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Need to obtain 
this! 

Adiabatic orbital evolution  
via self-force 
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Talk Plan 
 Review of the mode sum approach 

 Derivation of the RP: “direct force” approach 

 Derivation of the RP: l-mode Green’s function approach 

 Implementation for radial trajectories 

 Implementation for circular orbits (in progress) 

 Gauge problem - and resolution strategy 

Capra V - Penn State May-June 2002 

 Analytic approximation 
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Mode-sum prescription 
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Now expand in Ylm, sum over m, and take xz: 

Derivation of the RP : Scalar field  
(based on the analytic form of the direct force) 
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[Mino, Nakano, & Sasaki, 2001] 
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Scalar RP in Schwarzschild: summary 
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(Coordinates chosen such that the orbit is equatorial) 
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Derivation of the RP: gravitational case  
(based on the analytic form of the direct force) 
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In harmonic 
gauge! 
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Note: the P(n)’s, hence the RP values, depend on  
our choice of the off-worldline extension of kαβγδ  
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Considerations in choosing the k-extension 
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 In our (non-elegant, yet convenient) scheme, the l-mode contributions 
are defined through decomposing each vectorial α-component in scalar Ylm: 
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Wish to design k(θ,ϕ) such that decomposing this in Ylm turns out simple!  

 Derivation of the gravitational RP better be simple 

 Numerical computation of the full modes better be simple 

 Calculation of the “gauge difference” (see below) better be simple 

Note: Final result (Fself) does not depend on the k-extension; one just needs 
to be sure to apply the same extension to both the RP and the full modes. 
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RP values in Schwarzschild : Grav. case 

Capra V - Penn State May-June 2002 

k-extension RP values especially convenient for…

I
“fixed contravariant
components”
(in Schwarzcshild
coordinates)

Numerical calculation of the full
modes

II
“revised I” (some k
components multiplied by
certain functions of θ)

Same as I
Calculation of the scalar-harmonic
l-modes (assures finite mode
coupling)

III
gαβ(x): “same as”;
uα(x): parallelly-propagated
along a normal geodesic

Calculating the “gauge difference”

IV “revised III” (under study) Same as III
Calculating the full modes &
gauge difference, still with a finite
mode-coupling
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 Analytic solutions for the Gn’s (in terms of Bessel functions) 

Deriving the RP via local analysis of the  
(l-mode) Green’s function 
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 This method relies only on MST/QW’s original tail formula, 
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 G0, G1, G2 suffice for obtaining A, B, C, & also D 
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 Method applied so far for radial & circular orbits in 
Schwarzschild, for both scalar [LB & Ori, 2000] and gravitational [LB 
2001,2]  cases 

Green’s function method - cont. 

 Agreement in all RP values for all cases examined. Especially 
important is the independent verification of D=0, which cannot be 
easily checked numerically. 

 Green’s function method involes tedious calculations (though 
by now mostely automated) and difficult to apply to general orbits.  

 It’s main advantage: quite easily extendible to higher 
orders in the 1/L expansion!  (Direct force method requires 
knowledge of higher-order Hadamard terms.) 
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Gauge problem 
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 Self force calculations require hαβ (or it’s tensor-harmonic modes 
     ) in the harmonic gauge.  

 BH perturbations are not simple in that gauge, even in 
Schwarzschild: separable with respect to l,m but various elements of the 
tensor-harmonic basis remain coupled. Unclear how this set of coupled 
equations will behave in numerical integrations. 

lmilmi Yh )()(
αβ

 Two possible strategies: 

Either tackle the perturbation equations in the harmonic gauge ; or 

Formalize and calculate the self force in a different gauge: e.g., 
Regge-Wheeler gauge (for Schwarzschild), or the radiation gauge 
(for Schawrzschild or Kerr) 
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Gauge transformation of the self force 
Capra V - Penn State May-June 2002 

[LB & Ori, 2001] 
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 Then, 
given  :RH →

αξ

Radiation or RW 
gauges αββααβ ξξδ ;; +=→RHh  

 δF not necessarily well defined at z.  Examples: 

 If δF attains a well defined limit x→z, then (RP)R=(RP)H; however - 

RadiationH
selfF →δ is direction-dependent even for a static particle 

in flat space 

is direction-dependent for all orbits in 
Schwarzschild, except strictly radial ones  

RWH
selfF →δ
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Dealing with the gauge problem 
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 For radial trajectories in Schwarzschild - no gauge problem! One 
implements the mode-sum scheme with the full modes       calculated 
in the RW gauge, and with the same RP as in the H gauge.  

l
fullF

 If δF is discontinuous (direction-dependent) 
but finite as x→z: average over spatial directions? 
 If δF admits at least one direction from 
which x→z is finite: define a “directional” 
force? 

In both cases, a useful sense 
of the resulting quantities 
must be made by prescribing 
the construction of desired 
gauge- invariant quantities 
out of them. [Ori 02] 

 A general strategy: Calculating the force in an “intermediate” gauge, 
obtained from the R-gauge by modifying merely its “direct” part (such 
that it resembles the one of the H-gauge). This is how it’s done: 
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Self force in the “intermediate” gauge 
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Mode-sum scheme in the     gauge 
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Ĥ
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R-gauge modes 
(easy to obtain) 

l-modes of δF (to be 
obtained analytically) 

H-gauge RP 

 Preliminary Results for radiation gauge in Schwarzschild: 

δFl has no contribution to A, B, or C ! 

Calculation of contribution to D (zero?) under way 

 Note: Must apply the same k-extension for Fl, δFl, and the RP! 
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Implementing the mode-sum method: 
radial trajectories (RW gauge) 
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 We worked entirely within the RW gauge: 

 Parameters A, B, C for the RW modes obtained independently by 
applying the Green’s function technique to Moncrief’s equation. 
We found (RP)RW=(RP)H. 

l-mode MP derived (via twice differentiating) from Moncrief’s 
scalar function ψl, satisfying  Source)(**,, =+− ll

rr
l
tt rV ψψψ

Then, l-mode full force derived through ll
full hkF δβγ

αβγδα µ ;=

Mode-sum formula applied with H-gauge RP - see Lousto’s talk. 

Explicit demonstration of the RP’s “gauge-invariance” property 
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Large l analytic approximation 
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Conjecture: l-mode expansion of Ftail converges faster than any power of l. 

(conjecturing here is not risky, since the result is tested numerically) 

Fl
full and Fl

dir have the same 1/L expansion 

In particular:  
O(L-2) term of Fl

full can be inferred from that of Fl
dir 

This, in turn, is obtained by extending the Green’s 
function method one further order  
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 Integrated “energy loss” by l-mode at large l (for                     ): 

2
)()(

)/(
32
15 −

∞−∞−

=−= ∫∫ LMdFd
EH

tl

EH
l µµττµ

ττ
r e gE but gauge-dependent! 

1,0 =∞= r

analytic approximation - cont. 

( ) )(1/4
16
15

/

4222
2

2
−− +−+−=

−−−≡

LOLrM
r

LCBLAFF rrrrl
bare

rl
reg

EEµ

Capra V - Penn State May-June 2002 

 For radial trajectories in Schwarzschild (in RW gauge) we found 
(LB & Lousto, 02) 
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In perfect 
agreement with 

numerical results! 
(see Lousto’s talk) 
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Implementing the mode-sum method: 
circular orbits (    gauge) Ĥ
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 Current status: 
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full
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full
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Gauge difference: being 
calculated (by solving for ξ, 
obtaining δF, and decomposing 
into modes.) 

Full modes in RW gauge: 

Numerical calculation of 
the tensor-harmonic MP 
modes (via Moncrief).  

Still need to prescribe & 
carry out the construction 
of the “scalar-harmonic” 
force mode.  

H-gauge RP  
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What’s next? 
 Circular case will provide a first opportunity for comparing 
self-force and energy balance approaches. 

Capra V - Penn State May-June 2002 

 Generic orbits in Schwarzschild: already have the RP and 
numerical code; soon will have δFl. 

 Orbits in Kerr: key point - be able to obtain MP. Progress relies on this. 
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