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/ Motivation \

In his classic 1938 paper, Dirac calculated the self-force acting on
an electrically charged particle by invoking energy-momentum
conservation across a world tube that surrounds the particle’s
world line.

The world tube is constructed by emitting spacelike geodesics in
the directions orthogonal to the world line; the tube is at a fixed

spacelike distance away from the world line.




-

By relating field quantities at x to the state of the particle at x’
(with x and 2z’ linked by a spacelike geodesic), Dirac brought

unnecessary complications to the computations.

Dirac did it the hard way.
As a consequence, DeWitt and Brehme did it the hard way.

As a consequence, Mino, Sasaki, and Tanaka did it the hard way.
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Calculations in flat spacetime are much simplified if the world tube
is constructed with null geodesics instead [Teitelboim, Villarroel, van

Weert (1980); E.P. gr-qc/9912045].

The field quantities at x are much more naturally related to the
state of the particle at 2’ if x and x’ are linked by a null geodesic.
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Calculations in curved spacetime will also benefit from the use of

world tubes constructed from null geodesics.

To implement this idea, it is useful to construct a coordinate

system based on null geodesics emanating from the world line.

These coordinates — retarded normal coordinates — will be

defined in a (normal) neighbourhood of the world line.
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This idea, a variation on the theme of Fermi normal coordinates, is
spelled out in Synge’s 1964 book.

He didn’t, however, push it to completion.

His goal was also slightly different: he was interested in a large
neighbourhood of the world line in a weakly curved spacetime,
while I'm interested in a small neighbourhood in an arbitrary

spacetime.

- /
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2. Geometric construction

The retarded normal coordinates of = are (u,r, 0%).

proper time at x’
r: affine-parameter distance along (3

64: angles that specify which null geodesic
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4 3. Warning from flat spacetime O

The transformation from Lorentzian coordinates (t,x, ¥y, z) to
retarded coordinates (u,r, 6, ¢) in flat spacetime is

t = u-+r
xr = rsinfcosgo
y = rsinfsing
z = rcosb

These are based on the geodesic x =y =z = 0.

The transformation brings the metric to the form
ds* = —du® — 2 dudr + r*(d6* + sin® § d¢?)

The metric is singular on .

This means that tensor components are not defined on 7, and this

\property survives in curved spacetimes. /
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This difficulty is easily dealt with by introducing an orthonormal

tetrad
0 0 0 0

:Ea 61:%, €2 €3 — 5

- dy’ 0z

€0

and working with frame components of tensors.

These will be well defined on and off ~.

Tetrads play a central role in the construction of the retarded null
coordinates — they are the fundamental objects from which the

metric is constructed.
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4. Definition of RNC

Let v be an arbitrary world line z& (")

% X . / / /

A with tangent vector u® = dz® /dt’;

t' is proper time.

& P Let (u®,e®) be an orthonormal tetrad
—_— L B ’

X =) that is Fermi-Walker transported on .

Let x be a point in the normal neighbourhood of ~.
Let 3 be the unique null geodesic that connects = to ~.

Let 2’ be the point at which 3 intersects ~.

\_ /
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Then the quasi-cartesian version of the retarded normal

coordinates of the point = are defined by

u = t' = proper time at 2’

/

1% = —e oo (2, 1)

where o(z’, x) is Synge’s world function.

The statement that x and z’ are linked by a null geodesic is

o(x',z) =0

\_ /
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/To go from the quasi-cartesian coordinates £¢ to the \

quasi-spherical coordinates (r,0) we first define a radius

/
r=/0442%%% = u® o

This can be shown to be an affine parameter on all null geodesics

(§ that emanate from z’.

These geodesics are described by the relations £¢ = r 2%, in which
0 is a constant unit vector: §,,Q2%Q°0 = 1.

The transformation to quasi-spherical coordinates is then

% (r, 64 = rQe(64)

where 84 are two angles that parameterize the vector .

\For example, 2% = (sin # cos ¢, sin 0 sin ¢, cos 7). /
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/ 5. Metric in RNC

The metric at x is computed by first constructing (e, e

@), an

/ /

orthonormal tetrad obtained by parallel transport of (u® ,e% ) on

the null geodesic (.

The metric is expressed in terms of frame components of the

Riemann tensor evaluated on 7.
For example, it involves
Raob0(tt) = Raryrrr (a')eg u™ e u
The dependence of the metric on u comes from these frame

components.

The metric is expressed as an expansion in powers of r.

The dependence on the angles comes from the unit vector Q%(94)

~

/
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/VVe have

ds® = guu du® — 2 dudr + 2gya dud0? + gap A6 dOP

with
Juu — —1 — TQRCQdQQCQd -+ O(Tg)
2
JuA — gr?) (RaOcOQC + RachQCQd) ?4 =+ O(T4)
L QQ L 1 4 R Qc Qc
gaB = T AB 374 ( a0b0 T RaObc + RbOac
+ RacbdQCQd> %QbB -+ O(T5)
and
o _ 00 _ 0 b 5
0% = 504" Qap = 0,02%0% = diag(1,sin” 6)

These results, and those below, assume that the world line 7 is a

geodesic, but there is no difficulty in generalizing to arbitrary

Qvorld lines.

/
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Because the metric is obtained from a tetrad, we have immediate

access to the parallel propagator on :

9w (1,2) = —€5 (v)uar (') + €5 (z)ed, (¢)

The retarded normal coordinates permit an easy construction of

world tubes of constant r.

These have a surface element given by
1
dS =T o [1 — grQ (Roo + 2R0a 2" + RapQQ°) + O(r3)] r? duds)

It involves the frame components of the Ricci tensor.

\_

/
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6. Electromagnetic field tensor

Straightforward computations based on the DeWitt-Brehme
electromagnetic Green’s functions yield the frame components of
the retarded electromagnetic field tensor of a point electric charge:

FaO — T%Qa + chOdOQCQan — §(5RaOCOQC + RacOdQCQd)
(&

19 (5R00 + R+ RchCQd)Qa

+ g(QRaO _ Racﬂc) +

+ Fo(tail) + O(r)
e e

Fab — 5 (RaObc — RbOac>QC + 5 (RaOcOQb — }%bOcOQa)QC

_ S(Raoﬂb — RpoQ4) + Fup(tail) + O(7)

These can be substituted into the electromagnetic stress-energy

tensor for integration across a world tube of constant r.

\_ /
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/ 7. What’s left to do \

e Generalize results to arbitrary world lines (easy).

e Complete the derivation of the DeWitt-Brehme equations of

motion (straightforward but tedious).

e Implement the Quinn-Wald comparison axiom (first attempt
tfailed, perhaps because of computational error; neighbourhood

identification might be tricky).

e Consider scalar and gravitational self-forces (straightforward
but tedious).

e See if the RNC simplify the computation of mode-sum

regularization parameters (7777).

In the end, no new result will be derived with this framework, but I
\believe that it is the natural framework for self-force Calculation8/
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