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• A decomposition of a Green’s function for the perturbed Einstein
equations

• A particular normal coordinate system

• “Source” fields

• Gauge invariant quantities for a circular orbit of the
Schwarzschild geometry

• Regularization parameters

• Scalar field numerical results for a circular orbit

• Gravitational field self force numerical results
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Decomposition
Assume a vacuum solution of the Einstein equations for the background
geometry, go

ab. A test particle of small mass µ moves along a geodesic Γ
of go

ab.

• Solve the perturbed Einstein equations to find the retarded metric
perturbation hret

ab caused by µ.

• Decompose:
hret

ab = hS
ab + hR

ab ↔ hdir
ab + htail

ab

• hS
ab is a solution of the inhomogeneous perturbed Einstein equations and

is singular at the particle. hR
ab is a homogeneous solution and is smooth.

• The self force arises from hR
ab = hret

ab− hS
ab, as the particle moves along a

geodesic of go
ab + hR

ab.
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hR
ab = hret

ab − hS
ab

• hR
ab is the Regularized Radiation Reaction Remainder.

• hS
ab is the Singular Source Subtrahend.
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Normal coordinates are locally inertial

gab = ηab +
1
2
xixjg0

ab,ij +
1
6
xixjxkg0

ab,ijk + O(r4), r → 0,

i, j, . . . are spatial indices. x, y and z are locally Cartesian and map to r,
θ, φ
R = length scale of the background geometry.

Thorne, Hartle and Zhang choice of normal coordinates is defined in a
neighborhood about a geodesic in a vacuum spacetime.

gab = ηab + 2Hab + 3Hab + O(r4/R4), r → 0,

2Habdxadxb = −Eijx
ixj(dt2 + δkldxkdxl) +

4
3
εkpqBq

ix
pxidt dxk,
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gab = ηab + 2Hab + 3Hab + O(r4/R4), r → 0,

2Habdxadxb = −Eijx
ixj(dt2 + δkldxkdxl) +

4
3
εkpqBq

ix
pxidt dxk,

3Habdxadxb = −1
3
Eijkx

ixjxk(dt2 + δlmdxldxm) +
2
3
εkpqBq

ijx
pxixjdt dxm,

E and B are spatial, symmetric, tracefree and related to the Riemann
tensor and its derivatives evaluated on the geodesic; in particular,
Eij = Rtitj and Bij = εi

pqRpqjt/2.
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Tidal distortions of a Schwarzschild black hole
Put a small black hole, µ ¿R, on a geodesic of the background geometry.
The Schwarzschild metric is

gschw
ab = −(1− 2µ/r)dt2 + dr2/(1− 2µ/r) + r2dΩ2

Quadrupole tidal distortion of the black hole by the background geometry
distorts the metric by 2hab, with 2hab → 2Hab for µ ¿ r ¿R

2habdxadxb = −Eijx
ixj

[
(1− 2µ/r)2dt2 + dr2 + (r2 − 2µ2)(dθ2 + sin2 θdφ2)

]

+
4
3
εkpqBq

ix
pxi(1− 2µ/r)dt dxk.

This is an elementary result from the Regge-Wheeler perturbation analysis
of a black hole.
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Octupole tidal distortion of the black hole is

3habdxadxb = −1
3
Eijkx

ixjxk
[
(1− 2µ/r)2(1− µ/r)dt2 + (1− µ/r)dr2

+(r2 − 2µr + 4µ3/5r)(dθ2 + sin2 θdφ2)
]

+
2
3
εkpqBq

ijx
pxixj(1− 2µ/r)(1− 4µ/3r)dt dxk.
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NOTES:

• The singular part of hS
ab is the part of the Schwarzschild geometry

which is linear in µ.

• Additions to hS
ab are the parts of 2hab which are linear in µ/r × Eijx

ixj

and Bijx
ixj and similar terms from 3hab.

• Or, hS
ab is the tidally distorted Coulomb field of the black hole.

• 2h
µ
ab is the quadrupole tidal distortion of any object’s Coulomb field, as

long as the object has no appreciable higher multipole moments.

hS
ab ≡ 0h

µ
ab + 2h

µ
ab + 3h

µ
ab,
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hS
ab ≡ 0h

µ
ab + 2h

µ
ab + 3h

µ
ab,

superscript µ means “linear in µ”

0h
µ
abdxadxb = 2µ/r(dt2 + dr2)

2h
µ
abdxadxb =

4µ

r
Eijx

ixjdt2 − 8µ

3r
εkpqBq

ix
pxidt dxk

3h
µ
abdxadxb =

µ

3r
Eijkx

ixjxk
[
5dt2 + dr2 + 2r2(dθ2 + sin2 θdφ2)

]

−20µ

9r
εkpqBq

ijx
pxixjdt dxk,

The coordinates are the locally inertial THZ coordinates which follow
the test particle. The gauge transformation to the harmonic gauge is
straightforward.
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Asymptotic matching
Where µ ¿ r ¿R, the geometry of a small mass moving along a
geodesic should be well described either by the background metric
perturbed by a small mass, or by the Schwarzschild metric perturbed by
weak tidal distortions. Thus the metric perturbation of the background
geometry, in this region, should be approximately the part of the
perturbed Schwarzschild geometry which is linear in µ.

– Typeset by FoilTEX – 10



Self force on a circular orbit of the Schwarzschild geometry.

• Consider a small mass µ moving along a particular geodesic of the
Schwarzschild geometry.

• Use tensor spherical harmonics to solve for the `,m retarded metric
perturbation hret

`m ab caused by the particle.

• Find the THZ coordinates as functions of the Schwarzschild coordinates
for the geodesic.

• Express the source field hS
ab in terms of the Schwarzschild coordinates

and decompose it in terms of tensor harmonics, hS
`m ab.

• The tensor harmonic decomposition of the reaction field is
hR

`m ab = hret
`m ab − hS

`m ab
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• The tensor harmonic decomposition of the reaction field is
hR

`m ab = hret
`m ab − hS

`m ab.

• The self force acting on the particle results in the worldline being
modified to be a geodesic of the perturbed geometry

go
ab + hR

ab = go
ab +

∑

`m

hR
`m ab
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Geodesics of the perturbed Schwarzschild geometry
The Geodesic equation is

dua

ds
=

1
2
ubuc ∂

∂xa
(go

bc + hR
bc)Γ

∂/∂t and ∂/∂φ are not Killing vectors of go
ab + hR

ab, but define

ut = −E, and uφ = J

then

dE

ds
= −1

2
ubuc∂hR

ab

∂t

dJ

ds
=

1
2
ubuc∂hR

ab

∂φ
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For circular orbits

(E + uahR
at)

2 =
(R− 2M)2

R(R− 3M)
(1 + uaubhR

ab −
1
2
Ruaub∂hR

ab/∂r)

and

(J − uahR
aφ)2 =

R2M

R− 3M
(1 + uaubhR

ab)−
R3(R− 2M)
2(R− 3M)

uaub∂hR
ab/∂r.

The angular velocity Ω of a circular orbit as measured at infinity is

Ω2 = (dφ/dt)2 = (uφ/ut)2 = M/R3 − R− 3M

2R2
uaub∂hR

ab/∂r.
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The expressions given above for

Ω dE/ds dJ/ds and E − ΩJ

are all gauge invariant when evaluated at the particle—this is a technical
result based on gauge transformations in the Regge-Wheeler formalism.
Expressions for ut and uφ are also gauge invariant, the radius of the orbit
R is not.
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Scalar field and circular orbits of the Schwarzschild geometry.

The self force from a scalar field on a particle of scalar charge q is

Fa = q∇aψ
R

where
ψR = ψret − ψS
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With multipole expansions

ψR
`m(r, t) = ψret

`m(r, t)− ψS
`m(r, t),

the self force is found by evaluating

F self
a = ∇a

∑

`m

ψR
`mY`m

= ∇a

∑

`m

(ψret
`m − ψS

`m)Y`m

at the source point z.
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After summing over m

F self
a =

∑

`

(F ret
`a −FS

`a

)

The difference in multipole moments must be taken before the summation
over `.
The regularization parameters are derived from the multipole components
of ∇aψ

S evaluated at the source point.

lim
x→z

FS
`r =

(
` +

1
2

)
Ar + Br − 2

√
2Dr

(2`− 1)(2` + 3)

+
E1

rB3/2

(2`− 3)(2`− 1)(2` + 3)(2` + 5)
+ O(`−6).
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Ar = −sgn(∆)
[ro(ro − 3M)]1/2

ro
2(ro − 2M)

Br = −
�

ro − 3M

ro
4(ro − 2M)

�1/2 �
F1/2 −

(ro − 3M)F3/2

ro − 2M

�
,

and

Dr =

"
2ro

2(ro − 2M)

ro − 3M

#1/2 �
−M(ro − 2M)F−1/2

2ro
4(ro − 3M)

− (ro −M)(ro − 4M)F1/2

8ro
4(ro − 2M)

+
(ro − 3M)(5ro

2 − 7roM − 14M2)F3/2

16ro
4(ro − 2M)2

− 3(ro − 3M)2(ro + M)F5/2

16ro
4(ro − 2M)2

#
.

B3/2 is a constant, Fp = 2F1[p, 1
2; 1; M/(ro − 2M)]. The Ar and Br terms agree

with the recent results of Barack, Mino, Nakano, Ori and Sasaki.

The Dr and E1
r terms sum to zero. Their inclusion speeds up convergence of the sum.
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Derivation of the regularization parameters

ψS =
q

ρ

(
1 +

λijkX
iXjXk

ρ2
+

λijklX
iXjXkX l

ρ2
+

O(X5)
ρ2

)

ρ2 is the (spatial geodetic distance)2 through O(X2).
The λij... are dependent only upon the orbit and determined by ψS.
The Xi are locally the THZ x, y and z.
We need a multipole decomposition of ∂rψ

S.
If the particle is on the z-axis, only the m = 0 components contribute, and
the m = 0 part of a typical term above can be written as

ro
p(1− cosΘ)p/2(r − ro)q

ρn
,
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If the particle is on the z-axis, only the m = 0 components contribute, and
the m = 0 part of a typical term above can be written as

ro
p(1− cosΘ)p/2(r − ro)q

ρn
,

In Schwarzschild coordinates.

ro(1− cosΘ)1/2 ≈ distance near Θ = 0

and is C∞ elsewhere.
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We particularly require the expansion

(1− cosΘ)m+1/2 =
∞∑

`=0

A
m+1/2
` P`(cosΘ)

A
m+1/2
` = Bm+1/2(2` + 1)/ [(2`− 2m− 1)(2`− 2m + 1) . . .

(2` + 2m + 1)(2` + 2m + 3)] ,

where
Bm+1/2 = (−1)m+12m+3/2 [(2m + 1)!!]2 .

∞∑

`=0

A
m+1/2
` = 0.
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Figure 1: F ret
`r is displayed as a function of `, along with the result of it being regularized

by Ar, Br . . . E4
r . In principle the self force could be determined by summing up the

data points along curve B or any below it. A point where the data on a particular curve

changes sign from being negative to positive is labeled with +, from positive to negative

by ◦.
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Figure 2: ∆Ω2, the contribution to the change in orbital frequency, from the gravitational

self force, for a test particle at Ro = 10M is displayed as a function of `, along with the

result of it being regularized by Ar, Br . . . E4
r ; the labeling should be similar to that in

the previous figure.
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The last figure is based on preliminary, unvarnished results but reveals the
ability to calculate self force effects without summing to very large values
of `. In principle ∆Ω2 could be determined by summing up the data points
along any curve except the top one. For this figure all of the regularization
parameters have been determined by curve fitting (it would have been
better to use the analytically known parameters before doing the fitting).
Note that while ∆Ω2 is independent of the choice of gauge the radius of
the orbit Ro is not. Thus this figure alone conveys no interesting physical
information — However a comparison of two gauge invariant quantities,
such as those mentioned earlier, will be of interest.
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