Radiation Reaction in a Normal Neighbourhood

Radiation Reaction

• Small particle mass μ) moves on a geodesic z^{α} au^{γ} of a curved background spacetime M $g_{\alpha\beta}$

$$\mu^2 R(g_{\alpha\beta} <<$$

Particle's gravitation alters metric:

$$g_{\alpha\beta} \longrightarrow g_{\alpha\beta} + \gamma_{\alpha\beta}$$

Imearized gravity:

$$\mathcal{D}\gamma)_{\alpha\beta} = T_{\alpha\beta}$$
.

where

$$\mathcal{D}\gamma^{-}_{\beta} = \Box \gamma_{\alpha\beta} = 2R^{\mu}_{\alpha\beta} \gamma_{\mu\nu},$$

$$T_{\alpha\beta} = 16\pi \ \mu \int_{-\infty}^{9} \delta(x - z(\tau^{\dagger})u_{\alpha} \ \tau^{\dagger}u_{\beta}(\tau)d\tau$$

and
$$oldsymbol{u}^{\epsilon} = \partial_{ au} z^{lpha} \, oldsymbol{ au}^{\epsilon}$$

Notation: $E_{ij} = C_{i\alpha j\beta} u^{\alpha} u^{\beta}, \quad B_{ij} = C_{\alpha \beta i\delta} e^{\alpha \beta_{ij} \delta} u^{\delta} u_{\delta}$ $e^{ijk} = e^{ijk\alpha} u_{\alpha}, \quad \dot{f} = u^{\alpha} \nabla_{\alpha} f, \quad f_{1j} = (\delta_{ij}^{\alpha} + u^{\alpha} u_{j}) \nabla_{\alpha} f$ Survivors at λ^{3} : $a_{ij}^{\beta} = a_{ij} u^{\beta} e^{ikl} \lambda^{3}, \quad a_{ij}^{\beta} = a_{ij} u^{\beta} e^{ikl} \lambda^{3}$

α, = α, μ Ε; Ε; ε ε κ λ, α, = α, μ Ε; Β; κ ε λ, α, = α, μ Β; Β; κ ε λ, α, = α, μ Β; Β; κ ε λ, α, ε α, μ Β; Β; κ ε λ, α, ε α, μ Ε; Β; κ λ, α, ε α, μ Β; κ λ, α, ε α, μ Β; κ λ, α, μ Β; κ λ, α, μ Ε; κ λ

Leading PN contribution: Schwerzechild, Harmonic, Equatorion: r"~(州)r(中)*(中)3, 中"~(州) 年(中)3

as: r"~(从)外(个)~(从)如(人)

四部: 下"~(点) イタ)、(件)、中~(点) 空(件)。

(r'= 2,r)

Lowest Order Survivor

- The lowest order survivor is $a_2^{lpha}=C^{lpha\beta\gamma\delta}$ $C_{\beta\gamma\delta\mu}u^{\mu}$:
- ullet Corrections parallel to u^{lpha} are just corrections to geodesic's parameterization. Radiation reaction is the orthogonal projection:

$$a^{\alpha} = \alpha \ \mu \ (\delta^{\alpha}_{\nu} + u^{\alpha}u_{\nu}) \ C^{\nu\beta\gamma\delta} \ C_{\beta\gamma\delta\mu} \ u^{\mu} \ \lambda^{2} + \mathcal{O}(\lambda^{3})$$

- \bullet α is a numerical coefficient that we must find. How?
- · Back to perturbation theory!

Special Case: Kerr

- · Recall that Kerr is a Petrov type D spacetime.
- Recall that for Petrov type D Ψ_2 is the only nonvanishing component of Weyl.
- Recall that in terms of the Newman-Penrose basis $\Psi_2 = -C_{0123} \rightarrow C^{\mu\beta\gamma\delta}C_{\beta\gamma\delta\nu} = |\Psi_2|^2\delta^\mu_\nu$.

Conclusion

Thus radiation reaction from normal neighbourhood vanishes to lowest order in Kerr spacetime.

Question

Does it vanish to all orders?

Answer

No, some λ^3 terms survive in Schwarzschild.

A Shortcut

 Notice that at the end of the day, the acceleration is expressed as a power series in λ,

$$a^{\alpha} = \mu(a_0^{\alpha} + a_1^{\alpha}\lambda + a_2^{\alpha}\lambda^2 + \mathcal{O}(\lambda^3))$$

- Notice that the coefficients, a_n^α, will be built out of geometric quantities
 associate with the spacetime or the particle.
- The only geometric quantity carried by the particle is its 4-velocity, u^{α} .
- In a vacuum background, the only geometric quantities describing the spacetime are the $g_{\alpha\beta}$, the curvature $C_{\alpha\beta\gamma\delta}$ and its derivatives, and the Levi-Civita symbol $\varepsilon_{\alpha\beta\gamma\delta}$.
- There are only a finite number of forms that each a_n^{α} can take! We can see what they are in advance.

An Example: a_0^{α}

- has dimension $\ell^{-2} \to a_0^{\alpha} \propto C^{\alpha}{}_{\beta\gamma\delta}$.
- $C^{\alpha}{}_{\beta\gamma\delta}$ has too many indices.
 - Can't contract internally, Weyl is traceless.
 - Can't contract with more than 2 u^{α} 's because of antisymmetry on γ and δ .
 - Can't contract on more than 2 indices with epsilon, because $C^{\alpha}{}_{[\beta\gamma\delta]}=0.$
- · Choices left:
 - $-a_0^{\alpha} \propto C^{\alpha}{}_{\beta\gamma\delta} u^{\beta} u^{\gamma} \varepsilon^{\delta???}.$
 - $-a_0^{\alpha} \propto C^{\alpha}{}_{\beta\gamma\delta} u^{\beta} \varepsilon^{\gamma\delta??}.$
 - $-a_0^{\alpha} \propto C^{\alpha}_{\beta\gamma\delta}u^{\delta}\varepsilon^{\beta\gamma??}$

Solution in a Normal Neighbourhood

- Define Riemann normal coordinate system y^{α} with origin at the particle position; i.e. for each point x in the normal neighbourhood of $z^{\alpha}(0)$ define coordinates $y^{\alpha} = \xi^{\alpha} \tau$ where:
 - $-\xi^{\alpha}$ is the tangent vector to the geodesic connecting $z^{\alpha}(0)$ to x at $z^{\alpha}(0)$,
 - $-\tau$ is the geodesic distance (affine parameter distance) from x to the origin.
- These coordinates facilitate covariant Taylor series expansion of components of equation of motion, e.g.

$$g_{\alpha\beta} = \eta_{\alpha\beta} + \frac{1}{3} R_{\mu\alpha\beta\nu}(0) y^{\mu} y^{\nu} + \mathcal{O}(R^2 y^4)$$

• Expand equation of motion $(\mathcal{D}\gamma) = T$ and collect by order in Ry^2 . Note that to 0^{th} order $\mathcal{D} = \square_{\text{flat}}$.

$$\Box_{\text{flat}} \gamma_{\alpha\beta}^{(0)} = T_{\alpha\beta}^{(0)},
\Box_{\text{flat}} \gamma_{\alpha\beta}^{(1)} = T_{\alpha\beta}^{(1)} - (\mathcal{D}^{(1)} \gamma^{(0)})_{\alpha\beta},
\Box_{\text{flat}} \gamma_{\alpha\beta}^{(2)} = T_{\alpha\beta}^{(1)} - (\mathcal{D}^{(1)} \gamma^{(1)})_{\alpha\beta} - (\mathcal{D}^{(2)} \gamma^{(0)})_{\alpha\beta},
\vdots$$

Solve order by order using the flat space Green's function, e.g.

$$\gamma^{(0)}_{\alpha\beta}(\tau)=\int_{-}\lambda^{0}G_{\rm flat}(z(\tau),z(\tau'))T_{\alpha\beta}(\tau')d\tau'$$

The Question

How does $\gamma_{\alpha\beta}$ change particles trajectory?

The Answer

ullet Find $\gamma_{lphaeta}$ using the Green's function $G_{lphaeta}{}^{\mu'
u'}(x,x')=\mathcal{D}^{-1}$:

$$\gamma_{\alpha\beta}(x) = \int_{-\infty}^{0} G_{\alpha\beta}^{\mu'\nu'}(x, x') T_{\mu'\nu'}(x') d\tau.$$

· Express correction to particle path as an acceleration,

$$a^{\alpha} = A^{\alpha\beta\gamma\delta}(g, u) \gamma_{\beta\gamma;\delta}.$$

The Problem

- Green's functions for D difficult to calculate analytically → numerical mode sum.
- Green's function distributional on light cone → mode sum does not converge well near the cone.

Poisson ર્ર Wiseman's Suggestion

- Do numerical mode sum (good estimate far from particle).
- Do normal neighbourhood analysis near particle.
- Match solutions.