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Need to obtain 
this! 

Adiabatic orbital evolution  
via self-force 
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Talk Plan 
 Review of the mode sum approach 

 Derivation of the RP: “direct force” approach 

 Derivation of the RP: l-mode Green’s function approach 

 Implementation for radial trajectories 

 Implementation for circular orbits (in progress) 

 Gauge problem - and resolution strategy 

Capra V - Penn State May-June 2002 

 Analytic approximation 
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Mode-sum prescription 
)(lim xtailzxself FF →=

[ ])()(lim xx dirfullzx FF −= →

[ ]∑
∞

=
→ −=

0
)()(lim

l

l
dir

l
fullzx xx FF

[ ] DLCBLAFF
l

l
fullself zx −−−−= ∑ → )(

[ ] ( )[ ]∑∑
∞

=

∞

=

++−−++−= →→
00

)()( )(
l

l
dir

l

l
full LCBLAFLCBLAF zxzx

2/1+l D

τ

z
x

Capra V - Penn State May-June 2002 



5 

Now expand in Ylm, sum over m, and take xz: 

Derivation of the RP : Scalar field  
(based on the analytic form of the direct force) 
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[Mino, Nakano, & Sasaki, 2001] 

Capra V - Penn State May-June 2002 

τ

z

x

xδ

ε

Introducing ,),( )(2
0

nn xPxO δδεε α ∝+=

one obtaines (Barack, Mino, Nakano, Ori, & Sasaki, 2002) 

)()7(7
0

)4(5
0

)1(3
0 xOPPPF dir δαααα εεε +++= −−−

ααα BLAF zxdir
l +=→ )(



6 

Scalar RP in Schwarzschild: summary 
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(Coordinates chosen such that the orbit is equatorial) 
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Derivation of the RP: gravitational case  
(based on the analytic form of the direct force) 

Capra V - Penn State May-June 2002 
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Note: the P(n)’s, hence the RP values, depend on  
our choice of the off-worldline extension of kαβγδ  
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Considerations in choosing the k-extension 
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 In our (non-elegant, yet convenient) scheme, the l-mode contributions 
are defined through decomposing each vectorial α-component in scalar Ylm: 
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Wish to design k(θ,ϕ) such that decomposing this in Ylm turns out simple!  

 Derivation of the gravitational RP better be simple 

 Numerical computation of the full modes better be simple 

 Calculation of the “gauge difference” (see below) better be simple 

Note: Final result (Fself) does not depend on the k-extension; one just needs 
to be sure to apply the same extension to both the RP and the full modes. 
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RP values in Schwarzschild : Grav. case 
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k-extension RP values especially convenient for…

I
“fixed contravariant
components”
(in Schwarzcshild
coordinates)

Numerical calculation of the full
modes

II
“revised I” (some k
components multiplied by
certain functions of θ)

Same as I
Calculation of the scalar-harmonic
l-modes (assures finite mode
coupling)

III
gαβ(x): “same as”;
uα(x): parallelly-propagated
along a normal geodesic

Calculating the “gauge difference”

IV “revised III” (under study) Same as III
Calculating the full modes &
gauge difference, still with a finite
mode-coupling

scalargrav RR αα =

sca

grav

Ruu
R

β
β

α
β

α

α

δ )( +

=



10 

 Analytic solutions for the Gn’s (in terms of Bessel functions) 

Deriving the RP via local analysis of the  
(l-mode) Green’s function 

Capra V - Penn State May-June 2002 

 This method relies only on MST/QW’s original tail formula, 
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 G0, G1, G2 suffice for obtaining A, B, C, & also D 
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 Method applied so far for radial & circular orbits in 
Schwarzschild, for both scalar [LB & Ori, 2000] and gravitational [LB 
2001,2]  cases 

Green’s function method - cont. 

 Agreement in all RP values for all cases examined. Especially 
important is the independent verification of D=0, which cannot be 
easily checked numerically. 

 Green’s function method involes tedious calculations (though 
by now mostely automated) and difficult to apply to general orbits.  

 It’s main advantage: quite easily extendible to higher 
orders in the 1/L expansion!  (Direct force method requires 
knowledge of higher-order Hadamard terms.) 
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Gauge problem 
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 Self force calculations require hαβ (or it’s tensor-harmonic modes 
     ) in the harmonic gauge.  

 BH perturbations are not simple in that gauge, even in 
Schwarzschild: separable with respect to l,m but various elements of the 
tensor-harmonic basis remain coupled. Unclear how this set of coupled 
equations will behave in numerical integrations. 

lmilmi Yh )()(
αβ

 Two possible strategies: 

Either tackle the perturbation equations in the harmonic gauge ; or 

Formalize and calculate the self force in a different gauge: e.g., 
Regge-Wheeler gauge (for Schwarzschild), or the radiation gauge 
(for Schawrzschild or Kerr) 
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Gauge transformation of the self force 
Capra V - Penn State May-June 2002 

[LB & Ori, 2001] 
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Radiation or RW 
gauges αββααβ ξξδ ;; +=→RHh  

 δF not necessarily well defined at z.  Examples: 

 If δF attains a well defined limit x→z, then (RP)R=(RP)H; however - 

RadiationH
selfF →δ is direction-dependent even for a static particle 

in flat space 

is direction-dependent for all orbits in 
Schwarzschild, except strictly radial ones  

RWH
selfF →δ
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Dealing with the gauge problem 
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 For radial trajectories in Schwarzschild - no gauge problem! One 
implements the mode-sum scheme with the full modes       calculated 
in the RW gauge, and with the same RP as in the H gauge.  

l
fullF

 If δF is discontinuous (direction-dependent) 
but finite as x→z: average over spatial directions? 
 If δF admits at least one direction from 
which x→z is finite: define a “directional” 
force? 

In both cases, a useful sense 
of the resulting quantities 
must be made by prescribing 
the construction of desired 
gauge- invariant quantities 
out of them. [Ori 02] 

 A general strategy: Calculating the force in an “intermediate” gauge, 
obtained from the R-gauge by modifying merely its “direct” part (such 
that it resembles the one of the H-gauge). This is how it’s done: 
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Self force in the “intermediate” gauge 
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Mode-sum scheme in the     gauge 
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Ĥ
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R-gauge modes 
(easy to obtain) 

l-modes of δF (to be 
obtained analytically) 

H-gauge RP 

 Preliminary Results for radiation gauge in Schwarzschild: 

δFl has no contribution to A, B, or C ! 

Calculation of contribution to D (zero?) under way 

 Note: Must apply the same k-extension for Fl, δFl, and the RP! 
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Implementing the mode-sum method: 
radial trajectories (RW gauge) 
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 We worked entirely within the RW gauge: 

 Parameters A, B, C for the RW modes obtained independently by 
applying the Green’s function technique to Moncrief’s equation. 
We found (RP)RW=(RP)H. 

l-mode MP derived (via twice differentiating) from Moncrief’s 
scalar function ψl, satisfying  Source)(**,, =+− ll

rr
l
tt rV ψψψ

Then, l-mode full force derived through ll
full hkF δβγ

αβγδα µ ;=

Mode-sum formula applied with H-gauge RP - see Lousto’s talk. 

Explicit demonstration of the RP’s “gauge-invariance” property 
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Large l analytic approximation 
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Conjecture: l-mode expansion of Ftail converges faster than any power of l. 

(conjecturing here is not risky, since the result is tested numerically) 

Fl
full and Fl

dir have the same 1/L expansion 

In particular:  
O(L-2) term of Fl

full can be inferred from that of Fl
dir 

This, in turn, is obtained by extending the Green’s 
function method one further order  
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 Integrated “energy loss” by l-mode at large l (for                     ): 
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 For radial trajectories in Schwarzschild (in RW gauge) we found 
(LB & Lousto, 02) 
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In perfect 
agreement with 

numerical results! 
(see Lousto’s talk) 
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Implementing the mode-sum method: 
circular orbits (    gauge) Ĥ
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 Current status: 
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full
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full

H
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Gauge difference: being 
calculated (by solving for ξ, 
obtaining δF, and decomposing 
into modes.) 

Full modes in RW gauge: 

Numerical calculation of 
the tensor-harmonic MP 
modes (via Moncrief).  

Still need to prescribe & 
carry out the construction 
of the “scalar-harmonic” 
force mode.  

H-gauge RP  
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What’s next? 
 Circular case will provide a first opportunity for comparing 
self-force and energy balance approaches. 

Capra V - Penn State May-June 2002 

 Generic orbits in Schwarzschild: already have the RP and 
numerical code; soon will have δFl. 

 Orbits in Kerr: key point - be able to obtain MP. Progress relies on this. 
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