function of x, z, and z′. Because zP z′P
′

= (zz′)h2(z/z′)h4 , we can

change the variables by substituting

y2 = zz′, y3 = 1, y4 =
z

z′
, (4.159)

into (4.156). We obtain

IGS7 (x, z, z
′) =

(1
z

+ z′ + z + 1
z′ )(x− x7) + (2 + z′

z
+ 1

zz′ + zz′ + z
z′ )(x

6 − x2)

(1− x4)(1− xz′)(1− xz)(1− x/z′)(1− x/z)
.

(4.160)

We expand this index with respect to z and z′ as

IGS7 (x, z, z
′) =

∑

P,P ′
Igrav
P,P ′(x)z

P z′P
′
. (4.161)

The coefficients Igrav
P,P ′(x) are given by

Igrav
P,P ′(x) = (1− δP,0δP ′,0)x

|P |+|P ′| + δP,0
x|P

′|+2

1− x4
+ δP ′,0

x|P |+2

1− x4
. (4.162)

The charges P and P ′ invariant under (2.52) must satisfy

1

p
P ∈ Z,

1

q
P ′ ∈ Z, PM ∈ Z. (4.163)

The general solution to these conditions is

P = pa, P ′ = q(a+ kb), a, b ∈ Z. (4.164)

The integer b is equal to the M-momentum PM . As a result, the single-particle

index for the bulk gravitons in AdS4 × S7
p,q,k is given by

IG
S7

p,q,k

(x, z, z′) =
∞∑

a,b=−∞
Igrav
pa,q(a+kb)(x)z

paz′q(a+kb), (4.165)

which is identified with the bulk contribution IB(x, z, z′).
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4.3.2 Action of a vector-multiplet on AdS4 × S3

In this subsection, we construct the action of the vector-multiplet in the seven-

dimensional curved background S̃U ' AdS4 × S3. The action is necessary to

carry out Kaluza-Klein analysis and obtain the spectrum of the localized modes

in S̃U . The spectrum is needed to calculate the contribution to indices from the

singularity.

A D = 7 N = 2 vector-multiplet consists of a gauge field AM , a symplectic

Majorana spinor field λ, and three real scalar fields φi (i = 1, 2, 3). If we identify

the background spacetime with the singular locus S̃U , the R-symmetry of this

theory is SU(2)R defined in §3.3, and the isometry of S3 is SU(2)′R × SU(2)′F . λ

and φi belong to the SU(2)R doublet and the triplet, respectively. In advance,

we show the supersymmetric action

S =

∫
d7x

√−g
[
− 1

4
FMNF

MN − 1

2
λΓMDMλ− 1

2
∂Mφi∂

Mφi

+
3

8L
(λΓλ) +

1

L2
φiφi − 3

4L
εkmnAkFmn

]
, (4.166)

where L is AdS radius. This is invariant under the supersymmetry transformation

δφi = i(εσiλ), δλ = −iσiΓMε∂Mφi+1

2
FMNΓMNε+

i

L
φiσiΓε, δAM = −(εΓMλ).

(4.167)

There are mass terms for the fermion λ and the scalars φi. We also have the

Chern-Simons coupling for the gauge field. Note that the tachyonic scalar mass

m2 = −2/L2 satisfies the Breitenlohner-Freedman bound m2 ≥ −9/(4L2). These

terms are inevitable to obtain the Kaluza-Klein spectrum consistent with the

gauge invariant operators in the boundary theory.

To construct the action (4.166), we use the Noether procedure; we can de-

termine the coupling of the component fields order by order with respect to the

background curvature by supersymmetry. We start from the action

S0 =

∫
d7x

√−g
[
−1

4
FMNF

MN − 1

2
λΓM∇Mλ− 1

2
∂Mφi∂

Mφi

]
, (4.168)

and the transformation laws

δφi = i(εσiλ), δλ = −iσiΓMε∂Mφi+ 1

2
FMNΓMNε, δAM = −(εΓMλ), (4.169)

where M,N, . . . are seven-dimensional vector indices and i, j = 1, 2, 3 are indices

for SU(2)R triplet. σi are Pauli matrices acting on SU(2)R doublets. These are

obtained by dimensional reduction from N = 1 supersymmetric Maxwell theory
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on the ten-dimensional flat background, and the covariantization with respect

to diffeomorphism. If the background spacetime is flat and the transformation

parameter ε is a constant, the action (4.168) is invariant under the transformation

(4.169).

The first step of the Noether procedure is to compute the supersymmetry

variation without assuming the flatness. For a general curved background and a

coordinate dependent parameter ε, we obtain the variation in the form JM∇Mε.

δS0 =

∫ [
i(λσiΓ

MΓN∇Mε)∂Nφi − 1

2
(λΓLΓMN∇Lε)FMN

]
. (4.170)

If we were constructing a supergravity action, this term would be canceled by

introducing the Noether coupling to the gravitino, JMψM . But now, we want the

action invariant under the global supersymmetry, whose parameter ε satisfies the

Killing spinor equations

∇µε = aΓΓµε, ∇mε = bΓΓmε, Γ = Γ0123, (4.171)

where we use µ, ν, . . . = 0, 1, 2, 3 for AdS4 and m,n, . . . = 4, 5, 6 for S3. a and

b are parameters with dimension of mass. These parameters are proportional

to the curvature of AdS4 and S3. By substituting (4.171) into [∇M ,∇N ]ε =

(1/4)RMNPQΓPQε with the curvature

RAdS4
µνλρ = − 1

R2
AdS4

(gµλgνρ − gνλgµρ), RS3

mnpq =
1

R2
S3

(gmpgnq − gnpgmq) (4.172)

we obtain

a2 =
1

4R2
AdS4

, b2 =
1

4R2
S3

. (4.173)

If we require the background spacetime AdS4 × S3 is the locus in the M2-brane

near horizon geometry AdS4 × S7. From (3.24), two radii RAdS4 and RS3 are

related by RS3 = 2RAdS4 . This means a = ±2b. In the following, however,

we will not use this relation as an input because this relation is automatically

obtained by requiring supersymmetry.

Let us first focus on the first term in (4.170). By using (4.171), we obtain

(1st term in δS0) =

∫ [
i(2a− 3b)(λσiΓ

νΓε)∂νφi + i(4a− b)(λσiΓ
nΓε)∂nφi

]
.

(4.174)

There are two ways to obtain similar variations to cancel this. One is to introduce

a fermion mass term

S ′λ =
mλ

2
(λΓλ). (4.175)
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The second is to deform the fermion transformation law by

δ′λ = iqφiσiΓε. (4.176)

mλ and q are real parameters with mass dimension 1. For the variation (4.174)

to be canceled by δ′S0 and δS ′λ, the parameters mλ and q should be given by

mλ = a+ b, q = 3a− 2b. (4.177)

In addition to terms canceling (4.174), δ′S0 and δS ′λ provide more terms. One of

them is the term in δ′S0 including ∇ε. By using the Killing spinor equations in

(4.171) it becomes

i(3a− 2b)(4a+ 3b)(λσiε)φi. (4.178)

We also obtain a similar term from δ′S ′λ:

δ′S ′λ = −i(3a− 2b)(a+ b)(λσiε)φi. (4.179)

These two terms are proportional to δφi, and can be canceled by introducing the

following scalar mass term:

S ′φ = −m
2
φ

2
φiφi, m2

φ = −9a2 + 4b2. (4.180)

Now all variations independent of the gauge field have been canceled. Let

us turn to the terms including the gauge field. The second term in (4.170) is

rewritten with (4.171) as

(2nd term in δS0) = λ̄

(
−3b

2
FµνΓ

µν +(2a−b)FνmΓνΓm+

(
2a+

b

2

)
FmnΓ

mn

)
Γε.

(4.181)

A similar term arises from δS ′λ:

a+ b

2
FMN(λΓΓMNε). (4.182)

The first two terms in (4.181) must be canceled by the corresponding part of

(4.182). This requires the relation

a = 2b. (4.183)

This is the relation which is expected from the M2-brane near horizon geometry.

The term in (4.181) including Fmn is canceled by introducing the Chern-Simons

term

SCS = −3a

2
εkmnAkFmn. (4.184)

Now all variations are canceled, and we obtain the action (4.166) and the super-

symmetry transformation (4.167) by setting a = 1/(2L).
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4.3.3 Kaluza-Klein analysis

In this subsection, we carry out Kaluza-Klein analysis for component fields in a

D = 7 N = 2 vector-multiplet. We expand fields in S3 into spherical harmonics,

and determine the conformal dimension for every mode by using equations of

motion derived from the action we constructed in §4.3.2.

In advance, let us summarize our convention using the calculation. We take

the Poincare coordinates in AdS4 with the metric

ds2 = L2−dx2
0 + dx2

1 + dx2
2 + dz2

z2
. (4.185)

The conformal dimension is defined as an eigenvalue of the Lie derivative associ-

ated with the Killing vector

D = z∂z + xi∂i. (4.186)

We denote spin j spherical harmonics in S3 by Y m
j,(s1,s2). Let SU(2)1×SU(2)2

be the isometry of S3. The index j is the spin of the field, and quantum numbers

s1 and s2 are SU(2)1 and SU(2)2 angular momenta, which take half integers and

satisfy

|s1 − s2| ≤ j ≤ s1 + s2, s1 + s2 − j ∈ Z. (4.187)

m is the magnetic quantum numbers in the range

−j ≤ m ≤ j. (4.188)

Y m
j,(s1,s2) actually represents a set of (2s1 + 1)(2s2 + 1) harmonics forming the

(s1, s2) representation of SU(2)1 × SU(2)2. We suppress indices for them. Only

harmonics with j = |s1 − s2| are independent. For example, vector harmonics

~Y1,(s,s) = (Y +1
1,(s,s), Y

0
1,(s,s), Y

−1
1,(s,s)), which do not satisfy this condition, are given as

the gradient of the scalar harmonics: ~Y1,(s,s) ∝ ~∇Y0,(s,s).

These harmonics are eigenmodes of the Laplacian:

∆Y m
j,(s1,s2) = − 1

R2
[2s1(s1 + 1) + 2s2(s2 + 1)− j(j + 1)]Y m

j,(s1,s2), (4.189)

where R is the radius of S3 in which the harmonics are defined. The following

formula is also convenient:

rotYj,(s1,s2) =
1

R
[s2(s2 + 1)− s1(s1 + 1)]Yj,(s1,s2). (4.190)

In particular on the three-sphere with radius 2L, eigenvalue of the Laplacian for

the scalar harmonic is

∆S3Y0,(s,s) = − 1

(2L)2
4s(s+ 1)Y0,(s,s). (4.191)
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The differential operator rot is a generalization of the rotation. For a spin j

field φj, it is defined by

rotφj = T (j)
m ∇mφj, (4.192)

where T
(j)
m are SO(3) generators of spin j representation normalized by [T

(j)
m , T

(j)
n ] =

εmnpT
(j)
p . rot becomes the ordinary rotation for a vector field, and the Dirac’s

operator for a spinor field.

rot ~φ1 = ~∇× ~φ1, rotφ 1
2

= − i
2
γm∇mφ 1

2
. (4.193)

First, let us consider the scalar fields. The equation of motion of them derived

from (4.166) is

∆φi +
2

L2
φi = 0, (4.194)

where the Laplacian is defined with the background AdS4 × S3 metric

ds2
7 = L2−dx2

0 + dx2
1 + dx2

2 + dz2

z2
+ (2L)2dΩ2

3. (4.195)

The scalar function in S3 can be expanded by scalar spherical harmonics Y0,(s,s):

φ =
∑
s

f(s,s)Y0,(s,s), (4.196)

The quantum number s = 0, 1/2, 1, . . . is the orbital angular momentum in S3.

f(s,s) are scalar fields on AdS4. A harmonic Y0,(s,s) belongs to the SO(4)(=

SU(2)′R × SU(2)′F ) representation with the highest weight (s, s), and it actu-

ally has (2s + 1)2 components forming the representation. For the purpose of

computing the conformal dimension of the corresponding operators, it is suffi-

cient to assume that f(s,s) depends only on the radial coordinate r in AdS4. By

substituting this into the equation of motion (4.194), we obtain

z4 d

dr

1

z2

d

dz
f(s,s) − (s2 + s− 2)f(s,s) = 0. (4.197)

This has two independent solutions

f(s,s) ∝ zs+2, z−s+1. (4.198)

When we discuss field-operator correspondence, we need to take one of these

two solutions which is normalizable. If s is sufficiently large, only the former is

normalizable. Here we choose the former for every s, which corresponds to an

operator with conformal dimension D = s+ 2.
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Next, we consider the gauge field. The linearized equations of motion derived

from the action (4.166) are

∇MF
Mµ = 0, ∇MF

Mk − 3

2L
εkmnFmn = 0. (4.199)

The AdS components Aµ of the gauge field are scalars in S3 while the S3 com-

ponents Am form a vector representation in S3. They are expanded with scalar

and vector spherical harmonics by

Aµ =
∞∑
s=0

(as,s)µY0,(s,s), (4.200)

~A =
∞∑
s=1

as−1,s
~Y1,(s−1,s) +

∞∑
s=1

as,s−1
~Y1,(s,s−1) +

∞∑

s=1/2

as,s~∇Y0,(s,s). (4.201)

We also expand the gauge transformation parameter Λ with the scalar harmonics

as

Λ =
∞∑
s=0

λs,sY0,(s,s). (4.202)

We can set as,s = 0 for s ≥ 1/2 by using gauge symmetry with parameters λs,s

with s ≥ 1/2. To fix the residual gauge symmetry with parameter λ0,0 we take

the Lorentz gauge in AdS4.

∇µ(a0,0)
µ = 0. (4.203)

We still have residual gauge symmetry with parameter λ0,0 satisfying ∆AdS4λ0,0 =

0, which will be fixed later. With the gauge choice we mentioned above, the

equations of motion reduce to the following set of differential equations.

∇µ(as,s)
µ = 0 (s ≥ 1/2), (4.204)

(
∆AdS4(as,s)µ +

3

L2
(as,s)µ + (as,s)µ∆S3

)
Y0,(s,s) = 0, (4.205)

(
∆AdSas−1,s + as−1,s∆S3 − 1

2L2
as−1,s − 3

L
as−1,s

~∇×
)
~Y1,(s−1,s) = 0, (4.206)

(
∆AdSas,s−1 + as,s−1∆S3 − 1

2L2
as,s−1 − 3

L
as,s−1

~∇×
)
~Y1,(s,s−1) = 0. (4.207)

To determine the conformal dimension of the corresponding operators, we

assume that (as,s)µ, as−1,s, and as,s−1 depend only on the radial coordinate r. By

using this assumption and the formuli (4.189) and (4.192), the equations for the

radial component (as,s)r become

(
z
d

dz
− 2

)
(as,s)z = 0,

(
z2 d

dz2
− 2− s(s+ 1)

)
(as,s)r = 0. (4.208)
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For s ≥ 1/2, these two equations do not have non-vanishing solutions. For s = 0,

there is a solution (a0,0)z ∝ z2, but we can set (a0,0)z = 0 by the residual gauge

symmetry λ0,0 ∝ r3, which satisfies ∆AdS4λ0,0 = 0. The other equations of motion

(4.205), (4.206), and (4.207) reduce to

(
z2 d

2

dz2
− s(s+ 1)

)
(as,s)µ(z) = 0, (4.209)

(
z4 d

dz

1

z2

d

dz
− s2 − 3s

)
as−1,s(z) = 0, (4.210)

(
z4 d

dz

1

z2

d

dz
− s2 + 3s

)
as,s−1(z) = 0. (4.211)

Each of these has two independent solutions.

(as,s)µ ∝ zs+1, (D = s+ 2), z−s, (D = −s+ 1), (4.212)

as−1,s ∝ zs+3, (D = s+ 3), z−s, (D = −s), (4.213)

as,s−1 ∝ zs, (D = s), z−s+3, (D = −s+ 3). (4.214)

D given above are the corresponding conformal dimensions. The former of each

equation is the normalizable mode chosen here.

Finally, let us consider the fermion field λ. The equation of motion is

−ΓM∇Mλ+
3

4L
Γλ = 0. (4.215)

λ is an eight-component spinor off shell and each mode of this field is expanded

by the direct products of a four-component spinor in AdS4 and a two-component

spinor spherical harmonic in S3. We take the anzats

λ =
∑
s

(
ψs− 1

2
,s(z)⊗ Y 1

2
,(s− 1

2
,s) + ψs,s− 1

2
(z)⊗ Y 1

2
,(s,s− 1

2
)

)
. (4.216)

The coefficient spinors ψs− 1
2
,s and ψs,s− 1

2
have an implicit SU(2)R index as well

as λ. Correspondingly to the factorization of the spinor (4.216), we factorize the

Dirac matrices also as

Γm = γ5 ⊗ γm, Γµ = γµ ⊗ 12, Γ = iγ5 ⊗ 12. (4.217)

By substituting (4.216) and (4.217) into (4.215), we obtain the differential equa-

tions (
z
d

dz
− 3

2

)
ψs− 1

2
,s = iγbrγ5 (s+ 1)ψs− 1

2
,s, (4.218)

(
z
d

dz
− 3

2

)
ψs,s− 1

2
= iγbrγ5

(
−s+

1

2

)
ψs,s− 1

2
, (4.219)
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where the index r̂ of γbr represents the local Lorentz index along the radial direc-

tion. The solutions to these equations and the corresponding conformal dimen-

sions are

ψs− 1
2
,s = η

(+)

s− 1
2
,s
zs+

5
2 + η

(−)

s− 1
2
,s
z−s+

1
2 , D = s+

5

2
, −s+

1

2
, (4.220)

ψs,s− 1
2

= η
(+)

s,s− 1
2

z−s+2 + η
(−)

s,s− 1
2

zs+1, D = −s+ 2, s+ 1, (4.221)

where η(±) are constant spinors satisfying iγbrγ5η(±) = ±η(±). η
(+)

s− 1
2
,s

and η
(−)

s,s− 1
2

correspond to the normalizable modes for all s.

In the end, we obtain the Kaluza-Klein spectrum given in Table 4.1. Notice

Table 4.1: The Kaluza-Klein spectrum of a vector-multiplet (AM , λ, φi) in S̃ '
AdS4 × S3. For each mode shown in the table, there exists the other mode with
D replaced by 3−D, which is not normalizable for large s.

fields SU(2)J SU(2)R SU(2)′R SU(2)′F D
φi 0 1 s s s+ 2
AM 0 0 s+ 1 s s+ 1

1 0 s s s+ 2
0 0 s− 1 s s+ 3

λ 1
2

1
2

s+ 1
2

s s+ 3
2

1
2

1
2

s− 1
2

s s+ 5
2

that these Kaluza-Klein modes form 1/2 BPS representations given in Table D.4

in Appendix D. Therefore, the spectrum VfSU
is written as

VfSU
=

⊕

s=0, 1
2
,...

(4, B,+)2(s+1) ⊗ (s of SU(2)′F ). (4.222)

For every s, we have 2s + 1 superconformal multiplets, which are transformed

as the spin s representation of the flavor group SU(2)′F . This fact suggests that

the full Kaluza-Klein spectrum can be obtained by KK analysis of only one field,

for example, a scalar field φi and the knowledge of representation theory. Let us

explain this below. Three scalar fields including it form an SU(2)R triplet, so we

identify these modes with the third line in the table. Kaluza-Klein analysis tells

us the conformal dimension of the scalar field. By comparison of the conformal

dimension and the SU(2)′R representations, we can relate the quantum number

n to the orbital spin s by

n = 2s+ 2, s = 0,
1

2
, · · · . (4.223)



4.3. ADS4 PARTICLE INDEX 79

Using Table D.4 given by representation theory, we can reproduce the full spec-

trum VfSU
as (4.222).

In the same way, we can obtain the spectrum VfST
as

VfST
=

⊕

s=0, 1
2
,...

(4, B,−)2(s+1) ⊗ (s of SU(2)′F ). (4.224)

4.3.4 Twisted sector

Let us derive the character for the Kaluza-Klein modes (4.222) by summing up

χ(4,B,+)n with an appropriate weight. To include the information of the flavor

group SU(2)′F , we introduce a variable z′ for the Cartan generator P ′ of SU(2)′F .

We normalize P ′ in a different way from T3 and T ′3 so that its eigenvalues are

integers. We define a character

χV = TrV

(
s2Dx2jyT3y′T

′
3zP z′P

′
)
, (4.225)

for a representation V . From (4.222), we derive the character of a vector-multiplet

in S̃ as follows:

χV eS =
∞∑
s=0

χ(4,B,+)2s+2χs(z
′2). (4.226)

Remark that the component fields in a vector-multiplet in SU do not carry the

charge P . Thus, the index should be the function only of x and z′, and is

independent of z. By using the relation between a character and an index (D.12),

(4.226) leads to the index for a vector-multiplet in S̃

IV eS =
∞∑
s=0

I(4,B,+)2s+2χs(z
′2)

=
∑

P ′∈Z

x|P
′|+2

1− x4

[
(Y2 − x2)Y

|P ′|
2

1− x2Y2

]
z′P

′
. (4.227)

In the same way, we can obtain the index for a vector-multiplet in S̃ ′

IV eS′ =
∞∑
s=0

I(4,B,−)2s+2χs(z
2)

=
∑
P∈Z

x|P |+2

1− x4

[
(Y −1

2 − x2)Y
−|P ′|
2

1− x2Y −1
2

]
zP . (4.228)

The character and index for 1/2 BPS representations (4, B,±)n are both derived

in Appendix D.

As noticed at the beginning of this section, we compare this index to that

obtained in [104]. In [47] it is shown that operators without magnetic charges
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correspond to Kaluza-Klein modes of the Cartan part of the vector-multiplets

with P = P ′ = 0. Therefore, the perturbative part is obtained by picking up the

term independent of z′, z from (4.227), (4.228) as

IV eS |z′=0 =
x2

1− x4

[
(Y2 − x2)

1− x2Y2

]
, IV eS′ |z=0 =

x2

1− x4

[
(Y −1

2 − x2)

1− x2Y −1
2

]
. (4.229)

Because every Cartan U(1) gives the same contributions, we need to multiply the

total rank of the gauge group of the vector-multiplets. In the theory discussed in

[104], SU(M) gauge theory are realized on each of the two singular loci, and we

need to introduce the additional factor (M − 1), respectively. This result, with

the rank factor included, precisely agrees with (4.9). (We need the replacement

x2 → x, Y2 → y3 to match the conventions.)

Let us get back to our situation. In the gauge theory side, the chemical

potential for the charge H2 is not introduced. Therefore, it is sufficient to set Y2

in (4.227) to 1 for comparison. Then, the single-particle index for a single U(1)

vector-multiplet in AdS4 × S3 reduces to

IV eS |Y2=1 =
∞∑

P ′=−∞

x|P
′|+2

1− x4
z′P

′
, (4.230)

For later convenience, we denote the coefficient of z′ expansion as Ivec
P ′ (x):

Ivec
P ′ (x) =

x|P
′|+2

1− x4
. (4.231)

When we consider the single-particle index of the covering space of the other

locus ST , we should replace the variable z′ by z.

Once we derived the single-particle index for AdS4×S3, the index for orbifold

AdS4×S3/Zkq can be obtained by the projection which leaves only Zkq invariant

modes. The procedure of the Zkq and Zkp projections is similar to what we have

done for the bulk sector. An important difference, however, is that in general

there exist non-trivial Wilson lines turned on the orbifolded three-sphere, in which

case the charge quatization conditions are shifted compared to otherwise. This

is nothing but the Aharanov-Bohm effect. Topologies of the loci SU and ST are

S3/Zkq and S3/Zkp, respectively. Both the orbifold groups are generated by the

third generator in (2.52). Associated with the fundamental groups π1(SU) = Zkq

and π1(ST ) = Zkp, we have in general non-trivial monodromy matrix

diag(e2πiη1 , . . . , e2πiηp) ∈ U(p), diag(e2πiη
′
1 , . . . , e2πiη′q) ∈ U(q). (4.232)

Each diagonal component of the monodromy matrix corresponds to the Wilson

line turned on each of singular loci SU i or ST i. Note that these are not elements of
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SU(p) and SU(q) because we do not impose the condition that their determinants

are one. This does not cause any problem because there are no particles coupling

to the U(1) part. ηi and ηi′ must be quantized by

ηi ∈ 1

kq
Z, ηi′ ∈ 1

kp
Z. (4.233)

When we compute the contribution of twisted sectors to a multi-particle index,

we should take account of the momentum shift due to these discrete Wilson lines.

Before considering the projection for single-particle states, let us consider that

for a general multi-particle state. Let ρi and ρi′ be the HSU
and HST

charges of

the multi-particle state. They are the sum of charges of constituent particles in

the state. Because every particle belongs to the adjoint representation of GS ,

these charges satisfy
p∑
i=1

ρi =

q∑

i′=1

ρi′ = 0. (4.234)

When we act an element of the orbifold group which rotates the cycles in SU and

ST by r and s times, respectively, the state picks up the phase

2πi

(
r

p∑
i=1

ρiηi + s

q∑

i′=1

ρi′ηi′

)
, (4.235)

and this must be canceled by the phase factor associated with the momentum.

Because (r, s) = (0,−k), (k, 0), and (1, 1) for the three generators in (2.52),

the cancellation of the phases requires

exp

(
2πi

p
P

)
= exp

(
2πik

q∑

i′=1

ρi′ηi′

)
, (4.236)

exp

(
2πi

q
P ′

)
= exp

(
−2πik

p∑
i=1

ρiηi

)
, (4.237)

exp(2πiPM) = exp

(
−2πi

p∑
i=1

ρiηi − 2πi

q∑

i′=1

ρi′ηi′

)
. (4.238)

P and P ′ satisfying these conditions are given by

P = p

(
a+ k

q∑

i′=1

ρ′αi′η
′
i′

)
, P ′ = q

(
a+ kb− k

p∑
i=1

ραiηi

)
, a, b ∈ Z. (4.239)

These are the selection rules in the gravity side. We generalize the result obtained

for U(1)r case in [80] to non-abelian case. The M-momentum PM is

PM = b−
p∑
i=1

ραiηi −
q∑

i′=1

ρ′αi′η
′
i′ , b ∈ Z. (4.240)
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Unlike the case of bulk sector, the M-momentum PM is not always an inte-

ger. These conditions are imposed on any multi-particle states, including single-

particle states. Actually, we obtain the momenta (4.164) for bulk single-particle

states by simply setting ρi = ρi′ = 0 in (4.239).

For a single-particle state in the twisted sector on the locus SU , ρi′ = P = 0.

This implies that a in the first equation in (4.239) vanishes, and the second

equation gives the momentum

P ′ = kq

(
b−

p∑
i=1

ραiηi

)
, b ∈ Z. (4.241)

Let {ραi} = ~ρα be the charge vector for an SU(p) vector-multiplet living in the

locus SU . α = 1, . . . , p2 − 1 is the adjoint index of SU(p). These vectors are

nothing but the weight vectors for the adjoint representation of SU(p). The

single-particle index for vector-multiplets in the locus SU is

IVS =

p2−1∑
α=1

∞∑

b=−∞
Ivec
kq(b−~ρα·~η)(x)z

′kq(b−~ρα·~η)tρα1

1 · · · tραp
p

=
∑

~ρ

deg(~ρ)
∞∑

b=−∞
Ivec
kq(b−~ρ·~η)(x)z

′kq(b−~ρ·~η)tρ11 · · · tρp
p , (4.242)

which is nothing but ISU (x, z′;~t).

The single-particle index for the SU(q) vector-multiplet localized in the locus

ST = AdS4 × S3/Zkp is obtained in the same way. Because ρi = P ′ = 0, the

projection restricts the value of the momentum P as

P = kp

(
−b+

q∑

i′=1

ρ′αi′η
′
i′

)
, b ∈ Z. (4.243)

The single-particle index for the SU(q) vector-multiplet in ST is given by

IVS′ =

q2−1∑
α=1

∞∑
a=−∞

Ivec
kp(a+~ρ′α·~η)(x)z

kq(p+~ρ′α·η′α)t
′ρ′α1
1 · · · t′ρ′αq

q

=
∑

~ρ′
deg(~ρ′)

∞∑
a=−∞

Ivec
kp(a+~ρ′·~η)(x)z

kq(p+~ρ′·η′α)t
′ρ′1
1 · · · t′ρ′qq , (4.244)

which is nothing other than IST (x, z;~t′). Note that due to the constraint (4.234)

these indices are invariant under the overall rescaling of ~t and ~t′;

ISU (x, z′, c~t) = ISU (x, z′,~t), IST (x, z, c~t′) = IST (x, z,~t′). (4.245)

By summing up the contribution of the bulk and the twisted sectors, we obtain

the total single-particle index as (4.147) given at the beginning of this subsection.
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4.4 Identification and comparison

In this subsection, we compare the indices of both sides obtained in the previous

sections. To do this, we first establish the correspondence between both data in

gauge theory side and gravity side. The correspondence is relatively easy to guess

by comparing (4.133), (4.134) and (4.239) as follows:

d = a, b = m•, (4.246)

li = kqηi, li′ = kpηi′ , (4.247)

µi = ρi, µi′ = ρi′ . (4.248)

By using the correspondence (4.246) and (4.240), we can write the M-momentum

as

PM +

p∑
i=1

ραiηi +

q∑

i′=1

ρ′αi′η
′
i′ = m•. (4.249)

Since m• is identical to the diagonal magnetic charge, the relation (4.249) gener-

alizes the correspondence between the M-momentum and the diagonal magnetic

charge to the form including the contribution coming from the singularities. The

other relations (4.247), (4.248) are also important meanings in AdS/CFT corre-

spondence (§4.4.1), (§4.4.2). By using these relations, we confirm the complete

matching of the gauge theory index and the multi-particle index.

In the previous subsection we showed that the gauge theory index is factorized

into three parts: neutral, positive, and negative parts. For the two indices to

coincides, the multi-particle index on the gravity side should be also factorized

in the same way into three parts and it is (§4.4.3). Using the result, we confirm

the agreement for each factor. We show the agreement for the neutral part

analytically (§4.4.4). Concerning the charged part, we use computers to compute

the gauge theory index for many sectors with different charges, and we show that

the gauge theory index I
(+)
{ma} for monopole charges {ma} agrees with the multi-

particle index I
mp(+)
(PM ,~ρ,~ρ′) (§4.4.5). According to the correspondence (4.248), we set

the variables τa by using the corresponding variables ~t,~t′ as follows.

r∏
a=1

τma
a =

p∏
i=1

tρi

i

q∏

i′=1

t
ρi′
i′ (4.250)

4.4.1 Wrapping numbers and magnetic charges

We discuss the relation (4.248). In §2.4, we argue that µI are the relative magnetic

charges and describe the contribution coming from twisted monopole operators.
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On the other hand, ρI describe the gauge charges of a vector-multiplet localized

in a singular locus. So, (4.248) implies that the gauge charges correspond to the

relative magnetic charges.

In the perspective of M-thoery, such gauge charges come from the period

integrals on 2-cycles in the internal space and thus correspond to the wrap-

ping numbers of M2-branes on them. To see this, let us consider the world-

volume action of a wrapped M2-brane. It couples 3-form field potential mini-

mally, which can be expanded by the harmonic 2-forms as the cohomology basis

of H2
free(S

7
p,q,k,Z) = Zp+q−2, denoted by ωI , as

C3 =

p+q−2∑
I=1

ωI ∧ ÃI . (4.251)

Integrating out 2-cycle in the world-volume, the minimal coupling term reduces

to

p+q−2∑
I=1

ρI

∫
ÃI . (4.252)

Here ρI is given by the following period, which is interpreted as the wrapping

number of the M2-brane on the I-th 2-cycle:

ρI =

∮
ωI . (4.253)

This period plays a role of the gauge charge with respect to ÃI , This argument

suggests that the magnetic charges of twisted monopole operators correspond to

the wrapping numbers of M2-branes on 2-cycles.

4.4.2 Wilson lines and linking numbers

Let us consider the relation (4.247). Interestingly, this relation suggests that the

torsion wilson lines turned on the singular loci correspond to the linking numbers

in the field theory side.

This correspondence reproduces the result in [57] as a special case with k = 1.

Let us follow his discussion in [57]. He considered the type IIB brane system de-

scribed by Table 2.3 in replacement of (1, k)5-branes by D5-branes. By taking

T-dual to 6-direction, p NS5-branes are converted into p centered Taub-NUT

space, denoted by TNp, D3-branes become D2-branes, which are dissolved into

instantons in TNp, and D5-branes are turned into D6-branes filling in TNp with

a line-bundle V , which has information of the location of 5-branes. In fact, the

1st Chern class of this line bundle V agrees the linking numbers of NS5-branes.
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Furthermore, he showed that by taking the ALE limit of TNp, monodromy at in-

finity of V (4.232) agrees the exponent of the linking numbers. By this argument,

the relation between the discrete Wilson phase induced on the ALE locus and

the linking numbers of D5-branes is established. By taking S-dual for this setup

and exchanging NS5-branes and D5-branes, this argument can be also applied to

the linking numbers of NS5-branes

Our result (4.247) is a generalization of the result to type IIB setup including

(1, k)5-branes. We define the linking number by inserting k so that these linking

numbers are invariant in the brane creation processes [61]. We establish the

relation between the discrete Wilson lines and the linking numbers for general k

by requiring the agreement of indices in both sides.

4.4.3 Factorization

We show that the multi-particle index can be factorized into three parts. Namely,

Imp should be factorized as

Imp = Imp(0)Imp(+)Imp(−). (4.254)

Let us first confirm this factorization.

The factorization of the multi-particle index is equivalent to the following

decomposition of the single-particle index

Isp = Isp(0) + Isp(+) + Isp(−). (4.255)

Let us consider a single-particle state with quantum numbers (PM , ~ρ, ~ρ
′). By

the relations in (4.246), (4.248) we can determine the corresponding magnetic

charges ma. The decomposability (4.255) claims that the magnetic charges ma

determined in this way for every single-particle state do not include positive and

negative components at the same time. This is confirmed easily as follows.

For a bulk graviton state, which has vanishing vectors ~ρ = ~ρ′ = 0, all the

components of the corresponding magnetic charge are the same and are given by

m1 = · · · = mr = PM , (4.256)

and thus they never include both positive and negative charges. This is also the

case for the Cartan part of the twisted sectors.

For anHS-charged particle in a twisted sector, one of ~ρ and ~ρ′ is non-vanishing.

If the particle corresponds to an SU(p) root vector, ρi has two non-vanishing

components, and one of them is +1 and the other is −1. In this case the second

relation in (4.248) means that the minimum and the maximum components of
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the magnetic charges ma differ by only one. Therefore, the r magnetic charges

cannot include both positive and negative charges.

We can always classify single-particle states into neutral, positive, and neg-

ative parts according to the magnetic charges, and correspondingly, we can de-

compose the single-particle index into the three parts as (4.255).

4.4.4 Neutral part

We prove the agreement of indices for the neutral part analytically. The neutral

part of the multi-particle index, Imp(0), is given by

Imp(0)(x, z, z′) = exp
∞∑
n=1

1

n
Isp

(0,~0,~0)
(xn, zn, z′n) (4.257)

where Isp
(PM ,~ρ,~ρ′) is given by (4.149) and its explicit form for (PM , ~ρ, ~ρ

′) = (0,~0,~0)

is

Isp

(0,~0,~0)
(x, z, z′) =

∞∑
a=−∞

Igrav
pa,qa(x)z

paz′qa + (p− 1)Ivec
0 (x) + (q − 1)Ivec

0 (x)

=
xp+qzpz′q

1− xp+qzpz′q
+

xp+qz−pz′−q

1− xp+qz−pz′−q
+ (p+ q)

x2

1− x4
. (4.258)

The corresponding multi-particle index defined by (4.257) is

Imp(0) =
∞∏
i=1

(1 + x2)i(p+q)

(1− (xp+qzpz′q)i)(1− (xp+qz−pz′−q)i)
, (4.259)

where we used Euler’s partition identity to obtain this expression.

On the gauge theory side, the corresponding index (4.111) is

I(0)(x, z, z′) =
∞∏
n=1

1

detM(xn, zn, z′n)
, (4.260)

where M is the matrix defined in (4.109). We can easily compute the determinant

by rewriting the matrix M as

M =
1

1 + x2
(1− xA)(1− xA−1) (4.261)

with the matrix

A(z, z′) =




. . .

0 zI−1

0 zI
0 zI+1

0

zr
. . .



. (4.262)
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The determinant

1

detM
=

(1 + x2)p+q

(1− xp+qzpz′q)(1− xp+qz−pz′−q)
(4.263)

does not depend on the order of the untwisted and twisted hyper-multiplets in

the quiver diagram. On substituting this into (4.260), we see that the neutral

part of the gauge theory index actually coincides with the corresponding part of

the graviton index;

I(0)(x, z, z′) = Imp(0)(x, z, z′). (4.264)

This result is consistent with the result in [104]. If we set z = z′ = 1 and

p = q = M , we reproduce the index (4.6) with y3 = 1 substituted.

4.4.5 Charged part

Next, let us confirm the agreement of the charged part:

I(±)(x, z, z′) = Imp(±)(x, z, z′). (4.265)

We can easily show the following relations between positive and the negative

parts:

I(+)(x, z, z′) = I(−)(x, z−1, z′−1), Imp(+)(x, z, z′) = Imp(−)(x, z−1, z′−1). (4.266)

Therefore, it is enough to show the relation for the positive part of the indices:

I
(+)
{ma}+(x, z, z′) = I

mp(+)
(PM ,~ρ,~ρ′)(x, z, z

′). (4.267)

Unfortunately, we have not succeeded in proving (4.267) analytically. In the

following, we consider three examples of N = 4 Chern-Simons theories specified

by {sI} = {0, 0, 1}, {0, 0, 1, 1}, and {0, 1, 0, 1} 4. (The simplest case with {sI} =

{0, 1} (ABJM model) has already been investigated in [105].) For each theory we

compute I
(+)
{ma} numerically for many sectors specified by the charges, and confirm

the agreement with I
mp(+)
(PM ,~ρ,~ρ′).

First, we consider the theory defined by

{sI} = {0, 0, 1}. (4.268)

4When we describe a set of numbers xa assigned to vertices in the quiver diagram, we
choose a reference vertex a = •, which is also used for the definition of the linking numbers,
and represent {xa} as the vector {x•, xR2(•), . . . , xL2(•)}, where R2(•) ≡ R(R(•)), and Ln(•)
and Rn(•) are similarly defined. For a set of numbers yI assigned to edges, we represent them
as {yR(•), yR3(•), . . . , yL(•)}.
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The background geometry of this theory is (C2/Z2×C2)/Zk. The internal space

S7
p,q,k includes a Z2-fixed singular locus, and there exists one two-cycle at the

locus SU . The vectors ~ρ = {ρi} and ~ρ′ = {ρi′} are parameterized by a single

winding number ρ ∈ Z as

~ρ = {ρ1, ρ2} = {−ρ, ρ}, ~ρ′ = {ρ3} = {0}. (4.269)

We introduce chemical potential t for the charge ρ. This is related to the poten-

tials tI introduced in §4.3 by t = t2/t1. By using the identidication, the magnetic

charges are determined as

{m1,m2,m3} = {PM , PM + ρ, PM}. (4.270)

The Wilson lines ηI vanish up to integers, and this is consistent with the fact

that there is no three-cycles in the dual geometry. The quantization rules (4.133)

and (4.134) for the charges P and P ′ are

P = 2a, P ′ = a+ kPM , a, PM ∈ Z. (4.271)

The positive part of the single-particle index is defined by ma ≥ 0 and

{m1,m2,m3} 6= {0, 0, 0}. These conditions mean

PM ≥ 0, PM + ρ ≥ 0, (PM , ρ) 6= (0, 0). (4.272)

For every pair of charges (PM , ρ) satisfying (4.272) we would like to confirm

I
(+)
{PM ,PM+ρ,PM}(x, z, z

′) = I
mp(+)
(PM ,ρ)(x, z, z

′). (4.273)

Single-particle states exist only for |ρ| ≤ 1. Eq. (4.149) gives

Isp
(PM ,0) =

∞∑
a=−∞

Igrav
2a,a+kPM

(x)z2az′kPM+a + Ivec
kPM

(x)z′kPM , (4.274)

Isp
(PM ,±1) = Ivec

kPM
(x)z′kPM . (4.275)

It is relatively easy to compute indices when one of two bounds in (4.272) is

saturated. Let us first consider PM = 0 case. In this case, we should confirm

I
(+)
{0,ρ,0}(x, z, z

′) = I
mp(+)
(0,ρ) (x, z, z′). (4.276)

Because the single-particle index depends on the level k only through the com-

bination PMk, the multi-particle index on the right hand side in (4.276) is inde-

pendent of k. We can easily see that this is also the case for the gauge theory

index on the left hand side in (4.276) from the expression (4.112).
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The only non-vanishing single-particle index for PM = 0 contributing to Imp(+)

is

Isp
(0,1) =

x2

1− x4
, (4.277)

and the multi-particle index with PM = 0 is defined by
∞∑
ρ=0

I
mp(+)
(0,ρ) (x, z, z′)tρ = exp

∞∑
n=1

1

n
Isp
(0,1)(x

n, zn, z′n)tn. (4.278)

By using the identity

∞∏
i=0

1

1− txi
=

∞∑
i=0

ti
i∏

j=1

1

1− xj
, (4.279)

we obtain

I
mp(+)
(0,ρ) =

ρ∏
i=1

x2

1− x4i
. (4.280)

Let us confirm that the gauge theory index agrees with this for small ρ. For

ρ = 1, we can easily compute the corresponding gauge theory index by hand, and

confirm the agreement.

I
(+)
{0,1,0} = I

(+)
(·, ,·) =

x2

1− x4
. (4.281)

For ρ = 2, there are two contribution with different monopole backgrounds.

I
(+)
{0,2,0} = I

(+)
{·, ,·} + I

(+)
{·, ,·}. (4.282)

It is again easy to compute these two contributions by hand. They are

I
(+)
{·, ,·} =

x4

1− x8
, I

(+)
{·, ,·} =

x8

(1− x4)(1− x8)
, (4.283)

and the summation agrees with the multi-particle index

I
(+)
{0,2,0} =

x2

1− x4

x2

1− x8
= I

mp(+)
(0,2) . (4.284)

As the charge becomes large, the computation of the gauge theory index becomes

complicated rapidly. For ρ ≥ 3, we use computers to generate gauge theory index

as series expansion with respect to the variable x, and check the agreement for

small ρ up to certain order of x. The result is as follows.

I
(+)
{0,3,0} = I

(+)
{·, ,·} + I

(+)
{·, ,·} + I

(+)
{·, ,·}

= I
mp(+)
(0,3) +O(x101), (4.285)

I
(+)
{0,4,0} = I

(+)
{·, ,·} + I

(+)
{·, ,·} + I

(+)
{·, ,·} + I

(+)
{·, ,·} + I

(+)

{·, ,·}

= I
mp(+)
(0,4) +O(x101), (4.286)

I
(+)
{0,5,0} = I

(+)
{·, ,·} + I

(+)
{·, ,·} + I

(+)
{·, ,·} + I

(+)
{·, ,·}

+I
(+)
{·, ,·} + I

(+)

{·, ,·} + I
(+)

{·, ,·}

= I
mp(+)
(0,5) +O(x31). (4.287)
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All these results are consistent with (4.280) up to the order we have computed.

Next let us consider the case with PM ≥ 1 and PM + ρ = 0. The relation we

would like to confirm is

I
(+)
{PM ,0,PM}(x, z, z

′) = I
mp(+)
(PM ,−PM )(x, z, z

′). (4.288)

The single-particle index contributing to this part is

Isp
(1,−1) =

x2(xz′)k

1− x4
. (4.289)

With the help of the identity (4.279) we obtain

I
mp(+)
(PM ,−PM ) =

PM∏
i=1

xk+2z′k

1− x4i
. (4.290)

We have confirmed the following relations up to the indicated order of x for

k = 1, 2, 3, 4, 5.

I
(+)
{1,0,1} = I

(+)
{ ,·, }

= I
mp(+)
(1,−1) +O(x101), (4.291)

I
(+)
{2,0,2} = I

(+)
{ ,·, } + I

(+)
{ ,·, } + I

(+)
{ ,·, } + I

(+)
{ ,·, }

= I
mp(+)
(2,−2) +O(x31), (4.292)

I
(+)
{3,0,3} = I

(+)
{ ,·, } + I

(+)
{ ,·, } + I

(+)
{ ,·, } + I

(+)
{ ,·, } + I

(+)
{ ,·, }

+I
(+)
{ ,·, } + I

(+)
{ ,·, } + I

(+)
{ ,·, } + I

(+)
{ ,·, }

= I
mp(+)
(3,−3) +O(x11). (4.293)

All these results are consistent with (4.290).

Finally, let us consider a few examples in which all magnetic charges are

positive. For k = 1, 2, 3, 4, 5 we have checked

I
(+)
{1,1,1} = I

(+)
{ , , }

= I
mp(+)
(1,0) +O(x31), (4.294)

I
(+)
{2,1,2} = I

(+)
{ , , } + I

(+)
{ , , } + I

(+)
{ , , } + I

(+)
{ , , }

= I
mp(+)
(2,−1) +O(x21), (4.295)

I
(+)
{2,2,2} = I

(+)
{ , , } + I

(+)
{ , , } + I

(+)
{ , , } + I

(+)
{ , , }

+I
(+)
{ , , } + I

(+)
{ , , } + I

(+)
{ , , } + I

(+)
{ , , }

= I
mp(+)
(2,0) +O(x11). (4.296)
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where

I
mp(+)
(1,0) = Isp

(1,0) + Isp
(0,1)I

sp
(1,−1), (4.297)

I
mp(+)
(2,−1) = Isp

(2,−1) + Isp
(1,0)I

sp
(1,−1) + Isp

(0,1)

(
1

2
(Isp

(1,−1))
2 +

1

2
Isp
(1,−1)(·2)

)
,(4.298)

I
mp(+)
(2,0) = Isp

(2,0) + Isp
(2,−1)I

sp
(0,1) + Isp

(1,1)I
sp
(1,−1)

+

(
1

2
(Isp

(1,−1))
2 +

1

2
Isp
(1,−1)(·2)

)(
1

2
(Isp

(0,1))
2 +

1

2
Isp
(0,1)(·2)

)

+
1

2
(Isp

(1,0))
2 +

1

2
Isp
(1,0)(·2) + Isp

(1,0)I
sp
(1,−1)I

sp
(0,1). (4.299)

Secondly, let us consider the cases with p = 2 and q = 2. There are two cases

with {sI} = {0, 0, 1, 1} and {sI} = {0, 1, 0, 1}, which we call UUTT and UTUT

theories, respectively. These are simplest examples that are distinguished by the

order of two kinds of hyper-multiplets in the quiver diagrams.

We first consider UUTT theory with {sI} = {0, 0, 1, 1}. The inking numbers

are

~l = {l1, l2} = {2k, 2k}, ~l′ = {l3, l4} = {−2k,−2k}, (4.300)

and the Wilson line parameters ηI vanishes up to integers. On the gravity side,

we have two A1 type singular loci. We parameterize the vectors ~ρ and ~ρ′ by two

integers ρ and ρ′ as

~ρ = {ρ1, ρ2} = {−ρ, ρ}, ~ρ′ = {ρ3, ρ4} = {−ρ′, ρ′}, (4.301)

We introduce chemical potentials t and t′ for the charges ρ and ρ′, respectively.

These are related to the potentials tI introduced in §4.3 by t = t2/t1 and t′ = t4/t3.

From the identification, we obtain

{m1,m2,m3,m4} = {PM , PM + ρ, PM , PM + ρ′}. (4.302)

The positive part is defined by

ma ≥ 0, {m1,m2,m3,m4} 6= {0, 0, 0, 0}, (4.303)

and these are equivalent to

PM ≥ 0, PM + ρ ≥ 0, PM + ρ′ ≥ 0, (PM , ρ, ρ
′) 6= (0, 0, 0). (4.304)

We would like to show

I
(+)
{PM ,PM+ρ,PM ,PM+ρ′}(x, z, z

′) = I
mp(+)
(PM ,ρ,ρ′)(x, z, z

′), (4.305)
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for every set of charges (PM , ρ, ρ
′) satisfying (4.304). Eq. (4.149) gives the single-

particle index

Isp
(PM ,0,0)(x, z, z

′) =
∞∑

a=−∞
Igrav
2a,2(kPM+a)(x)z

2az′2(kPM+a)

+Ivec
2kPM

(x)(z′2kPM + z−2kPM ), (4.306)

Isp
(PM ,−1,0)(x, z, z

′) = Ivec
2kPM

(x)z′2kPM , (4.307)

Isp
(PM ,0,−1)(x, z, z

′) = Ivec
−2kPM

(x)z−2kPM , (4.308)

Isp
(PM ,1,0)(x, z, z

′) = Ivec
2kPM

(x)z′2kPM , (4.309)

Isp
(PM ,0,1)(x, z, z

′) = Ivec
−2kPM

(x)z−2kPM . (4.310)

When some of the inequalities in (4.304) are saturated, the computation of

Imp(+) and I(+) are relatively easy, and we first consider such cases. The last

condition in (4.304) means that the first three inequalities are not saturated at the

same time. If PM = 0, only single-particle states saturating the same inequality

can contribute to the multi-particle index. There are only two such single-particle

charges, (PM , ρ, ρ
′) = (0, 1, 0) and (0, 0, 1), and thus the multi-particle index is

given by

∞∑
ρ=0

∞∑

ρ′=0

I
mp(+)
(0,ρ,ρ′)t

ρt′ρ
′
= exp

(∑
n≥1

1

n

[
Isp
(0,1,0)(x

n, zn, z′n)tn + Isp
(0,0,1)(x

n, zn, z′n)t′n
])

(4.311)

By using the identity (4.279), we obtain

I
mp(+)
(0,ρ,ρ′) =

(
ρ∏
i=1

x2

1− x4i

)(
ρ′∏

i′=1

x2

1− x4i′

)
. (4.312)

We can easily show that for I
(+)
{0,ρ,0,ρ′} the integrals in (4.112) are factorized into

two parts, and the relation

I
(+)
{0,ρ,0,ρ′} = I

(+)
{0,ρ,0,0}I

(+)
{0,0,0,ρ′} (4.313)

holds. In general, if the cyclic sequence of the magnetic charges splits into several

parts by vanishing components, the integrals in (4.112) are factorized, and we

obtain a relation like (4.313). Furthermore, each of two factors in (4.313) is the

same as the index I
(+)
{0,ρ,0} for the UUT theory. By using the results in the last

subsection, we can confirm I
mp(+)
(0,ρ,ρ′) = I

(+)
{0,ρ,0,ρ′}.

Next, let us consider the case in which PM ≥ 1 and the second or the third

bounds in (4.304) are saturated. Namely, PM + ρ = 0 or PM + ρ′ = 0. Because

there is no one-particle state saturating both the bounds, the multi-particle index
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for such charges vanishes; I
mp(+)
(PM ,−PM ,−PM ) = 0. On the gauge theory side, we can

show I
(+)
{PM ,0,PM ,0} = 0 by using the factorization I

(+)
{PM ,0,PM ,0} = I

(+)
{PM ,0,0,0}I

(+)
{0,0,PM ,0},

and applying the selection rules to the two factors.

When only one of PM + ρ = 0 or PM + ρ′ = 0 in (4.304) is saturated, only

single-particle states with charges (1, 0,−1) or (1,−1, 0) contribute to the multi-

particle index, and we obtain

I
mp(+)
(ρ′,0,−ρ′) =

(
ρ′∏

i′=1

x2(xz−1)pk

1− x4i′

)
, I

mp(+)
(ρ,−ρ,0) =

(
ρ∏
i=1

x2(xz′)qk

1− x4i

)
. (4.314)

These are easily generalized to

I
mp(+)
(ρ+ρ′,−ρ,−ρ′) =

(
ρ′∏

i′=1

x2(xz−1)pk

1− x4i′

)(
ρ∏
i=1

x2(xz′)qk

1− x4i

)
. (4.315)

We confirm for k = 1, . . . , 5 that this index is correctly reproduced as the gauge

theory index for small ρ and ρ′ as follows.

I
(+)
{1,1,1,0} = I

(+)
{ , , ,·}

= I
mp(+)
(1,0,−1) +O(x101), (4.316)

I
(+)
{2,2,2,0} = I

(+)
{ , , ,·} + I

(+)
{ , , ,·} + I

(+)
{ , , ,·} + I

(+)
{ , , ,·}

+ I
(+)
{ , , ,·} + I

(+)
{ , , ,·} + I

(+)
{ , , ,·} + I

(+)
{ , , ,·}

= I
mp(+)
(2,0,−2) +O(x21), (4.317)

I
(+)
{1,0,1,1} = I

(+)
{ ,·, , }

= I
mp(+)
(1,−1,0) +O(x101), (4.318)

I
(+)
{2,0,2,2} = I

(+)
{ ,·, , } + I

(+)
{ ,·, , } + I

(+)
{ ,·, , } + I

(+)
{ ,·, , }

+ I
(+)
{ ,·, , } + I

(+)
{ ,·, , } + I

(+)
{ ,·, , } + I

(+)
{ ,·, , }

= I
mp(+)
(2,−2,0) +O(x21), (4.319)

I
(+)
{2,1,2,1} = I

(+)
{ , , , } + I

(+)
{ , , , } + I

(+)
{ , , , } + I

(+)
{ , , , }

= I
mp(+)
(2,−1,−1) +O(x21). (4.320)
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Finally, we give more examples without vanishing magnetic charges.

I
(+)
{1,1,1,1} = I

(+)
{ , , , }

= I
mp(+)
(1,0,0) +O(x101), (4.321)

I
(+)
{1,2,1,1} = I

(+)
{ , , , } + I

(+)
{ , , , }

= I
mp(+)
(1,1,0) +O(x31), (4.322)

I
(+)
{1,1,1,2} = I

(+)
{ , , , } + I

(+)
{ , , , }

= I
mp(+)
(1,0,1) +O(x31), (4.323)

I
(+)
{1,2,1,2} = I

(+)
{ , , , } + I

(+)
{ , , , } + I

(+)
{ , , , } + I

(+)
{ , , , }

= I
mp(+)
(1,1,1) +O(x31), (4.324)

where

I
mp(+)
(1,0,0) = Isp

(1,0,0) + Isp
(1,−1,0)I

sp
(0,1,0) + Isp

(1,0,−1)I
sp
(0,0,1), (4.325)

I
mp(+)
(1,1,0) = Isp

(1,1,0) + Isp
(1,0,0)I

sp
(0,1,0) + Isp

(1,0,−1)I
sp
(0,0,1)I

sp
(0,0,1)

+

(
1

2
(Isp

(0,1,0))
2 +

1

2
Isp
(0,1,0)(·2)

)
Isp
(1,0,−1), (4.326)

I
mp(+)
(1,0,1) = Isp

(1,0,1) + Isp
(1,0,0)I

sp
(0,0,1) + Isp

(1,−1,0)I
sp
(0,1,0)I

sp
(0,1,0)

+

(
1

2
(Isp

(0,0,1))
2 +

1

2
Isp
(0,0,1)(·2)

)
Isp
(1,−1,1), (4.327)

I
mp(+)
(1,1,1) = Isp

(1,0,0)I
sp
(0,1,0)I

sp
(0,0,1) + Isp

(1,0,1)I
sp
(0,1,0) + Isp

(1,1,0)I
sp
(0,0,1)

+

(
1

2
(Isp

(0,1,0))
2 +

1

2
Isp
(0,1,0)(·2)

)
Isp
(0,0,1)I

sp
(1,−1,0)

+

(
1

2
(Isp

(0,0,1))
2 +

1

2
Isp
(0,0,1)(·2)

)
Isp
(0,1,0)I

sp
(1,0,−1). (4.328)

Finally, we move on to the UTUT theory with {sI} = {0, 1, 0, 1}. The linking

numbers for this theory are

~l = {l1, l3} = {2k, k}, ~l′ = {l2, l4} = {−k,−2k}, (4.329)

and the Wilson line parameters are given by

~η = {η1, η3} = {0, 1
2
}, ~η′ = {η2, η4} = {1

2
, 0}. (4.330)

This theory is the simplest example with the non-trivial Wilson lines on the

singular loci. We parameterize ~ρ and ~ρ′ by two integers ρ and ρ′ as

~ρ = {ρ1, ρ3} = {−ρ, ρ}, ~ρ′ = {ρ2, ρ4} = {−ρ′, ρ′}. (4.331)
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We introduce chemical potentials t and t′ for the charges ρ and ρ′, respectively.

These are related to the potentials tI introduced in §4.3 by t = t3/t1 and t′ = t4/t2.

Then the magnetic charges are given by

{ma} = {PM − ρ+ ρ′

2
, PM +

ρ− ρ′

2
, PM +

ρ+ ρ′

2
, PM − ρ− ρ′

2
}

= {m•,m• + ρ,m• + ρ+ ρ′,m• + ρ′}, (4.332)

where m• is the magnetic charge for the reference vertex, and is related to PM

by

PM = m• +
1

2
(ρ+ ρ′). (4.333)

The relation we would like to confirm is

I
(+)

{PM− ρ+ρ′
2
,PM+ ρ−ρ′

2
,PM+ ρ+ρ′

2
,PM− ρ−ρ′

2
}(x, z, z

′) = I
mp(+)
(PM ,ρ,ρ′)(x, z, z

′). (4.334)

The positive part of the single-particle index is defined by

ma ≥ 0, {m1,m2,m3,m4} 6= {0, 0, 0, 0}, (4.335)

and these are equivalent to

m• ≥ 0, m• + ρ ≥ 0, m• + ρ′ ≥ 0, (m•, ρ, ρ′) 6= (0, 0, 0). (4.336)

The single-particle index is given by

Isp
(m•,0,0)(x, z, z

′) =
∞∑

a=−∞
Igrav
2a,2(km•+a)(x)z

2az′2(km•+a)

+Ivec
2km•(x)(z

′2km• + z−2km•), (4.337)

Isp

(m•− 1
2
,−1,0)

(x, z, z′) = Ivec
k(2m•−1)(x)z

′k(2m•−1), (4.338)

Isp

(m•− 1
2
,0,−1)

(x, z, z′) = Ivec
−k(2m•−1)(x)z

−k(2m•−1), (4.339)

Isp

(m•+ 1
2
,1,0)

(x, z, z′) = Ivec
k(2m•+1)(x)z

′k(2m•+1), (4.340)

Isp

(m•+ 1
2
,0,1)

(x, z, z′) = Ivec
−k(2m•+1)(x)z

−k(2m•+1). (4.341)

As we did in the UUTT theory, let us first consider the cases in which some of

the magnetic charges ma vanish. Because all four vertices in the quiver diagram

are on an equal footing, we can assume m• = m1 = 0 without loosing generality.

This means that the first bound in (4.336) is saturated, and on the gravity side

only single-particle states with (m•, ρ, ρ′) = (0, 1, 0) or (0, 0, 1) can contribute to

the index. The multi-particle index in this case is determined with the relation
∑

ρ,ρ′
I

mp(+)

( ρ+ρ′
2
,ρ,ρ′)

(x, z, z′)tρt′ρ
′

= exp

(∑
n≥1

1

n

[
Isp
(1/2,1,0)(x

n, zn, z′n)tn + Isp
(1/2,0,1)(x

n, zn, z′n)t′n
])

.(4.342)
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By using the identity (4.279), we obtain

I
mp(+)

( ρ+ρ′
2
,ρ,ρ′)

=

(
ρ∏
i=1

x2(xz′)k

1− x4i

)(
ρ′∏

i′=1

x2(xz−1)k

1− x4i′

)
. (4.343)

For k = 1, . . . , 5 and small ρ and ρ′, we confirmed that this multi-particle index

is reproduced as the gauge theory index

I
(+)
{0,0,1,1} = I

(+)
{·,·, , }

= I
mp(+)
(1/2,0,1) +O(x101), (4.344)

I
(+)
{0,0,2,2} = I

(+)
{·,·, , } + I

(+)
{·,·, , } + I

(+)
{·,·, , } + I

(+)
{·,·, , }

= I
mp(+)
(1,0,2) +O(x31), (4.345)

I
(+)
{0,0,3,3} = +I

(+)
{·,·, , } + I

(+)
{·,·, , } + I

(+)
{·,·, , } + I

(+)
{·,·, , } + I

(+)
{·,·, , }

+I
(+)
{·,·, , } + I

(+)
{·,·, , } + I

(+)
{·,·, , } + I

(+)
{·,·, , }

= I
mp(+)
(3/2,0,3) +O(x11), (4.346)

I
(+)
{0,1,1,0} = I

(+)
{·, , ,·}

= I
mp(+)
(1/2,1,0) +O(x101), (4.347)

I
(+)
{0,2,2,0} = I

(+)
{·, , ,·} + I

(+)
{·, , ,·} + I

(+)
{·, , ,·} + I

(+)
{·, , ,·}

= I
mp(+)
(1,2,0) +O(x31), (4.348)

I
(+)
{0,3,3,0} = I

(+)
{·, , ,·} + I

(+)
{·, , ,·} + I

(+)
{·, , ,·} + I

(+)
{·, , ,·} + I

(+)
{·, , ,·}

+I
(+)
{·, , ,·} + I

(+)
{·, , ,·} + I

(+)
{·, , ,·} + I

(+)
{·, , ,·}

= I
mp(+)
(3/2,3,0) +O(x11), (4.349)

I
(+)
{0,1,2,1} = I

(+)
{·, , , } + I

(+)
{·, , , }

= I
mp(+)
(1,1,1) +O(x41), (4.350)

I
(+)
{0,2,3,1} = I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , }

= I
mp(+)
(3/2,2,1) +O(x21), (4.351)

I
(+)
{0,1,3,2} = I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , } + I

(+)
{·, , , }

= I
mp(+)
(3/2,1,2) +O(x21). (4.352)

We also check in some sectors with magnetic charges without vanishing com-

ponents the gauge theory index correctly reproduces the corresponding multi-
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particle index for k = 1, . . . , 5.

I
(+)
{1,1,1,1} = I

(+)
{ , , , }

= I
mp(+)
(1,0,0) +O(x101), (4.353)

I
(+)
{1,2,2,1} = I

(+)
{ , , , } + I

(+)
{ , , , } + I

(+)
{ , , , } + I

(+)
{ , , , }

= I
mp(+)
(3/2,1,0) +O(x31), (4.354)

I
(+)
{1,1,2,2} = I

(+)
{ , , , } + I

(+)
{ , , , } + I

(+)
{ , , , , } + I

(+)
{ , , , }

= I
mp(+)
(3/2,0,1) +O(x31), (4.355)

where

I
mp(+)
(1,0,0) = Isp

(1,0,0) + Isp
(1/2,−1,0)I

sp
(1/2,1,0) + Isp

(1/2,0,−1)I
sp
(1/2,0,1), (4.356)

I
mp(+)
(3/2,1,0) = Isp

(3/2,1,0) + Isp
(1,0,0)I

sp
(1/2,1,0) + Isp

(1/2,1,0)I
sp
(1/2,0,1)I

sp
(1/2,0,−1)

+

(
1

2
(Isp

(1/2,1,0))
2 +

1

2
Isp
(1/2,1,0)(·2)

)
Isp
(1/2,−1,0), (4.357)

I
mp(+)
(3/2,0,1) = Isp

(3/2,0,1) + Isp
(1,0,0)I

sp
(1/2,0,1) + Isp

(1/2,0,1)I
sp
(1/2,1,0)I

sp
(1/2,−1,0)

+

(
1

2
(Isp

(1/2,0,1))
2 +

1

2
Isp
(1/2,0,1)(·2)

)
Isp
(1/2,0,−1). (4.358)





Chapter 5

Fractional M2-branes and ranks
of gauge groups

The richness of the class is also reflected in the dual geometry.

5.1 Type IIB brane analysis

In this chapter, the gauge group is both unitary or special unitary group. Let us

perform a certain classification of the N = 4 Chern-Simons theories only by their

ranks, which means that the other parameters of a equivalent class are fixed . To

do such a classification, it is helpful to use the type IIB brane system given in

§2.3. In this setup, let us move a five-brane, say i-th NS5-brane, in the positive

direction along S1 continuously until it comes back to the original position. Let

us call this process one i-th NS5 movement. It is evident that the parameter

p, q, k, sI are fixed under this movement. However, ranks of gauge groups are

changed because the D3-brane creation occurs when an NS5-brane gets across an

(1, k)5-brane. This is called the Hanany-Witten effect [61]. When the NS5-brane

passes through an (1, k)5-brane, k D3-branes are created after the cross. See also

Figure 5.1.

Figure 5.1: An example of D3-brane creation process. (a) An initial setup con-
sisting of an NS5-brane and a (1, k)-fivebrane. (b) (1, k)-brane is moved on the
other side of the NS5-brane. k D3-branes are created.

For simplicity, let us study the k = 1 case, which is constituted by D3, NS5-,

99
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and (1, 1) 5-branes. The set of these three kinds of branes is equivalent to the set

D3, NS5, and D5-branes up to a certain SL(2,Z) duality transformation. Thus

we use the latter set of branes. The directions of these branes are shown in Table

2.3.

Let us define nI as the number of D3-branes emanating from the I-th five-

brane. By definition NI and nI are related by

nI = NL(I) −NR(I). (5.1)

Because nI are invariant under an overall shift Na → Na + c, (c ∈ Z), we cannot

uniquely determine Na from nI . This degree of freedom represents integral D3-

branes wrapping around the whole S1. We focus only on the fractional brane

charges and use nI to represent D3-brane distributions.

With a fixed ordering, a D3-brane distribution is specified by a vector

(n1, n2, . . . , np|n1′ , n2′ , . . . , nq′). (5.2)

We call this vector “charge vector.” By definition, the components of a charge

vector must satisfy the constraint

p∑
i=1

ni +

q′∑

i′=1′
ni′ = 0. (5.3)

The set of charge vectors, whose components are constrained by (5.3), forms the

group

Γ = Zp+q−1. (5.4)

We should not regard the group Γ as the group characterizing the conserved

charge of fractional D3-branes because D3-brane distributions corresponding to

different elements of Γ may be continuously deformed to one another. We should

regard charges of such brane configurations as the same.

Under one i-th NS5-movement, the charge vector changes by

vi = (0, . . . ,−q, . . . , 0|1, . . . , 1) = −qei +
q′∑

j′=1′
ej′ ∈ Γ, (5.5)

where ei (ej′) is the unit vectors whose i-th (j′-th) component is 1. Note that ei

and ej′ themselves are not elements of Γ because they do not satisfy the constraint

(5.3). Similarly, under one i′-th D5-movement, the charge vector changes by

wi′ = (1, . . . , 1|0, . . . ,−p, . . . , 0) =

p∑
j=1

ej − pei′ ∈ Γ. (5.6)
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When we identify configurations deformed by continuous deformation to one an-

other, these vectors should be identified with 0. Therefore, the group describing

the charge of fractional branes is the quotient group Γ/H whereH is the subgroup

of Γ generated by the vectors vi and wj′ . This is given by

Γ/H = (Zq−1
p ⊕ Zp−1

q ⊕ Zpq)/(Zp ⊕ Zq). (5.7)

In the rest of this section, we explain how this expression of the quotient group

is obtained.

As we mentioned above, the p + q vectors ei and ei′ are not elements of Γ.

Let us choose p + q − 1 linearly independent basis in Γ. We take the following

vectors.

fi = ei − ep (i = 1, . . . , p− 1), (5.8)

gi′ = ei′ − eq′ (i′ = 1′, . . . , (q − 1)′), (5.9)

h = ep − eq′ . (5.10)

We can easily check that these vectors span Γ. In order to obtain (5.7), we define

the subgroup H ′ ⊂ H generated by the following elements in H.

vp − vi = qfi (i = 1, . . . , p− 1), (5.11)

wq′ −wi′ = pgi′ (i′ = 1′, . . . , (q − 1)′), (5.12)

−pvp + qwq′ −
q′∑

j′=1′
wj′ = pqh. (5.13)

We can easily show that

Γ/H ′ = Zq−1
p ⊕ Zp−1

q ⊕ Zpq, H/H ′ = Zp ⊕ Zq, (5.14)

and the relation Γ/H = (Γ/H ′)/(H/H ′) gives (5.7).

We can easily generalize the analysis in the case of k = 1 to that of k ≥ 2. Let

us again consider fractional D3-brane charges in the type IIB brane setup. We

can realize the Chern-Simons theory at level k by replacing D5-branes by (1, k)

fivebranes. We can again represent distributions of D3-branes by charge vectors

(5.2) with their components constrained by (5.3). In this case, the vectors (5.5)

and (5.6) are multiplied by the extra factor k. Namely, we should replace the

subgroup H by kH which is generated by kvi and kwi′ , and the quotient group

becomes

Γ/(kH) = (Γ/kH ′)/(H/H ′) = (Zp−1
kq ⊕ Zq−1

kp ⊕ Zkpq)/(Zp ⊕ Zq). (5.15)
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5.2 Third homology

In this section, we derive the H3(S
7
p,q,k) and show that this fractional brane charge

(5.15) precisely agree with the homology H3(S
7
p,q,k) obtained by the geometric

side.

For simplicity, we first consider the case of k = 1. Let us remind that S7
p,q,1

can be represented as a T2 fibration over B = S5. This fibration is defined in

the following way. By introducing the real coordinate 0 ≤ t ≤ 1 by (3.45), the

manifold S7
p,q,1 is represented as Lp × Lq fibration over the segment 0 ≤ t ≤ 1.

Each of Lens spaces Lp and Lq can be represented as S1 fibration over 2-sphere.

For Lp, which is rotated by the SU(2)U R-symmetry, we refer to the base manifold

and the fiber as S2
A and α-cycle, respectively. We also define S2

B and β-cycle for

the other Lens space Lq, which is rotated by SU(2)T . (Figure 5.2) Due to the

Figure 5.2: The orbifold is represented as a fibration over the segment 0 ≤ t ≤ 1.

Zp×Zq orbifolding, the periods of α and β-cycles ara 2π/p and 2π/q, respectively.

If we combine S2
A, S2

B, and the segment parameterized by t, they form a 5-sphere

B = S5. We can regard the orbifold S7
p,q,1 as a T2 fibration over B.

At t = 0, which defines S2 ⊂ B, the Lens space Lp shrinks and so does the

α-cycle. Similarly, on S2 ⊂ B with t = 1 the β-cycle shrinks. These S2 link to

each other in B. By blowing up the singularities, these S2s split into p and q

S2s, respectively.1 We call them xi (i = 1, . . . , p) and yi′ (i′ = 1′, . . . , q′). (Figure

5.3) We can follow the IIB/M duality to see that each of them corresponds to

the fivebrane with the same index.

1We blow-up the singularities only to make cycles well-defined. When we compute the
volume of five-cycles later, we consider the orbifold limit.
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Figure 5.3: The three segments connecting cycles are examples of three types of
three-cycles in the orbifold.

3-cycles in S7
p,q,1 can be represented as T2 fibrations over segments in the

base manifold B = S5. There are three types of segments connecting two loci of

degenerate fiber. (Figure 5.3) We denote a segment connecting a point in xi and

a point in xj by [xi, xj]. We similarly define [yi′ , yj′ ] and [xi, yj′ ]. We also adopt

the notation

Sα, Sβ, Sαβ ⊂ S7
p,q,1 (5.16)

for the manifold obtained by combining a subset S ⊂ B and fibers indicated as

superscripts. Sαβ is the T2 fibration over S. Sαβ can be regarded as β-fibration

over a certain base manifold, which is isomorphic to Sα. Sα is a global section in

this fiber bundle. Therefore, Sα can be defined only when β-cycle fibration over

S has a global section. Similarly, we can define Sβ when α-cycle fiber has trivial

topology over S. With these notations, we can represent 3-cycles generating H3

as

[xi, xj]
αβ, [yi′ , yj′ ]

αβ, [xi, yj′ ]
αβ. (5.17)

Because one of α and β cycles shrinks at the endpoints of the segments, these

are closed 3-cycles. The topology of [xi, xj]
αβ and [yi′ , yj′ ]

αβ is S2 × S1, and that

of [xi, yj′ ]
αβ is S3.

These 3-cycles are not linearly independent. There are combinations of cycles

which can be unwrapped. Let us consider

p∑
i=1

[xi, yj′ ]
αβ. (5.18)

This union of 3-cycles can be unwrapped in S7
p,q,1. This can be shown by giving

a 4-chain whose boundary is (5.18). Such an “unwrapping chain” is constructed

in the following way. Because π2(S
5) = 0, there is a three-dimensional disk

D3 ⊂ B whose boundary is yj′ . (The gray disk in Figure 5.4) We call this Yj′ .

(We also define Xi in the same way for xi.) This disk intersects once with every

xi (i = 1, . . . , p). Let Ȳj′ be the subset of Yj′ obtained by removing segments
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Figure 5.4: The β-cycle fibration over the gray disk with the segments removed
is an example of unwrapping four-chains.

connecting these intersecting points and yj′ (the segments in Fig 5.4) from the

disk.

Ȳj′ = Yj′\
p∑
i=1

[xi, yj′ ]. (5.19)

Because Ȳj′ is contractible, we can define Ȳ β
j′ . We can see that the boundary of

the manifold Ȳ β
j′ is

∂Ȳ β
j′ =

p∑
i=1

[xi, yj′ ]
αβ. (5.20)

Before we explain this relation, let us first consider Hopf fibration of S3 as a

simple example. By the Hopf fibration S3 is described as an S1 fibration over S2.

Let (θ, φ) be the polar coordinates of the base S2. The first Chern class of this

fiber bundle is 1, so that we cannot globally define the coordinate of the fiber.

We cover the base S2 by two patches, north patch S2 \S and south patch S2 \N ,

where S and N are the south pole (θ = π) and the north pole (θ = 0). Let

0 ≤ ψN < 2π and 0 ≤ ψS < 0 be the fiber coordinates defined in the north and

the south patch, respectively. These are paseted by the relation ψN = ψS + φ.

Due to the non-vanishing first Chern class, we cannot take a global section in this

fiber bundle. In order to define sections, we need to remove at least one point

(0-cycle) from the base S2. Let us remove the north pole. Then, we can cover

the remaining part of the base by the south patch S2 \ N . We can define, for

example, the section

0 < θ ≤ π, 0 ≤ φ < 2π, ψS = 0. (5.21)

We denote this section as ZN . At the boundary θ = 0 of the south patch S2 \N ,

this section wrap the fiber S1:

∂ZN = Nη, (5.22)

where η means the fiber S1. This becomes obvious if we use the coordinate ψN ,

which is suitable for description around the north pole. The boundary is given



5.2. THIRD HOMOLOGY 105

by

θ = 0, 0 ≤ φ < 2π, ψN = φ. (5.23)

This winds once along the fiber η. This result makes sense from the fact that the

homology H1(S
3) vanishes. Any 1-cycle on S3 can be unwrapped and represented

as the boundary of a 2-chain.

Let us return to the case of the T2 fibration over Yj′ . In the derivation

of (5.20) the β-cycle is simply a spectator, and thus we first neglect it. For

simplicity, we consider the case with p = 1. Then, we have only one xi. Let

us define the standard polar coordinates (r, θ, φ) in Yj′ so that r = 1 and r = 0

correspond to yj′ and the intersection with xi, respectively. Each shell defined

by fixed 0 < r < 1 is S2 ⊂ Yj′ . This sphere is denoted by S2
A in Figure 5.2,

and the α-cycle fibration over S2
A gives Hopf fibration of S3. The argument in

the last paragraph can be applied for each S3. We choose the intersection of S2
A

and the segment [xi, yj′ ] as the noth pole N on S2
A. For each 0 ≤ r ≤ 1 we have

Nα, the α-cycle fibration over the north pole N , as the boundary of S2
A\N . By

collecting these for every 0 ≤ r ≤ 1, we obtain two-dimensional [xi, yj′ ]
α as the

boundary of Ȳj′ = Yj′\[xi, yj′ ]. Precisely speaking, we also have the boundary yαj′ ,

the α-cycle fibration over yj′ , at r = 1. This part, however, does not survive if we

take the β-cycle into account because the β-cycle shrinks on yj′ . Then, we obtain

[xi, yj′ ]
αβ as the boundary of Ȳ β

j′ . For general p, each segment [xi, yj′ ] generates

a boundary 3-cycle and we obtain the relation (5.20). By exchanging the role of

Xi and Yj′ , we can also show

∂X̄α
i =

q′∑

j′=1

[xi, yj′ ]
αβ. (5.24)

From (5.20) and (5.24), we obtain the homology relation

p∑
i=1

[xi, yj′ ]
αβ =

q′∑

j′=1′
[xi, yj′ ]

αβ = 0. (5.25)

To clarify the relation between the IIB picture and the M-theory picture, we

define formal basis xi and yj′ and rewrite cycles as [xi, xj]
αβ = xi − xj and so

on. A general superposition of cycles, which is depicted as a junction in B, can

be written as a linear combination

j =

p∑
i=1

nixi +

q′∑

i′=1′
ni′yi′ , (5.26)
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where the coefficients must satisfy the constraint (5.3). We have one to one cor-

respondence between 3-cycles in S7
p,q,1 and D3-brane distributions in IIB picture

by simply identifying the coefficients in (5.26) to the components of the charge

vector (5.2). Via this isomorphism the boundaries (5.20) and (5.24) correspond

to wj′ and vi, the generators of H, and the relation (5.25) defines the homology

H3 as the same coset group Γ/H in (5.7).

Let us construct the homology H3(S
7
p,q,k,Z) more explicitly. When the level

k is greater than 1, we have additional Zk factor in the orbifold group. As is

shown in (2.56), the generator of Zk shifts both α and β cycle by 1/k of their

periods. Because two cycles nowhere shrink at the same time, this action does

not generate fixed points. The Zk identification in the T2 fiber generates new

cycles, which are not integral linear combinations of α and β. They are multiples

of

γ =
1

k
(α− β). (5.27)

As a result, the 2-cycle defined as the product of α and β is not the fundamental

T2 but its multiple kT2. Thus the cycles (5.17) are decomposed into k copies of

the following elementary cycles.

[xi, xj]
αγ, [yi′ , yj′ ]

αγ, [xi, yj′ ]
αγ. (5.28)

Due to this fact, the boundary of unwrapping 4-chains (5.24) and (5.20) are

replaced by

∂X̄α
i = k(−qxi +

q′∑

j′=1′
yj′), ∂Ȳ β

i′ = k(

p∑
j=1

xj − pyi′), (5.29)

where we defined the formal basis xi and yi′ by [xi, xj]
αγ = xi − xj and so on.

These precisely correspond to the vectors kvi and kwi′ , and thus the homology

H3 becomes isomorphic to the quotient Γ/kH in (5.15).

5.3 Three-form torsion

In this subsection, we relate the fractional brane charge and integrals of the 3-

form field on 3-cycles. Let us consider a process in which the number of the

fractional branes changes. The fractional brane charge Q ∈ H3 affects the 3-form

field C3 and measured by the integrals over 3 cycles ζ

∮

ζ

C3, ζ ∈ H3. (5.30)
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We define the period integral at r = r0 between the horizon r = 0 and AdS

boundary r = ∞. To change the fractional brane charge by ∆Q, we add an

M5-brane wrapped on a 3-cycle ∆Q ∈ H3 at AdS boundary, and move it to the

horizon. When the M5-brane pass through r = r0, the period integrals changes

by

∆

∮

ζ

C3 = 2π〈ζ,∆Q〉, (5.31)

where 〈∗, ∗〉 is a map H3 × H3 → U(1), so called the torsion linking form, or,

simply, the linking number.

The linking number is defined as follows. Let s be the order of ζ. Namely,

s is the smallest positive integer such that sζ is homologically trivial. Such an

integer always exists because H3 is pure torsion. There exists a 4-chain D such

that

sζ = ∂D. (5.32)

We define the linking number 〈ζ, η〉 of two 3-cycles ζ and η by

〈ζ, η〉 =
1

s
〈〈D, η〉〉. (5.33)

where 〈〈D, η〉〉 is the intersection number of the 4-chain C and 3-cycle η. Because

this number jumps by integers by continuous deformations, only the fractional

part of the linking number is a topological invariant.

If we move an M5-brane wrapped on the 3-cycle ∆Q from AdS boundary to

the horizon, when it passes through r = r0, the M5-brane intersect with the 4-

chain D at 〈〈D, η〉〉 points. In this process, the four-form flux G4 passing through

D, including the contribution of Dirac’s string-like objects, changes by 2π〈〈D, ζ〉〉.
By using Stokes’ theorem we obtain the relation (5.31).

For the manifold S7
p,q,k, following the definition of the linking number, we can

easily obtain

k〈vi, j〉 = ni, k〈wi′ , j〉 = ni′ , (5.34)

for a general 3-cycle j in (5.26). The linking numbers among the basis are

〈xi,xj〉 = − 1

kq
δij, 〈yi′ ,yj′〉 = − 1

kp
δi′j′ , 〈xi,yj′〉 = − 1

2kpq
. (5.35)

Due to the constraint (5.3), the linking number among the basis is not unique.

For example, a constant shift of all the linking numbers in (5.35) does not affect

the linking numbers for 3-cycles which are linear combination of the basis with

the coefficient constrained by (5.3).
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By “integrating” the relation (5.31) and using (5.34), we obtain

ni − n0
i =

k

2π

∮

vi

C3, ni′ − n0
i′ =

k

2π

∮

wi′
C3, (5.36)

where n0
i and n0

i′ are integration constants which cannot be determined from

(5.31).

Although gauge transformations can change the period integrals of C3, the

relation (5.36) determines a element of Γ/kH in a gauge invariant way if we know

n0
i and n0

i′ because large gauge transformation change the charge vector by an

element of kH.

An important fact is that the constants ni and ni′ depend on the ordering,

the order of fivebranes. The right hand side of the relations (5.36) are defined on

M-theory side, and is independent of the ordering, while ni and ni′ on the left

hand side change by multiples of k when we change the order of fivebranes. This

means that n0
i and n0

i′ depends on the ordering, and we cannot simply set them

to be zero.

To obtain some information about the constants, we use branes correspond-

ing to baryonic operators. Remember that in the IIB setup baryonic operators

correspond to D3-brane disks ending on fivebranes, and when nI 6= 0, they are

accompanied by nI open strings.

A similar phenomenon occurs on the M-theory side. If there is non-trivial

background C-field M5-branes wrapped on five-cycles are accompanied by M2-

branes attached on their worldvolume, and by identifying these M2-branes to

strings in the IIB setup, we obtain relations between nI and background C-field.

Let us consider the flux conservation on M5-branes and how it relates the

background C-field and M2-branes attached on it. The two-form field b2 on

M5-branes couples to the field strength G4 in the bulk by the coupling

S =
1

2π

∫

M5

b2 ∧G4. (5.37)

This implies that the flux behaves as charge on M5-branes. On the worldvolume

of an M5-brane wrapped on a five-cycle the total charge coupled by b2 must cancel

due to the flux conservation. This implies that, the cohomology class of the total

charge [
1

2π
G4 − δ(∂M2)

]
∈ H4(ΩI ,Z) (5.38)

must be trivial. δ(∂M2) is the four-form delta function with support on the

boundaries of M2-branes. By the Poincare duality, this is equivalent to

[g] = [∂M2] ∈ H1(ΩI ,Z), (5.39)
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where g is the one-cycle Poincare dual to the flux (2π)−1G4. The homologies

Hi(Ωi,Z) in the five-cycle are given by

H0 = Z, H1 = Zk, H2 = Zq−1, H3 = Zq−1 ⊕ Zk, H4 = 0, H5 = Z.

(5.40)

The homologies in Ωi′ are obtained by replacing q in (5.40) by p. Because

H1(ΩI ,Z) = Zk is pure torsion we can rewrite (5.39) in terms of the linking

form H3 ×H1 → U(1) as

1

2π

∮

ζ

C3 = 〈ζ, ∂M2〉, (5.41)

where ζ is the generator of the torsion subgroup of H3(ΩI ,Z). It is ζ = vi for Ωi

and ζ = wi′ for Ωi′ . If we identify nI strings ending on a D3-brane disk with a

M2-brane wrapped on nIγ where γ is the generator of H1(S
7
p,q,k,Z) = H1(ΩI ,Z),

(5.41) can be rewritten as

ni =
k

2π

∮

vi

C3, ni′ =
k

2π

∮

wi′
C3 mod k. (5.42)

This means that

n0
i = n0

i′ = 0 mod k. (5.43)

This fixes only the ordering independent part of n0
i and n0

i′ . Although in the

p = q = 1 case this reproduces the result in [58] for ABJM model, this is not

sufficient to establish the relation between the fractional brane charge and the

3-form torsion for p+ q ≥ 3. We leave this problem for future works.





Chapter 6

Wrapped M5-branes and
baryonic operators

Baryons are also holographically realized in the M-theory dual.

6.1 Baryonic operators

In this chapter, the gauge group is GSU with the same rank Na = N . Then, as in

the case four-dimensional quiver gauge theories, we can construct the following

GSU invariant operators

BA1A2···AN
i = εi1···iN ε

j1···jN qA1
i

i1
j1
· · · qAN

i
iN
jN
, (6.1)

B
A′1A

′
2···A′N

i′ = εi1···iN ε
j1···jN qA

′
1

i′
i1
j1
· · · qA′Ni′ iN

jN
. (6.2)

These operators are charged under the baryonic symmetry GB. Therefore, they

cannot be decomposed into mesonic operators, which are GB neutral. We call

them barionic operators. These operators have several remarkable properties.

1. Decomposability into mesons.

Products of baryonic operators are neutral by combining diagonal monopole

operators. For example,
p∏
i=1

Bi,

q′∏

i′=1

Bi′ (6.3)

carry the same baryonic charge as eiNã and e−iNã, respectively. Multiplying

the inverses of them, we can construct neutral operators with respect to

the baryonic symmetries. This strongly suggests that such operators can

be decomposed to the mesonic operators. For k = 1 case

e−iNã
p∏
i=1

Bi ∼ bN , eiNã
q′∏

i′=1

Bi′ ∼ b̃N . (6.4)

111
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For general k case

e−iNã
p∏
i=1

Bk
i ∼ bN , eiNã

q′∏

i′=1

Bk
i′ ∼ b̃N , (6.5)

p∏
i=1

Bk
i

q′∏

i′=1

Bk
i′ ∼

(
Tr(

p∏
i=1

qi

q′∏

i′=1′
qi′)

)N

. (6.6)

These decomposability suggests that the independent number of baryonic

operators is p+ q − 2.

2. Degeneracy.

Baryonic operators (6.1) and (6.2) have N SU(2)R indices and N SU(2)′R
indices, respectively. In other words, each baryonic operator (6.1) or (6.2)

forms the symmetric representation of SU(2)R or SU(2)′R, respectively.

This suggests that the degeneracy of each baryonic operators is N + 1.

3. Conformal dimension.

It can be easily seen that the conformal dimension of the elementary fields

q is 1
2

from the N = 4 Charn-Simons lagrangean (2.14). Therefore, that of

the baryonic operators is given by

D =
N

2
. (6.7)

We can check that they are BPS operators. This is because they satisfy

∆ = D − (j3 + R) = 0. Therefore, if there exist their counterparts in the M-

theory dual, they are expected to reproduce these properties exactly. We confirm

that the counterparts are M5-branes wrapped on 5-cycles.

6.2 Five-cycles

First, let us construct five-cycles. If we represent S7
p,q,k as the T2 fibration over

B = S5, the five-cycles can be written as the T2 fibrations over three-disks. For

k = 1 case,

Ωi = Xαβ
i , Ωi′ = Y αβ

i′ . (6.8)

For k ≥ 2 case,

Ωi = Xαγ
i , Ωi′ = Y αγ

i′ . (6.9)

The notation is defined in §5.2. These generate the homology H5(S
7
p,q,1,Z). A

natural guess is that these five-cycles are dual to the baryonic operators in the

Chern-Simons theory:

Ωi ↔ Bα1α2···αN
i , Ωi′ ↔ Bα̇1α̇2···α̇N

i′ . (6.10)
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We provide several evidences for this correspondence below.

1. Homology relation.

Let us start k = 1 case. It is easy to check that their independent numbers

match. The independent number of the cycles in (6.8) is given by the fifth

Betti number b5(S
7
p,q,1) = H5(S

7
p,q,1,Z) = p+q−2. This fact implies that the

decomposability of products of baryons and homology relation are related.

Indeed, the number p + q − 2 is smaller than that of naive counting of 5-

cycles by two, and there should be two relations among the cycles in (6.8).

Such homology relations are given by

p∑
i=1

Ωi =

q′∑

i′=1′
Ωi′ = 0. (6.11)

To see this, as we have done in section §5 for three-cycles, we can give these

linear combinations as the boundaries of unwrapping 6-chains. We define

a submanifold B̄ ⊂ B by

B̄ = B\
(

p∑
i=1

Xi +

q′∑

i′=1′
Yi′

)
. (6.12)

If we could draw S2 enclosing xi in B̄, the α-cycle fiber would have non-

trivial twist on the S2. However, such S2 do not exist in B̄ because we

removed the disks Xi. Thus the α-cycle fiber over B̄ has trivial topology

and we can define global sections. Similarly, thanks to the removal of Yi′ ,

the β-cycle fiber also have the trivial topology. Because there is a global

section associated with α-cycle over B̄, the manifold B̄β is well-defined, and

its boundary is

∂B̄β =

p∑
i=1

Xαβ
i . (6.13)

We also obtain

∂B̄α =

q′∑

i′=1

Y αβ
i′ . (6.14)

As a result, we obtain the relations (6.11). These homology relations are

nothing but the decomposition relations (6.4) in the gauge theory side.

Next, let us consider the relation between baryonic operators and 5-cycle

homology H5 for k ≥ 2. The p + q generators (6.9) are not linearly inde-

pendent, and we can take B̄α, B̄β, and B̄γ as unwrapping 6-chains which
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give the relation among these generators. Their boundaries are

∂B̄α =

q′∑

i′=1′
Y αβ
i′ = k

q′∑

i′=1′
Ωi′ , (6.15)

∂B̄β =

p∑
i=1

Xαβ
i = k

p∑
i=1

Ωi, (6.16)

∂B̄γ =

p∑
i=1

Xγβ
i +

q′∑

i′=1′
Y γα
i′ =

p∑
i=1

Ωi +

q′∑

i′=1′
Ωi′ . (6.17)

Namely, these linear combinations of five-cycles are in trivial element of the

homology H5. By dividing the group Zp+q generated by the p+ q basis Ωi

and Ωi′ by its subgroup Z2 generated by the above boundaries, we obtain

the H5 homology in (3.43). The first two, (6.15) and (6.16), correspond

to the product of Bi and Bi′ in (6.5), respectively They are decomposed

into N -th power of operators defined in (2.59). The third boundary (6.17)

corresponds to the product of all the p + q baryonic operators, and it can

be decomposed into trace operators as in (6.6).

2. Degeneracy.

The degeneracy of each baryonic operator N + 1 is also reproduced in

the geometry side by considering the collective motion of a wrapped M5-

brane. The collective coordinates of five-cycle Ωi are the coordinates in

the transverse direction S2
A, on which SU(2)U acts as rotation. The seven-

form flux in the background plays a role of magnetic field on S2
A and the

amount of the flux is N . Therefore, the effective theory of the collective

coordinates is the theory of a charged particle in S2
A with N unit magnetic

flux. The ground states of the particle are the N + 1 states at the lowest

Landau level [112] belonging to the spin N/2 representation of SU(2)U .

This degeneracy agrees with that of the baryonic operators Bi. In the same

way, we can explain the degeneracy of Bi′ as that of the lowest Landau level

of a charged particle in the transverse direction S2
B.

The degeneracy of baryonic operators for p+ q ≥ 3 are again reproduced in

the same way as the k = 1 case. In the case of p = q = 1 (ABJM model),

we need a special treatment because the global symmetry is enhanced to

SU(4)×U(1) and the motion of collective coordinates are treated as a point

particle in SU(4)/(SU(3)×U(1)). This is considered in [69] and the correct

multiplicity is obtained.
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3. Mass of wrapped M5-branes.

As another non-trivial check of the duality, we compare the mass of the

wrapped M5-branes and the conformal dimension of the operators. Ac-

cording to the standard AdS/CFT dictionary, the conformal dimension D

of an operator and the mass M of the corresponding object are related by

D = RAdS4M . In the case of an M5-brane wrapped on Ωi, this relation

becomes

D = RAdS4TM5R
5
S7 Vol(Ωi) =

Npq

2π3
Vol(Ωi). (6.18)

where Vol(Ωi) is the volume of the 5-cycle Ωi in S7
p,q,1 with radius 1, and

to obtain the last expression we used (3.35) with k = 1 and the M5-brane

tension TM5 = 2π/(2πlp)
6. Let us calculate the volume of the 5-cycle.

The 5-cycle Ωi, which is represented as a fiber bundle over the segment

0 ≤ t ≤ 1, is illustrated as the shaded region in Figure 6.1. The radii of two

Figure 6.1: The shaded region is a nontrivial 5-cycle Xαβ
a .

3-spheres defined by (3.45) are r1 = t1/2 and r2 = (1 − t)1/2, respectively.

The cross-section at t is S1 × S2 × S1 with their radii r1/p, r2/2, r2/q,

respectively.1 Hence the volume of the 5-cycle is

Vol(Ωi) =

∫ t=1

t=0

ds

(
2πr1
p

)
×

(
4π

(r2
2

)2
)
×

(
2πr2
q

)
=
π3

pq
, (6.19)

where ds is the line element with respect to the parameter t computed as

ds2 = dr2
1 + dr2

2 =
1

4t(1− t)
dt2. (6.20)

(The volume (6.19) is simply Vol(S5)/pq because the five-cycles considered

here are orbifolds of large S5 in S7.) We obtain the same result for 5-cycles

1It is known that when a unit S3 is represented by the S1 fibration over S2, the radii of S1

and S2 are 1 and 1/2 respectively.



116CHAPTER 6. WRAPPED M5-BRANES AND BARYONIC OPERATORS

Y αβ
i′ . By substituting this into (6.18) we obtain

D =
1

2
N, (6.21)

and this agrees with the conformal dimension of the baryonic operators

(6.1) and (6.2). (6.21) is consistent with the result of more general analysis

in [113] for generic toric tri-Sasakian manifolds.

We can also easily check that the volume of the five-cycles correctly repro-

duce the conformal dimension D = N/2 for k ≥ 2 case.

6.3 Quark-baryon transition

We can relate the relation between wrapped M5-branes and baryonic operators

more directly by using IIB/M duality. By following the duality, we can easily see

that an M5-brane wrapped on ΩI is dual to a D3-brane disk ending on fivebrane

I, and as we explain below, the D3-brane disk can be continuously deformed to

N open strings corresponding to the constituent bi-fundamental quarks. Similar

transition in different brane systems are also considered in [114, 115].

Before we explain the deformation, we comment on a relevant fact about flux

conservation on the worldvolume of a D3-brane ending on an NS5-brane. The

U(1) gauge field A on an NS5-brane electrically couples to endpoints of D-strings

on the NS5-brane. This is the case, too, for magnetic flux f = da on D3-branes,

which can be regarded as D-strings dissolved in the D3-brane worldvolume. This

coupling is described as the action

S =
1

2π

∮

∂D3

A ∧ f. (6.22)

By integrating by part, this is rewritten as

S =
1

2π

∮

∂D3

a ∧ F, (6.23)

and this implies that the flux F = dA on the NS5-brane behaves as an electric

charge on the boundary of the D3-brane coupled by the gauge field a. If the D3-

brane worldvolume is compact, the electric flux conservation requires the total

electric charge vanish. If the integral of flux F over the D3-brane boundary is

2πN , we need N strings ending on the D3-brane worldvolume to compensate the

boundary charge. This is also the case for a D3-brane ending on a (1, k) fivebrane.

Bearing this fact in mind, we can show that N open strings and a D3-brane

disk can be continuously deformed to each other. In the following we treat three

sets of D3-branes, and for distinction we name them as follows:
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• X – the coincident N D3-branes between fivebranes I and I − 1.

• Y – the coincident N D3-branes between fivebranes I and I + 1.

• D – a D3-brane disk whose boundary is S2 on fivebrane I.

We here assume that NL(I) = NR(I) = N . Let us start from a D3-brane disk

D whose boundary is S2 on the fivebrane I enclosing the both boundaries of X

and Y . ((a) in Figure 6.2) Although these boundaries carry magnetic charges

Figure 6.2: Quark-baryon transition

coupled by A, their charges cancel each other, and the net flux passing through

the boundary ∂D is zero. There are no open strings ending on D.

We move the disk so that ∂Y , the boundary of Y , gets out of ∂D. When

∂Y passes through ∂D, the flux through ∂D jumps by N , and N open strings

stretched between Y and D are generated so that the total electric charge on the

disk cancels. ((b) in Figure 6.2)

If we keep moving the disk and ∂X also gets out of the boundary ∂D, the flux

through the boundary jumps again by−N , and this timeN open strings stretched

between D and X are generated. Two sets of N strings can be connected to get

off from D, and we obtain N open strings connecting X and Y . ((c) in Figure

6.2) The disk can annihilate without any obstructions.

If nI = NL(I)−NR(I) 6= 0, the D3-brane disk D in Figure 6.2 (a) is accompanied

by nI strings attached on it. This corresponds to the fact that we cannot define

such SU(NL(I)) × SU(NR(a)) invariant operators as (6.1) and (6.2) due to the

mismatch of the number of indices. The nI open strings attached on the D3-brane

disk corresponds to nI fundamental or −nI anti-fundamental indices which are

not contracted.





Chapter 7

Monopole and baryonic operators

Monopoles and baryons are dual to each other in the M-theory dual.

In this chapter, we discuss the relation between monopole operators and bary-

onic operators. In §4, we consider that the gauge group is the product of unitary

groups. As a result, we can construct gauge invariant monopole operators. In-

stead, baryonic operators are all gauge variant. On the other hand, in §6 we take

the gauge group as the product of special unitary groups to construct gauge in-

variant baryonic operators. In the result, monopole operators are gauge variant.

In other words, we cannot construct both a monopole operator and a baryonic

one for each gauge group in the gauge invariant way. This fact suggests that all

the operators corresponding to wrapped M-branes cannot be gauge invariant.

Let us discuss it from the dual geometry side. For this purpose, It is helpful

to see the reason why symmetry groups which act on wrapped branes are usually

regarded as global symmetries. Consider AdSd+1 with the metric

ds2 =
R2

z2
((dxµ)2 + dz2), µ = 1, . . . , d, (7.1)

and let Aν(x
µ, z) be a U(1) gauge field coupling to wrapped branes. We follow

[116] and consider the Euclidian AdS space. z is the radial coordinate such that

AdS boundary is at z = 0. Let us assume the asymptotic behavior of the vector

field as

Aν ∝ zD. (7.2)

For the convergence of the Euclidian action, D must satisfy the inequality

d

2
− 2 < D. (7.3)

With the equation of motion d ∗ dA = 0 we obtain the asymptotic behavior of

the gauge field

Aν(x
µ, z) = aν(x

µ) + zd−2bν(x
µ). (7.4)
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On AdS boundary we need to impose boundary condition which fixes one of

aν(x
µ) and bν(x

µ). When d ≥ 4, only the second term in (7.4) is allowed by

(7.3) and the boundary condition aν(x
µ) = 0 must be imposed. Then the gauge

field asymptotically vanishes near the boundary, and this is the reason why the

symmetry is global in the boundary CFT.

On the other hand, when d = 3, both terms in (7.4) satisfy the inequality (7.3),

and we can choose any one of aν(x
µ) = 0 (Dirichlet) and bν(x

µ) = 0 (Neumann) as

the boundary condition. Indeed, these two boundary conditions first appeared in

[117]. They are used in [118] to construct a pair of Chern-Simons theories which

are “S-dual” to each other. Let us take the Neumann boundary condition. In

this case, the boundary value of the gauge field aν(x
µ) = Aν(x

µ, z = 0) does not

vanish. The gauge field is dynamical in the sense that it is path integrated. Thus

we can regard this as a gauge field in the boundary CFT. The charged objects

coupled by Aν should be also charged in the boundary CFT. Because the Dirichlet

and Neumann boundary conditions are exchanged by the duality transformation

of the gauge field, both kinds of operators corresponding to electric and magnetic

particles in AdS4 cannot be gauge invariant.

In the M-theory dual, this S-duality transformation is nothing but electro-

magnetic duality, which exchanges M2-branes and M5-branes. In a case of taking

the gauge group as the unitary groups, the charged objects coupled by the dynam-

ical gauge field is realized by wrapped M5-branes. The gauge fields AI = AIνdx
ν

originate in 6-form potential. As the gauge fields ÃI in (4.251), they appear as

the coefficient fields of the harmonic expansion of 6-form field:

C6 =

p+q−2∑
I=1

ω̃I ∧ AI , (7.5)

where ω̃I are the harmonic 5-forms in H5(S7
p,q,k,Z) = Zp+q−2. Since C3, ωI and

C6, ω̃I are dual to each other, respectively, the pair of the gauge fields AI and ÃI

are exchanged under the duality transformation. This means that the Dirichlet

and Neumann boundary conditions are exchanged under the duality transforma-

tion. Therefore, it is impossible to impose the Dirichlet boundary condition on

all of them. Consequently, some of wrapped branes correspond to gauge vari-

ant operators. Although it may be possible to take some S-dual picture in which

wrapped M5-branes correspond to gauge invariant operators, by taking the gauge

group as special unitary groups, then we have to relate wrapped M2-branes to

gauge variant operators.



Chapter 8

Summary and discussion

In this thesis, we investigated aspects of N = 4 Chern-Simons theories and their

gravity duals. We summarize our results and discuss future problems.

In Chapter 2, we made a review on aspects of N = 4 Chern-Simons theories.

Compared to the ABJM model, this model has more gauge groups or nodes

as a quiver gauge theory. As a result, there are more monopole operators and

baryonic operators. We have seen that they produce rich phenomena in N = 4

Chern-Simons theories.

It is known that there are several ways to generalize quiver gauge theories.

Another is so-called brane tilings [53, 54, 31]. In such models, a simple pre-

scription to establish the relation between toric data of Calabi-Yau 4-folds and

Chern-Simons theories are investigated [55, 56, 41]. It may be interesting to

extend our analysis to such a large class of theories.

In general, dual CFTs of toric Calabi-Yau 4-folds cannot be described by

brane tilings. In such a case, brane crystals [115, 119, 120] are expected to play

an important role. The relation between brane crystals and dual CFT are not

fully understood. We expect that such models may be helpful to obtain some

information about dual CFT.

In Chapter 3, we investigated gravity duals of N = 4 Chern-Simons theories.

As in the four-dimensional case, AdS/CFT duality is also a powerful tool to study

strongly-coupled gauge theories in three dimension. It has been more than ten

years that AdS/CFT duality has been discovered, but it does not show any sign

of slowing down.

In Chapter 4, we confirmed the agreement between a gauge theory index and

an AdS4 multi-particle index. This result strongly suggests that the monopole

operators in the twisted sector correspond to wrapped M2-branes on 2-cycles in

the internal space.
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In the dual of N = 4 models, such 2-cycles come from orbifold singularities,

so they are vanishing cycles. This fact suggests that wrapped M2-branes on

them preserve supersymmetries. Indeed, we described the collective motion of

such wrapped M2-branes by supersymmetric vector-multiplets. The KK modes of

them, which form 1/2 BPS OSp(4|4) multiplets, correctly reproduce the spectrum

of twisted BPS monopole operators in the gauge theory side.

Let us remark that the exact agreement by using N = 4 models cannot be

expected in more generic Chern-Simons theories. This is because a 2-cycle in a

generic N = 2 model has its volume and wrapped M2-branes do not preserve

a supersymmetry any more [121]. In a general Sasaki-Einstein manifold, such

wrapped M2-branes are investigated [122]. They construct supergravity solutions

with taking account of the back-reaction of wrapped M2-branes, which we ignored

in this analysis. The solutions do not preserve any supersymmetry.

This situation induces an interesting phenomenon. According to the volume

of 2-cycles, wrapped M2-branes get their mass. It behaves the order of N1/2.

From AdS/CFT correspondence, a confornal dimension of a twisted monopole

operator can be expected to behave in the same way in such a generic model.

To address such an issue, the localization technique will be also an important

skill. As in the computation of indices, the technique enables us to reduce calcu-

lation in the strongly coupled region to saddle point method. Indeed, partition

functions in several models have been also calculated by using localization tech-

nique [123, 124, 125]. As a result, it has been shown that the free energy behaves

as the order of N3/2, which agrees with that of entropy of membranes in D = 11

supergravity. Due to success of the computation of exact partition functions, the

exact R-symmetry can be also addressed by extremizing them [126, 127].

It is important to understand the spectrum of more general Chern-Simons

theories such as N = 2 theories to understand dynamics of Chern-Simons the-

ories and establish the dual M2-brane description. Even though it is in general

difficult to compute the spectrum on the gauge theory side due to large quantum

corrections, it seems possible to extend the analysis of N = 4 Chern-Simons the-

ories to N = 2 theories describing M2-branes in orbifold backgrounds. In such a

case, the internal space of the dual geometry in general includes many two-cycles

and has complicated torsion 4-form cohomology. The comparison of monopole

operator spectrum and Kaluza-Klein spectrum in such a model would be useful

for the identification of discrete torsion for a given Chern-Simons theory.

In Chapter 5, we studied wrapped M5-branes wrapped on three-cycles in the

internal space. They become fractional D3-branes and realize the difference of
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ranks of the adjacent gauge groups. They are useful to classify the class of N = 4

Chern-Simons theories by whether or not they share the same infra-red fixed point

or Seiberg dual to each other. In three-dimension, there exists another type of

duality, so-called mirror duality [128, 61, 129]. It is interesting to study the mirror

duality including Chern-Simons interaction with arbitrary Chern-Simons levels

[130, 131, 132].

In Chapter 6, we studied wrapped M5-branes wrapped on three-cycles in the

internal space. Their counterparts are baryonic operators. We checked that

several properties agree between both objects. They are also useful to study

strongly-coupled aspects of superconformal Chern-Simons theories as in four di-

mensional case.

In Chapter 7, we discussed the relation between monopole and baryonic op-

erators. We cannot make both operators gauge invariant. This means that all

the operators corresponding to wrapped M-branes cannot be constructed in the

gauge invariant way. To put it the other way around, the gauge variant operators

have their counterpart in the dual geometry.

In §4.3.3, we derived the spectra of localized modes on the singular loci in

Table 4.1. Interestingly, for a small s there are two normalized modes. This

fact suggests that there are two appropriate boundary conditions on AdS4. In-

deed, we discussed that both Dirichlet and Neumann boundary conditions can

be acceptable. The boundary condition of the gauge field determines whether

U(1) symmetry is global or local [118, 133]. The mode satisfying Neumann one

belongs to a so-called Betti multiplet [134, 135]. It associates baryonic U(1)

symmetries in the Chern-Simons theory. In this paper, we chose the boundary

condition which makes the U(1) symmetries local. As a result, monopole opera-

tors arose in the theory as dynamical objects and baryonic operators are gauge

variant [46]. Taking the opposite boundary condition corresponds to the SU(N)

gauge symmetries rather than U(N)s. It may be interesting to study the rela-

tion between the boundary conditions for the Betti multiplets and corresponding

boundary theories in more detail. It is useful to draw a lesson by studying it in

more general cases [69, 136, 121].

We hope that to solve these issues leads to further development in Chern-

Simons theories and M-theory.
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Appendix A

Convention

The signature of three-dimensional Minkowuski metric is

ηµν = diag(−,+,+). (A.1)

SO(1, 2) oscillator matrices should satisfy

γµγν = ηµν + γρε
µνρ, ε012 = 1. (A.2)

We realize SO(1, 2) oscillator matrices as real symmetric traceless 2× 2 matrices

(γ0
αβ) =

(−1 0
0 −1

)
, (γ1

αβ) =

(
1 0
0 −1

)
, (γ2

αβ) =

(
0 1
1 0

)
. (A.3)

Charge conjugation matrix is realized by real antisymmetric 2× 2 matrix

(Cαβ) =

(
0 −1
1 0

)
= (−εαβ), (C−1αβ) =

(
0 1
−1 0

)
= (εαβ) = (−Cαβ). (A.4)

Our rule to raise or lowering spinor indices is given by

ψα = Cαβψ
β, (C−1)αβψβ = ψα = ψβC

βα. (A.5)

Our contraction rule is the southwest-northeast type.

ψχ = ψαχ
α. (A.6)

For a bilinear of the same spinor, we define

ψ2 =
1

2
ψαψ

α. (A.7)
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Appendix B

N3D = 2 formulation

B.1 N3D = 2 superspace

For text books of N3D = 2 formulation, see [137, 138]. Let us consider N = 2

supersymmetry variation

δεx
µ := εaγ

µθa, δεθ
a := εa. (B.1)

We take the convention of complex conjugation so that δεx
µ are real. We denote

supercharges as Qa
α:

δε := εaQ
a = εaαQ

aα, (B.2)

and grassmannian derivative as ∂aα:

εa∂
a(θb) := εb ⇔ ∂aα(θbβ) = δabC−1βα. (B.3)

Then (B.1) leads to

Qα
a = ∂αa + ∂αβθ

β
a , (B.4)

where ∂αβ means ∂αβ = γµαβ∂µ. Since there are two supersymmetry generators,

we can combine them into complex variables:

θ =
1√
2
(θ1 + iθ2), θ̄ =

1√
2
(θ1 − iθ2) (B.5)

∂ =
1√
2
(∂1 − i∂2), ∂̄ =

1√
2
(∂1 + i∂2) (B.6)

Q =
1√
2
(Q1 − iQ2), Q̄ =

1√
2
(Q1 + iQ2) (B.7)

By using these definitions, we find

Qα = ∂α − (θ̄∂)α, Q̄α = ∂̄α − (θ∂)α. (B.8)

Algebraic relations are given

{Qα, Q̄β} = −2∂αβ, {Qα, Qβ} = {Q̄α, Q̄β} = 0. (B.9)
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By using U = θ∂θ̄, we can write Q, Q̄ as

Qα = e−U∂αeU , Q̄α = eU ∂̄αe
−U . (B.10)

B.2 Chiral superfield

A chiral superfield, Q, is defined by

D̄αQ = 0. (B.11)

Here we define

Dα := ∂α + (θ̄∂)α, D̄α := ∂̄α + (θ∂)α. (B.12)

As a result,

{Dα, Qβ} = {Dα, Q̄β} = {D̄α, Qβ} = {D̄α, Q̄β} = 0. (B.13)

By using U = θ∂θ̄, we can write D, D̄ as

Dα = eU∂αe
−U , D̄α = e−U ∂̄αeU . (B.14)

Therefore a chiral superfield is written as

Q = e−UQ0(x, θ). (B.15)

Q0(x, θ) can be expanded by θ as

Q0(x, θ) = q(x) + θψ(x)− 2θ2F (x). (B.16)

Due to D̄ commuting with δε, δεQ is also a chiral superfield.

δεQ = e−U(∆εq(x) + θ∆εψ(x)− 2θ2∆εF (x)). (B.17)

This reduces to

∆εq = εψ, (B.18)

∆εψα = 2(ε̄β∂
β
αq − εαF ), (B.19)

∆εF = ε̄∂ψ. (B.20)

This is nothing but the supersymmetry transformation of a chiral superfield.
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B.3 Vector superfield

Let us couple a chiral superfield to a gauge field in a supersymmetric way. Gauge

transformation of a fundamental chiral superfield, Q, is given by

QΛ = eΛQ⇔ ∆ΛQ = ΛQ. (B.21)

To keep QΛ as a chiral superfield, the gauge parameter Λ has to be also a chiral

superfield. In order to make the canonical kinetic energy of Q, Q†Q, gauge-

invariant, we need a new superfield, V . This is because a chiral superfield takes

values in complex number. The finite gauge transformation of V is given by

(eV )Λ = e−Λ†eV e−Λ. (B.22)

The gauge-invariant kinetic energy is written as Q†eVQ. Reality condition re-

quires the superfield V as real superfield: V † = V . The infinitesimal gauge

transformation is

∆ΛV = −(Λ + Λ† +
1

2
[V,Λ− Λ†] + · · · ). (B.23)

By using this gauge degrees of freedom, we can set the following gauge-fixing

condition, so-called WZ gauge,

V | = DV | = D̄V | = D2V | = D̄2V | = 0. (B.24)

Here | means that we set to θ = θ̄ = 0. Higher grassmannian derivatives are

component fields.

Ãαβ =
1

2
D̄(αDβ)V |, σ = −1

4
DαD̄

αV |, (B.25)

λα =
1

4
DαD̄

2V |, λ̄α =
1

4
D̄αD

2V |, D =
1

8
DαD̄

2DαV |. (B.26)

Supersymmetry variation breaks the gauge-fixing condition. However, combining

gauge degrees of freedom, we can define a modified supersymmetry variation,

which preserves WZ gauge.

∆WZ
ε := ∆ε + ∆Λ, (B.27)

where the gauge parameter is fixed as

Λ| = 0, Λ†| = 0, D2Λ| = 4ε̄λ̄, D̄2Λ†| = 4ελ, (B.28)

DαΛ| = ε̄β2(Aβα + Cβασ), D̄αΛ†| = εβ2(−Aβα + Cβασ). (B.29)
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Supersymmetry transformation is obtained as

∆WZ
ε Aαβ = 2(ε(αλ̄β) − ε̄(αλβ)), (B.30)

∆WZ
ε σ = (ελ̄+ ε̄λ), (B.31)

∆WZ
ε λα = εγ(

1

2
[D/ γβ, D/

β
α] + [D/ γα, σ])− εαD, (B.32)

∆WZ
ε λ̄α = ε̄γ(−1

2
[D/ γβ, D/

β
α] + [D/ γα, σ])− ε̄αD, (B.33)

∆WZ
ε D = εγ[D/

γ
β, λ̄

β] + ε̄γ[D/
γ
β, λ

β] + ε[λ̄, σ] + ε̄[σ, λ], (B.34)

where the covariant derivative D/ αβ is defined by

D/ αβ = ∂αβ + Ãαβ. (B.35)

Here Ãαβ is anti-hermitian. From a simple calculation, we obtain

[D/ αγ, D/
γ
β] = γµναβF̃µν = εµνργραβF̃µν . (B.36)

By using this equation, we get

∆WZ
ε λα = εγγρ

γ
α(

1

2
εµνρF̃µν + [Dρ, σ])− εαD, (B.37)

∆WZ
ε λ̄α = ε̄γγρ

γ
α(−1

2
εµνρF̃µν + [Dρ, σ])− ε̄αD. (B.38)

For a chiral superfield,

∆WZ
ε q = εψ, (B.39)

∆WZ
ε ψα = 2(ε̄β(D/

β
α + δβασ)q − εαF ), (B.40)

∆WZ
ε F = ε̄(D/ + σ)ψ + 2ε̄λ̄q. (B.41)

For an anti-chiral superfield,

∆WZ
ε q† = ε̄ψ†, (B.42)

∆WZ
ε ψ†α = 2(εβ(D/

β
αq
† + δβαq

†σ)− ε̄αF
†), (B.43)

∆WZ
ε F † = ε(D/ψ† + Cψ†σ) + 2q†ελ. (B.44)

B.4 Supersymmetric Lagrangians

We define the grassmann integral as
∫
d2θ =

1

2
∂2,

∫
d4θ =

1

4
∂̄2∂2. (B.45)

Note that

∂2θ2 = −1. (B.46)

Supersymmetric Lagrangians are given as follows.
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1. Kinetic term of an N3D = 2 vector-multiplet v = (Ãµ, σ, λ,D) (Yang-Mills

term)

−LYMv = Tr

∫
d2θ (−F 2) (B.47)

= Tr

[
λ†[D/ + σ, λ] +

1

4
F̃µνF̃

µν − 1

2
[Dµ, σ]2 +

1

2
D2

]
,(B.48)

where Fα is given by

Fα =
1

4
D̄2e−v[Dα, e

v]. (B.49)

2. Mass term of an N3D = 2 vector-multiplet v (Chern-Simons term)

−LCSv = −1

4
Tr

∫ 1

0

dt

∫
d4θ (−v)D̄α(e

−tvDαetv) (B.50)

= −Tr

[
−εµνρ

(
1

2
Ãµ∂νÃρ +

1

3
ÃµÃνÃρ

)
+ λ̄λ+Dσ

]
.(B.51)

3. Kinetic term of a fundamental chiral multiplet Q = (q, ψ, Fq)

−LFQ = Tr

∫
d4θ Q†evQ (B.52)

= Tr

[
−Dµq

†Dµq +
1

2
ψ̄(D/ + σ)ψ

+ψ̄λ†q + q†λψ + q†(D − σ2)q + F †qFq

]
. (B.53)

4. Kinetic term of a bifundamental chiral multiplet Q. Q is fundamental for

Gh and anti-fundamental for Gt.

−LBQ = Tr

∫
d4θ Q†evhQe−vt (B.54)

= Tr

[
−Dµq

†Dµq +
1

2
ψ†D/ψ +

1

2
(ψ†σhψ + ψσtψ

†)

+(ψ†λh†q + q†λhψ) + q†(Dh − σhσh)q

−(qλt
†ψ† + ψλtq

†) + q(−Dt − σtσt)q
†

+q†σtqσh

]
. (B.55)

5. Kinetic term of an adjoint chiral multiplet Φ = (φ, χ, Fφ)

−LAΦ = Tr

∫
d4θΦ†evΦe−v (B.56)

= Tr

[
−Dµφ

†Dµφ+
1

2
χ̄[(D/ + σ), χ] + F †φFφ

+χ̄[λ†, φ] + φ†[λ, χ] + φ†[D,φ]− φ†[σ, [σ, φ]]

]
. (B.57)
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6. Mass term of an adjoint chiral multiplet Φ

−LmassΦ = −Tr

∫
d2θ

1

2
Φ2 = −Tr

[
Fφφ+

1

2
χ2

]
. (B.58)

7. Superpotential of a fundamental hyper-multiplet

−LF,intH = Tr

∫
d2θ Q̃ΦQ (B.59)

= Tr

[
Fφqq̃ + φFq q̃ + φqFeq +

1

2

(
(χψ)q̃ + (ψχ)q + φ(ψψ̃)

)]
.(B.60)

8. Superpotential of a bifundamental hyper-multiplet

−LB,intH = Tr

∫
d2θ Q̃ΦhQ−QΦtQ̃ (B.61)

= Tr

[
q̃Fφh

q + φhFq q̃ + φhqFeq +
1

2

(
(χhψ)q̃ + (ψ̃χh)q + φh(ψψ̃)

)

−
(
qFφt q̃ + Fqφtq̃ + qφtFeq +

1

2

(
(ψχt)q̃ + q(χtψ̃) + φt(ψ̃ψ)

))]
.(B.62)

9. Kinetic term of an N3D = 4 vector-multiplet V = (v,Φ)

−LYMV = −LYMv − LAΦ (B.63)

= Tr

[
1

4
F̃µνF̃

µν +
1

2
λAḂ[D/ , λḂA]− 1

4
DµσȦ

ḂDµσḂ
Ȧ

+
1

2
FA

BF
B
A − 1

2
λ†
ȦB

[λBĊσĊ
Ȧ] +

1

4
[σȦ

Ḃ, σĊ
Ḋ][σḂ

Ȧ, σḊ
Ċ ]

]
.(B.64)

Here we set

(qA) =

(
q
q̃†

)
, (ψȦ) =

(
ψ

ψ̃†

)
, (B.65)

(σȦ
Ḃ) =

(
σ

√
2φ√

2φ† −σ
)
, (λAḂ) =

(
λ 1√

2
χ̄

1√
2
χ −λ̄

)
, (B.66)

(FA
B) =

(
1√
2
D′ F̄φ
Fφ − 1√

2
D′

)
, (D′ = D + [φ, φ†]). (B.67)

The supersymmetry variation is give by

∆εÃµ = ε†
ȦB
γµλBȦ, (B.68)

∆εσ
T Ḃ

Ȧ = 2ε†
ȦC
λCḂ − (to be traceless), (B.69)

∆ελ
AḂ = εAḊ(

1

2
γµνF̃µνδḊ

Ḃ + [D/ , σḊ
Ḃ] +

1

2
[σḊ

Ċ , σĊ
Ḃ])−DA

Cε
CḂ,(B.70)

∆εF
A
B =

√
2εAĊ [D/ δĊ

Ḋ − σĊ
Ḋ, λ†

ḊB
]− (to be traceless), (B.71)

where

(εAḂ) =

(
ε 0
0 ε̄

)
, (ε†

ȦB
) =

(
ε̄ 0
0 ε

)
. (B.72)
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10. Mass term of an N3D = 4 vector-multiplet V = (v,Φ)

−LCSV = −LCSv − LmassΦ (B.73)

= Tr

[
−εµνρ

(
1

2
Ãµ∂νÃρ +

1

3
ÃµÃνÃρ

)

+
1

2
(λAḂλ†

ȦB
+ σȦ

ḂDB
A)− 1

6
σȦ

ḂσḂ
ĊσĊ

Ȧ

]
. (B.74)

We set

(DA
B) = (

√
2FA

B). (B.75)

11. Kinetic term of a fundamental hyper-multiplet H = (Q, Q̃)

−LFH = −LFQ − LF,intQ − LFeQ − L
F,int
eQ (B.76)

= Tr

[
−Dµq

†
AD

µqA +
1

2
ψ†Ȧ(δȦ

ḂD/ + σȦ
Ḃ)ψḂ

+ψ†Ḃλ†
ḂA
qA + q†Aλ

AḂψḂ + q†A(DA
B − δAB

1

2
σḊ

ĊσĊ
Ḋ)qB

]
.(B.77)

Here we eliminate auxiliary fields Fq, Feq by using equations of motion. The

supersymmetry transformation is given by

∆εq
A = εAḂψḂ, (B.78)

∆εψȦ = 2(D/ δȦ
Ḃ + σȦ

Ḃ)ε†
ḂC
qC . (B.79)

12. Lagrangian of a bifundamental hyper-multiplet H = (Q, Q̃). Q is funda-

mental for Gh and anti-fundamental for Gt. Q̃ is opposite.

−LBH = −LBQ − LB,intQ − LBeQ − L
B,int
eQ (B.80)

= Tr

[
−Dµq

†
AD

µqA +
1

2
ψ†ȦD/ψȦ +

1

2
(ψ†ȦσhȦ

ḂψḂ + ψḂσtȦ
Ḃψ†Ȧ)

+(ψ†Ḃλh
†
ḂA
qA + q†Aλh

AḂψḂ) + q†A(Dh
A
B − δAB

1

2
σhḊ

ĊσhĊ
Ḋ)qB

−(qAλt
†
ḂA
ψ†Ḃ + ψḂλt

AḂq†A) + qB(−Dt
A
B − δAB

1

2
σtḊ

ĊσtĊ
Ḋ)q†A

+q†AσtĊ
ḂqAσhḂ

Ċ

]
. (B.81)

The supersymmetry transformation is given by

∆εq
A = εAḂψḂ, (B.82)

∆εψȦ = 2(D/ δȦ
Ḃε†

ḂC
qC + σhȦ

Ḃε†
ḂC
qC − qCε†

ḂC
σtȦ

Ḃ). (B.83)





Appendix C

OSp(N|4) superconformal algebra

In Appendix C, we give a list of OSp(N|4) superconformal algebra following the

convention in [139]. We focus on the case of N = 2N .

First, let us give the bosonic subalgebra, Sp(4,R)× SO(2N). Sp(4,R) con-

formal algebra is given by

[Mα
β,M

γ
δ] = −δαδMγ

β + δγβM
α
δ, (C.1)

[
Kαβ, Pγδ

]
= 4δα(γδ

β
δ)D + 4δ(α

(γM
β)
δ), (C.2)

[Mα
β, Pγδ] = δαβPγδ − δαγPβδ − δαδPβγ , (C.3)

[
Mα

β, K
γδ

]
= δαβK

γδ − δαγK
βδ − δαδK

βγ, (C.4)

[D,Pγδ] = Pγδ, [D,Kγδ] = −Kγδ, [D,Mα
β] = 0. (C.5)

Here Pγδ is a translation operator, Mα
β is a rotation operator, D is the dilatation

operator, and Kγδ is a special conformal generator. The indices α, β, · · · take the

values of ↑, ↓ or, in the same meaning, +,−, respectively. They are related by

the usual notation Pµ,Mµν , K
µ by

Pαβ = γµαβPµ, Kαβ = γαβµ Kµ, Mα
β =

i

2
γµναβMµν . (C.6)

SO(2N) R-symmetry algebra is defined by

[Rab, Rcd] = iδacRbd ± (perm), (C.7)

where a, b, · · · = 1, · · · , 2N . To discuss highest weight representations later, it is

useful to rewrite SO(2N) generators in terms of the Cartan generators Hl (l =

1, · · · , N) and raising (lowering) operators E+±
mn (E−±

mn ) (1 ≤ m < n ≤ N). They

are defined by

Hl := R2l−1,2l, (C.8)

E+±
mn := R2m−1,2n−1 + iR2m,2n−1 ± iR2m−1,2n ∓R2m,2n, (C.9)

E−∓
mn := R2m−1,2n−1 − iR2m,2n−1 ∓ iR2m−1,2n ∓R2m,2n. (C.10)
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Easily we obtain

E++
mm = E−−

mm = 0, E−+
mm = −E+−

mm = 2iHm, (C.11)

E−+
mn = −E+−

nm , E−−
mn = −E−−

nm , E++
mn = −E++

nm , E+−
mn = −E−+

nm . (C.12)

Their commutation relations are

[Hl, E
+±
mn ] = (δlm ± δln)E

+±
mn , [Hl, E

−∓
mn ] = −(δlm ± δln)E

−∓
mn . (C.13)

These commutators mean that E±±
mn are eigenvectors of Cartan generators (roots).

In the case of n = m, we obtain

[Hl,Hm] = 0, (C.14)

which is consistent with that fact that Hl are Cartan generators. Other commu-

tation relations are

[
E+±
mn , E

−∓
mn

]
= 4(1− δmn)(Hm ±Hn), (C.15)

[
E+±
lm , E−±

ln

]
= (2 + (−1∓ 1)δlm + (−1± 1)δln)iE

±±
mn , (C.16)

[
E+±
lm , E−∓

ln

]
= (2 + (−1∓ 1)(δlm + δln))iE

±∓
mn + 4δmnHl. (C.17)

In particular,

[E++
lm , E−−

ln ] = 2(1− (δlm + δln))iE
+−
mn + 4δmnHl, (C.18)

[
E+−
lm , E−+

ln

]
= 2iE±∓

mn + 4δmnHl, (C.19)
[
E+±
lm , E−∓

lm

]
= 4(1− δlm)(Hl ±Hm). (C.20)

Second, we give the algebra including fermionic generators. The anti-commutation

relations of fermionic generators Q, Q̄,S, S̄ are given by

{Ql
α,Qm

β } = {Q̄l
α, Q̄m

β } = 0, {S lα,Smβ } = {S̄ lα, S̄mβ } = 0, (C.21)

{Ql
α, Q̄m

β } = 2δlmPαβ, {S lα, S̄mβ } = 2δlmKαβ, (C.22)

{Ql
α,Smβ} = δα

βE++
lm , {Q̄l

α, S̄mβ} = δα
βE−−

lm , (C.23)

{Ql
α, S̄mβ} = 2iδlm(Mα

β + δα
βD) + δα

βE+−
lm , (C.24)

{Q̄l
α,Smβ} = 2iδlm(Mα

β + δα
βD) + δα

βE−+
lm . (C.25)

In particular,

{Ql
α,S lβ} = 0, {Q̄l

α, S̄mβ} = 0, (C.26)

{Ql
α, S̄ lβ} = 2i(Mα

β + δα
βD − δα

βH l), (C.27)

{Q̄l
α,S lβ} = 2i(Mα

β + δα
βD + δα

βH l), (C.28)

{Ql
±, S̄ l∓} = 2iJ±, {Ql

±, S̄ l±} = 2i(±J2 +D −H l), (C.29)

{Q̄l
±,S l∓} = 2iJ±, {Q̄l

±,S l±} = 2i(±J2 +D +H l), (C.30)
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where we set J± = M±∓, J2 = M+
+.

Commutators between fermionic generators and conformal generators are

[Pαβ,Qa
α] = 0, [Kαβ,Saα] = 0, (C.31)

[D,Qa
α] = 1

2
Qa
α, [D,Saα] = −1

2
Saα, (C.32)

[
Kαβ,Qa

γ

]
= i(δαγSaβ + δβγSaα), [Pαβ,Saγ] = −i(δαγQa

β + δβ
γQa

α),(C.33)
[
Mα

β,Qa
γ

]
= 1

2
(δαγQa

β − εβγQaα),
[
Mα

β,Saγ
]

= −1
2
(δαγSaβ − εβγSaα).(C.34)

Commutators between fermionic generators and R-symmetry generators are

[Hm,Qn] = δmnQn,
[Hm, Q̄n

]
= −δmnQ̄n, (C.35)

[
E−+
lm ,Qn

]
= 2iδlnQm,

[
E+−
lm , Q̄n

]
= 2iδlnQ̄m, (C.36)

[
E+−
lm ,Qn

]
= −2iδmnQl,

[
E−+
lm , Q̄n

]
= −2iδmnQ̄l, (C.37)

[
E−−
lm ,Qn

]
= 2i(δlnQ̄m − δmnQ̄l),

[
E++
lm , Q̄n

]
= 2i(δlnQm − δmnQl),(C.38)

[
E++
lm ,Qn

]
= 0,

[
E−−
lm , Q̄n

]
= 0. (C.39)

The same equations are also the case for substituting Q, Q̄ for S, S̄, respectively.

That is,

[Hm,Sn] = δmnSn,
[Hm, S̄n

]
= −δmnS̄n, (C.40)

[
E−+
lm ,Sn

]
= 2iδlnSm,

[
E+−
lm , S̄n

]
= 2iδlnS̄m, (C.41)

[
E+−
lm ,Sn

]
= −2iδmnSl,

[
E−+
lm , S̄n

]
= −2iδmnS̄l, (C.42)

[
E−−
lm ,Sn

]
= 2i(δlnS̄m − δmnS̄l),

[
E++
lm , S̄n

]
= 2i(δlnSm − δmnSl), (C.43)

[
E++
lm ,Sn

]
= 0,

[
E−−
lm , S̄n

]
= 0. (C.44)





Appendix D

1/2 BPS representations of
OSp(8|4) and OSp(4|4)

In Appendix D, we review 1/2 BPS representations of the superconformal group

OSp(8|4) and OSp(4|4), their characters and indices [140, 111, 139].

To describe highest weights of irreducible representations, we use Cartan gen-

erators D (dilatation) and j ≡ J2 (spin) for the conformal group Sp(4,R), and

hl (l = 1, 2, 3, 4) for SO(8)R. We define four supercharges qlα and qlα (α =↑, ↓)
carrying the Cartan charges shown in Table D.1.

Table D.1: Sixteen supercharges.

D j h1 h2 h3 h4

q̄4 1
2

±1
2

0 0 0 −1
q̄3 1

2
±1

2
0 0 −1 0

q̄2 1
2

±1
2

0 −1 0 0
q̄1 1

2
±1

2
−1 0 0 0

q4 1
2

±1
2

0 0 0 1
q3 1

2
±1

2
0 0 1 0

q2 1
2

±1
2

0 1 0 0
q1 1

2
±1

2
1 0 0 0

As usual, we use highest weights to specify representations. The highest

weights of an SO(8)R representation should satisfy the following inequality:

h1 ≥ h2 ≥ h3 ≥ |h4|. (D.1)

The highest weight states of 1/2 BPS representations saturate this bound. There

are two series of such representations, which are called (N , B,±) in [139]. N in

the first slot refers to the number of supersymmetry. A representation in each

series is specified by one integer n, and the components of its highest weight are

D =
n

2
, j = 0, h1 = h2 = h3 = ±h4 =

n

2
, n = 1, 2, . . . (D.2)
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The last component h4 is positive for (8, B,+), and negative for (8, B,−). We

denote the 1/2 BPS representation with the highest weight (D.2) by (8, B,±)n.

The highest weight states |0〉(8,B,±) satisfy

q1|0〉(8,B,+) = q2|0〉(8,B,+) = q3|0〉(8,B,+) = q4|0〉(8,B,+) = 0, (D.3)

q1|0〉(8,B,−) = q2|0〉(8,B,−) = q3|0〉(8,B,−) = q̄4|0〉(8,B,−) = 0. (D.4)

The spectra of (8, B,±)n representations is decomposed into fifteen irreducible

representations of the bosonic subgroup Sp(4,R) × SO(8). The decomposition

of (8, B,−)n is shown in Table D.2. In the table, ∆ is defined by

∆ = {Q,S} = D − (j + h1), (D.5)

where we choose Q = q1
↓. That of (8, B,+)n is obtained from this by flipping the

sign of h4.

Table D.2: The spectrum of the 1/2 BPS representation (8, B,−)n. The rep-
resentation is decomposed into fifteen irreducible representations of the bosonic
subgroup Sp(4,R)× SO(8)R.

D j h1 h2 h3 h4 ∆ range
n
2

0 n
2

n
2

n
2

−n
2

0 (n ≥ 1)
n+1

2
1
2

n
2

n
2

n
2

−n+2
2

0 (n ≥ 1)
n+2

2
1 n

2
n
2

n−2
2

−n+2
2

0 (n ≥ 2)
n+3

2
3
2

n
2

n−2
2

n−2
2

−n+2
2

0 (n ≥ 2)
n+4

2
2 n−2

2
n−2

2
n−2

2
−n+2

2
1 (n ≥ 2)

n+2
2

0 n
2

n
2

n
2

−n+4
2

1 (n ≥ 2)
n+3

2
1
2

n
2

n
2

n−2
2

−n+4
2

1 (n ≥ 3)
n+4

2
1 n

2
n−2

2
n−2

2
−n+4

2
1 (n ≥ 3)

n+5
2

3
2

n−2
2

n−2
2

n−2
2

−n+4
2

2 (n ≥ 3)
n+4

2
0 n

2
n
2

n−4
2

−n+4
2

2 (n ≥ 4)
n+5

2
1
2

n
2

n−2
2

n−4
2

−n+4
2

2 (n ≥ 4)
n+6

2
1 n−2

2
n−2

2
n−4

2
−n+4

2
3 (n ≥ 4)

n+6
2

0 n
2

n−4
2

n−4
2

−n+4
2

3 (n ≥ 4)
n+7

2
1
2

n−2
2

n−4
2

n−4
2

−n+4
2

4 (n ≥ 4)
n+8

2
0 n−4

2
n−4

2
n−4

2
−n+4

2
6 (n ≥ 4)

We define the superconformal character for a representation R by

χR = TrR

(
s2Dx2jyh1

1 y
h2
2 y

h3
3 y

h4
4

)
, (D.6)

where TrR means the trace over the representation R. As is shown in Table D.2,

(8, B,−)n is decomposed into fifteen irreducible representations of the bosonic
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subgroup Sp(4,R) × SO(8)R. The character is obtained by summing up those

for the fifteen representations.

χ(8,B,−)n = χconf
(n
2
,0)(s

2, x2)χ
(4)

(n
2
,n
2
,n
2
,−n

2
)
(y) + χconf

(n+1
2
, 1
2
)
(s2, x2)χ

(4)

(n
2
,n
2
,n
2
,−n+2

2
)
(y)

+χconf
(n+2

2
,1)

(s2, x2)χ
(4)

(n
2
,n
2
,n−2

2
,−n+2

2
)
(y) + χconf

(n+3
2
, 3
2
)
(s2, x2)χ

(4)

(n
2
,n−2

2
,n−2

2
,−n+2

2
)
(y)

+χconf
(n+4

2
,2)

(s2, x2)χ
(4)

(n−2
2
,n−2

2
,n−2

2
,−n+2

2
)
(y) + χconf

(n+2
2
,0)

(s2, x2)χ
(4)

(n
2
,n
2
,n
2
,−n+4

2
)
(y)

+χconf
(n+3

2
, 1
2
)
(s2, x2)χ

(4)

(n
2
,n
2
,n−2

2
,−n+4

2
)
(y) + χconf

(n+4
2
,1)

(s2, x2)χ
(4)

(n
2
,n−2

2
,n−2

2
,−n+4

2
)
(y)

+χconf
(n+5

2
, 3
2
)
(s2, x2)χ

(4)

(n−2
2
,n−2

2
,n−2

2
,−n+4

2
)
(y) + χconf

(n+4
2
,0)

(s2, x2)χ
(4)

(n
2
,n−4

2
,n−4

2
,−n+4

2
)
(y)

+χconf
(n+5

2
, 1
2
)
(s2, x2)χ

(4)

(n
2
,n−2

2
,n−4

2
,−n+4

2
)
(y) + χconf

(n+6
2
,1)

(s2, x2)χ
(4)

(n−2
2
,n−2

2
,n−4

2
,−n+4

2
)
(y)

+χconf
(n+6

2
,0)

(s2, x2)χ
(4)

(n
2
,n−4

2
,n−4

2
,−n+4

2
)
(y) + χconf

(n+7
2
, 1
2
)
(s2, x2)χ

(4)

(n−2
2
,n−4

2
,n−4

2
,−n+4

2
)
(y)

+χconf
(n+8

2
,0)

(s2, x2)χ
(4)

(n−4
2
,n−4

2
,n−4

2
,−n+4

2
)
(y), (D.7)

where χconf
(D,j) is the character of the irreducible representation of the conformal

group with highest weight (D, j),

χconf
(D,j) = Tr(D,j)(s

2Dx2j) =
s2Dχj(x

2)

(1− s2x2)(1− s2)(1− s2x−2)
, (D.8)

and χj(t) is the SU(2) character for the spin j representation

χj(t) =
tj − t−j−1

1− t−1
= tj + · · ·+ t−j, (χj(t) = 0 for j < 0), (D.9)

and χ
(4)
h (y) is the SO(8) character

χ
(4)
h (y) =

det[yhJ+4−J
I + y−hJ−4+J

I ] + det[yhJ+4−J
I − y−hJ−4+J

I ]

2× Π1≤I<J≤4(yI + 1/yI − (yJ + 1/yJ))
. (D.10)

In general, it is difficult to calculate a character directly on the gauge theory

side due to quantum corrections. We can avoid this by choosing the arguments of

the character so that the contributions of two states connected by a supercharge

Q have opposite signs and cancel each other. Such a character is an index. Let us

choose Q = q1
↓. In this case, SO(2) generated by h1 plays a role of R-symmetry,

and OSp(8|4) algebra tells us that four Cartan generators D + j, h2, h3 and h4

commute with Q. By using these generators, the index is defined by

IR = TrR

(
(−)F e−β

′∆x2(D+j)yh2
2 y

h3
3 y

h4
4

)
, (D.11)

where F is the fermion number operator. It can be shown that this index does

not depend on β′ [103]. This means that the states which contribute to the

index satisfy ∆ = 0, which is equivalent to the BPS condition in a unitary
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representation. By setting e−β
′

to b2, we can obtain the relation between a

character and an index by

IR = TrR

(
(−)F b2Db−2jx2(D+j)b−2h1yh2

2 y
h3
3 y

h4
4

)
= χR(s→ bx, x→ −x

b
, y1 → 1

b2
).

(D.12)

where we used (−)F = (−)2j to show the second equality. By substituting (D.7)

into the relation (D.12), we obtain the superconformal index for a half BPS

representation (8, B,−)n by

I(8,B,−)n =
(numerator)

(denominator)
, (D.13)

where the numerator is

(numerator)

=

[
xn(y2y3y4)

−n/2y4+n
2 y3y4(−1 + y3y4)

]
×

[(
(−1 + x2y3)(x

2 − y4)y
n
4 − (x2 − y3)y

n
3 (−1 + x2y4)

)

+x2y1+n
2 (−1 + y3y4)

(
(1− x2y3)(x

2 − y4)y
2+n
4 + (x2 − y3)y

2+n
3 (−1 + x2y4)

)

+y3(y3 − y4)y4

(
yn3 (−x2 + y3)(x

2 − y4)y
n
4 + (−1 + x2y3)(−1 + x2y4)

)

+x2y3
2

(
(x2 − y3)y

2+n
3 (x2 − y4)(y3 − y4)y

2+n
4 + (−1 + x2y3)(−y3 + y4)(−1 + x2y4)

)

+y2(y3 − y4)

(
y1+n

3 (x2 − y3)(x
2 − y4)y

1+n
4 (x2 + y3 + y4)

+(1− x2y3)(−1 + x2y4)(y3 + y4 + x2y3y4)

)

+y2
2(y3 − y4)

(
1− y3+n

3 y3+n
4 − x6y3y4(y3 + y4)(−1 + yn3 y

n
4 )

+x4(y2
3 + y3y4 + y2

4)(−1 + y1+n
3 y1+n

4 )

)

+y3+n
2 (−1 + y3y4)

(
(x2 − y3)y

1+n
3 (−1 + x2y4)(1 + (x2 + y3)y4)

−(−1 + x2y3)(x
2 − y4)y

1+n
4 (1 + y3(x

2 + y4))

)

+y2+n
2 (1− y3y4)

(
y3+n

3 − y3+n
4 + x6y3y4(1 + y3y4)(y

n
3 − yn4 )

−x4(y1+n
3 − y1+n

4 )(1 + y3y4(1 + y3y4))

)]
, (D.14)

and the denominator is

(denominator) =
(−1 + x4

)
(y2 − y3)(y2 − y4)(y3 − y4)×

(−1 + y2y3)(−1 + y2y4)(−1 + y3y4). (D.15)
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Notice that the index is independent of b. We can also obtain this result by

summing up the contribution from the ∆ = 0 states in Table D.2. Note that

we can show that the characters and indices both for (8, B,−)n and (8, B,+)n

coincide.

The KK spectrum of single supergraviton in AdS4 × S7 was investigated in

[141]. Their result is that in the spectrum, denoted by GAdS4×S7 , the 1/2 BPS

representation (8, B,−)n appears only once for all n:

GAdS4×S7 =
⊕

n=1,2...

(8, B,−)n. (D.16)

For short, we denote GAdS4×S7 as GS7 . Therefore, the character for single super-

graviton in AdS4 × S7 is given by

χGS7 =
∑

n=1,2...

χ(8,B,−)n , (D.17)

and the index for it is

IGS7 =
∑

n=1,2...

I(8,B,−)n , (D.18)

which is nothing but the index given in (4.156).

Let us move on to 1/2 BPS representations of OSp(4|4). To describe highest

weights of irreducible representations, we use D and j, T3 for SU(2)R, and T ′3 for

SU(2)′R. After taking orbifold by the discrete actions (2.52), we are left with eight

supersymmetries in Table D.3. They are related charges in the former convention

Table D.3: Eight supercharges preserved after the orbifolding.

D j H1 H2 T3 T ′3
Q1 1

2
±1

2
+1 0 +1

2
+1

2

Q
1 1

2
±1

2
−1 0 −1

2
−1

2

Q2 1
2

±1
2

0 +1 −1
2

+1
2

Q
2 1

2
±1

2
0 −1 +1

2
−1

2

by

H1 = −h1, H2 = −h3; Q1 = q̄1, Q2 = q̄3, Q̄1 = q1, Q̄2 = q3, (D.19)

T3 =
1

2
(−h1 + h3), T ′3 = −1

2
(h1 + h3), P = h2 + h4, P ′ = h2 − h4.(D.20)

As usual, we use highest weights to specify representations. The highest

weights T3 and T ′3 of an SO(4)R representation are non-negative, and there is the
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following bound for H1 and H2.

H1 ≥ |H2|. (D.21)

The highest weight states of 1/2 BPS representations saturate this bound. A

representation in each series is specified by one integer n, and the components of

its highest weight are

(D, j,H1, H2) = (
n

2
, 0,

n

2
,±n

2
), n = 1, 2, . . . (D.22)

The last component H2 is positive for (4, B,+), and negative for (4, B,−). We

denote the 1/2 BPS representation with the highest weight (D.22) by (4, B,±)n.

The highest weight states |0〉(4,B,±) satisfy

Q1|0〉(4,B,+) = Q2|0〉(4,B,+) = 0, Q1|0〉(4,B,−) = Q
2|0〉(4,B,−) = 0. (D.23)

The spectra of (4, B,±)n representations is decomposed into six irreducible

representations of the bosonic subgroup Sp(4,R) × SO(4). The decomposition

of (4, B,+)n is shown in Table D.4. That of (4, B,−)n is obtained from this by

exchanging T3 and T ′3 and flipping the sign of H2.

Corresponding to the two fixed loci SU and SU ′, both (4, B,+) and (4, B,−)

arise from the twisted sectors. Because T3 does not move SU , it is an internal

charge in the context of the field theory in SU , while T ′3 is an orbital angular

momentum. This fact implies that the Kaluza-Klein modes in SU should be

identified with (4, B,+), which can take an arbitrarily large T ′3. Contrary, the

Kaluza-Klein modes in the other locus SU ′ belong to the other series of represen-

tations (4, B,−).

Table D.4: The spectrum of the 1/2 BPS representation (4, B,+)n. The represen-
tation is decomposed into six irreducible representations of the bosonic subgroup
Sp(4,R)× SO(4)R. The highest weights of these representations are given. ∆ is
defined later in (D.28). The spectrum of (4, B,−)n is obtained by exchanging T3

and T ′3 and flipping the sign of H2.

D j T3 T ′3 H1 H2 ∆ range
n
2

0 0 n
2

n
2

n
2

0 (n ≥ 1)
n+1

2
1
2

1
2

n−1
2

n
2

n−2
2

0 (n ≥ 1)
n+2

2
1 0 n−2

2
n−2

2
n−2

2
1 (n ≥ 2)

n+2
2

0 1 n−2
2

n
2

n−4
2

1 (n ≥ 2)
n+3

2
1
2

1
2

n−3
2

n−2
2

n−4
2

2 (n ≥ 3)
n+4

2
0 0 n−4

2
n−4

2
n−4

2
4 (n ≥ 4)
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We define the superconformal character for a representation R by

χR = TrR

(
s2Dx2jyT3y′T

′
3

)
= TrR

(
s2Dx2jY H1

1 Y H2
2

)
, (D.24)

where TrR means the trace over the representation R. We used Cartan generators

(D, j, T3, T
′
3) for the middle expression and (D, j,H1, H2) for the last one. These

two choices of the Cartan generators for SO(4)R are related by (4.145), and

correspondingly, the two sets of variables (y, y′) and (Y1, Y2) are related by

y =
Y1

Y2

, y′ = Y1Y2. (D.25)

As is shown in Table D.4, (4, B,+)n is decomposed into six irreducible repre-

sentations of the bosonic subgroup Sp(4,R)×SO(4)R. The character is obtained

by summing up those for the six representations.

χ(4,B,+)n = χconf
(n
2
,0)(s

2, x2)χn
2
(y′) + χconf

(n+1
2
, 1
2
)
(s2, x2)χ 1

2
(y)χn−1

2
(y′)

+χconf
(n+2

2
,1)

(s2, x2)χn−2
2

(y′) + χconf
(n+2

2
,0)

(s2, x2)χ1(y)χn−2
2

(y′)

+χconf
(n+3

2
, 1
2
)
(s2, x2)χ 1

2
(y)χn−3

2
(y′) + χconf

(n+4
2
,0)

(s2, x2)χn−4
2

(y′). (D.26)

Let us choose Q = Q1
↓. In this case, OSp(4|4) algebra tells us that two Cartan

generators D + j and H2 commute with Q. The index is given by

IR = TrR

(
(−)F e−β

′∆x2(D+j)Y H2
2

)
, (D.27)

where F is the fermion number operator, and ∆ is defined by

∆ = {Q,S} = D − (j +H1). (D.28)

This index does not depend on β′. By substituting (D.26) into the relation (D.12),

we obtain the superconformal index for a half BPS representation (4, B,+)n

I(4,B,+)n =
xnY

n
2

2 (1− x2Y −1
2 )

1− x4
. (D.29)

In the same way, we obtain

I(4,B,−)n =
xnY

−n
2

2 (1− x2Y2)

1− x4
. (D.30)

As in the case of OSp(8|4), we can also obtain this result by summing up the

contribution from the ∆ = 0 states in Table D.4.
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