The perturbation equations were used to investigate the dynamics of
black holes in the 1970s:

e wave packets scattered by BH (Vishveshwara, Press)
e small bodies falling inte, or passing close by, BH (Zerilli, DRPP)
e gravitational collapse to form BH (Cunningham, Price, Monerief)

The emerging radiation shows similar features in all cases, and QNM
ringing dominate most BH signals(cf collisions).
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The response of a Schwarzschild black hole as o Gaussion
wavepacket of scalar waves tmpinges upon it. An initial
broadband burst is followed by QNM oscillations. At very late
times the field is dominated by a power-law fall-off with time.
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The effective potential 1 is of short range, and corresnonds 1o a,
single potential barrier => the BH problem is in many ways similar
to one of potential scattering in quantum mechanics

Assuming a time-dependence e™™*, a general solution is

" -,
; Apt™ + Apme ™™ asr — +00.

QNM correspond to A, = 0, i.e. are analogous to scatiering
TESOnAnCes. :

WIKB approximation (Schutz, Will) ==

or (in human units)

i :!W@ 2 & l‘llff)
f = 12kHz ( i ) 7 == 0.05ms (Mm

This means that a nonrotating black hole is a very poor oscillator.

With
. Re Ly

1
dir 2 |Im Y
we find @ = £ The f-mode of a neutron star leads to ¢ ~ 1000 and a
typical value for an atom is Q ~ 10°.
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Estimate the strength of the gravitational waves associated with a
certain QNM using
Q2 Loal ol
lﬁﬂ'{?l ke drr? db - 4wri2r
where T is the e-folding time of the QNM. Assuming a
monachromatic wave {of frequency f) such that & = 27 fh (not really

justified for rapidly damped QNMs), we estimate the effective
amplitude achievable aﬁer matn::hed filtering as

o @ );g (MEH) (15Mp{:)
hefi 7= R/ 2 by fr =2 4.2 % 10 (111—6 v :

where § ig the radiated energy as a fraction of the BH mass (c¢f more
detailed studies by Echeverria, Finn, Flanagan, Hughes) '
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Nlustrating the “detectability” of GNM ringing for o 100y
(squagres) and a 100Mg ( trmngﬂes ) BH. The upper cases
correspond to & = 107 wh:{ﬂ the lower ones are for é = 1075,




o What effect does rotation have on QNMs and the tail?

» Are there any new physical effects?

For Kerr BH the QNM are no longer symmeirically placed relative to
the Im w axis. Instead, if w is a QNM corresponding to { and m the
complex conjugate —w* will be a QNM for { and —m.

Co-rotating modes tend to become longer lived as a increases, while
counter-rotating ones remain essentially unchanged.

In particular, some QNM become very slowly damped as ¢ — M. In
the limit these modes can be approximated by (Teukolsky, Press,
Detweiler) :

m 1 ;
2 = glf—2nw)/25 _ _ (@=tnm) 28
wnM =3 e coa 3 Tt sin 3
where 7 is an integer labelling the modes, #, § and ¢ are constants.

Alternatively, the slowest damped GW mode is well fitted by
(Echeverria)
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Physical explanation: The long lived modes co-rotate with the BH
and can be viewed as a nor-radiating additional part of the
quadrupole (etc) moment,
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A physically acceptable scalar-field solution to the radial Teukolsky
equation is j

o {e."“""* 8T —> T4,

[ ™ .
where
- TTLLL - . ﬂ
B=w——— =w—mly
2MT+ L

and Qg is the angular velocity of the event hﬂﬂzcm. (r+).

Using this solution, and its complex conjugate, we find
(1-- EEL) T=1-R

w
where T and R are the i:;:ansmjssinn and reflection coefficients, We
have superradiance (R > 1) if

ma

EMT..E.

¢ < w<milg=

The maximum amplification of an incoming monochromatic wave is
0.3% for scalar waves, 4.4% for electromagnetic waves and 138% for
gravitational waves (Press, Teukolsky).



Cherished belief: Some QNMs become long lived as & — M which
significantly enhances the detectability the associated gravitational
waves. But that this really is the case is far from clear...

Represent the mode signal by
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Clearly, a decrease in A may easily compensate for the increase in 7
as the black hole spins up. To correctly discuss the detectability of
the Kerr QNMs one must investigate this balance.

Turns out to be rather delicate!

Contradictory (7) statements in the literature

» the amplitude of each individual long-lived QNM must vanish as
a — M (Ferrari, Mashhoon)

e the integrated GW flux due to all long-lived modes diverges as
u —+ oo (Sasaki, Nakamuira)



Consider a massless scalar field @ in the Schwarzschild geometry.
With

& = E uﬂ(rh } {E EC")

the function ws(r,, t) solves the. Regge—%eeler equation (with 5 = 0)
and the future evolution of a field given at some initial time (¢ = 0)
follows from |

ug(ra, £) = | Glrs, v, )Bua(y, 0)dy + [ B:G(ra, y, tue(y, 0)dy

Here (3 is the appropriate [:retarded) Green’s function, and
Glry,y,t)=0fort < 0.

[ntroducing the “asymptotic approximation”:

o the observer is situated far away from the black hole

¢ the initial data has considerable support only far away from the
black hole

e the initial data has no support outside the observer

and using the residue theorem, we get the mode-contribution:
G My, 4.1} =Re E Mg“%{*—ﬁ—ﬂ
n=0 Wnly
where
An(w) & (W — wn)a
and the sum is over all QNM in the fourth quadrant.



A useful measure (independent of the initial data) of QNM
excitation/detectability is the coefficient

Re wy, Auut.
Im wy, oy

Recent numerical calculations (for scalar field} indicates that the
long-lived are not strongly excited in the limit ¢ — M. -

The numerical results are suppnrted by analytlc estimates using the
approximate modes
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Imw, a,

(6 is almost real for = m). Recall that the slowest damped modes
correspond to n — 0o,
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An assessment of the “detectability” of the QNMs asa — M.

We compare the slowest damped mode in the right half of the wM

plane to the slowest damped mode in the left half-plane. The
mode that becomes very long lived has a much smaller excitation

coefficient as a = M.



“Atialytic approximations:

Have concluded that each individual QNM makes an infinitesimal
contribution in the limit & —+ M. This seems like bad news from a
“GW detection” point of view.

But... we have a large number of stowly damped modes as a — M. If
their contribution is summed we find that (NA, Glambedalds)

e—imt/2M
t
according to an observer at fixed r.

D~ as t-— oo for a=M

This is a very surprising result!

The suggested fall-off is much slower than that predicted for the
standard power-law tail. Recent estimates suggest (Barack, Ori)

B t—£—|m[-—3—-q

where ¢ =0 for even I + m and 1 for odd { + m,

Numerical evolutions:

For m = 0 we get results in agreement with the standard tai]
-estimates, but for m 3£ 0 we find the predicted oscillating, slowly
decaying field also when g is considerably smaller than M.

The fall-off is NOT represented by the slowest damped QNM.

All evolutions (so far) support the analytic result.



Recent 2D code for evolving the Teukolsky equation (for 8 =0 and
g = —2) (Krivan, Laguna, Papadopoulos, NA).

MOTIVATION

To revisit problems previously approached in the frequency domain,
and explore effects due to the rotation of the BH in time-evolutions.
To provide a benchmark test for numerical relativity. To contribute
to a close-limit approcdmation for rotating holes.

THE STORY S0 FAR

o The late-time tail is similar to Schwarzschild, but different
- multipoles are mixed due to i) rotational effects, and ii)
“imperfect initial data”

e It is sometimes possible to distinguish two distinet regimes of
mode-Tinging (asymmetries in location of QNMSs).

e Slight amplification due to superradiance can be extracied, but
the initial data requires considerable fine-tuning.

e In parallell, initial data suitable for the Teukolsky equation have
“been formulated (Campanelli, Lousto), and the code has provided
an independent test of the close-limit approximation for
non-rotating BH.

o Framework for 2nd order perturbations (Campanelli, Lousto)
e Also extended to study accretion of fluids (Papadopoulos, Font)
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Hlustrating th  lowly damped, osciliating, %o for o scalor i d
outs d a Kerr lack hole. The frames show afM D 300
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Comparing the late-time behaviour in a typical scalar-field
evolution for m = 2 and a = 0.99M to the danping rates of the
tweo slowest damped QJNMs.
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Schematic explanation of the new phenomenon seen in the
numerical evolulions of Kerr perturbations. Left panel: The
standard scenario: An infalling pulse excites the Q)NMs that then
propagate to wnfinily and the horizon. At lale times,
backseattering due fo the curvature in the far-zone dominaes.
Right panel: For frequencies i) that lie in the superradiant regime,
and i) that experience o “potential peak” in the region [ry, 0o
there will be o resonance cavity outside the black hole. At late
times, the waves leaking out of this cavity dominate the signal
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