Retarded normal coordinates

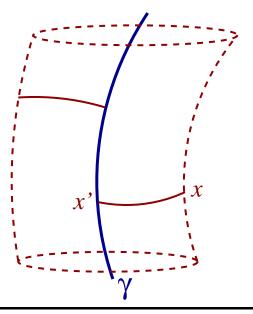
Work in progress (1/4 completed); in collaboration with Claude Barrabès

- **1.** Motivation
- **2.** Geometric construction
- **3.** Warning from flat spacetime
- 4. Definition of RNC
- **5.** Metric in RNC
- 6. Electromagnetic field tensor
- 7. What's left to do

Motivation

In his classic 1938 paper, Dirac calculated the self-force acting on an electrically charged particle by invoking energy-momentum conservation across a world tube that surrounds the particle's world line.

The world tube is constructed by emitting **spacelike** geodesics in the directions orthogonal to the world line; the tube is at a fixed spacelike distance away from the world line.



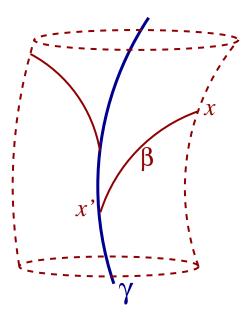
By relating field quantities at x to the state of the particle at x' (with x and x' linked by a spacelike geodesic), Dirac brought unnecessary complications to the computations.

Dirac did it the hard way.

As a consequence, DeWitt and Brehme did it the hard way.

As a consequence, Mino, Sasaki, and Tanaka did it the hard way.

Calculations in flat spacetime are much simplified if the world tube is constructed with **null** geodesics instead [Teitelboim, Villarroel, van Weert (1980); E.P. gr-qc/9912045].



The field quantities at x are much more naturally related to the state of the particle at x' if x and x' are linked by a null geodesic.

Calculations in curved spacetime will also benefit from the use of world tubes constructed from null geodesics.

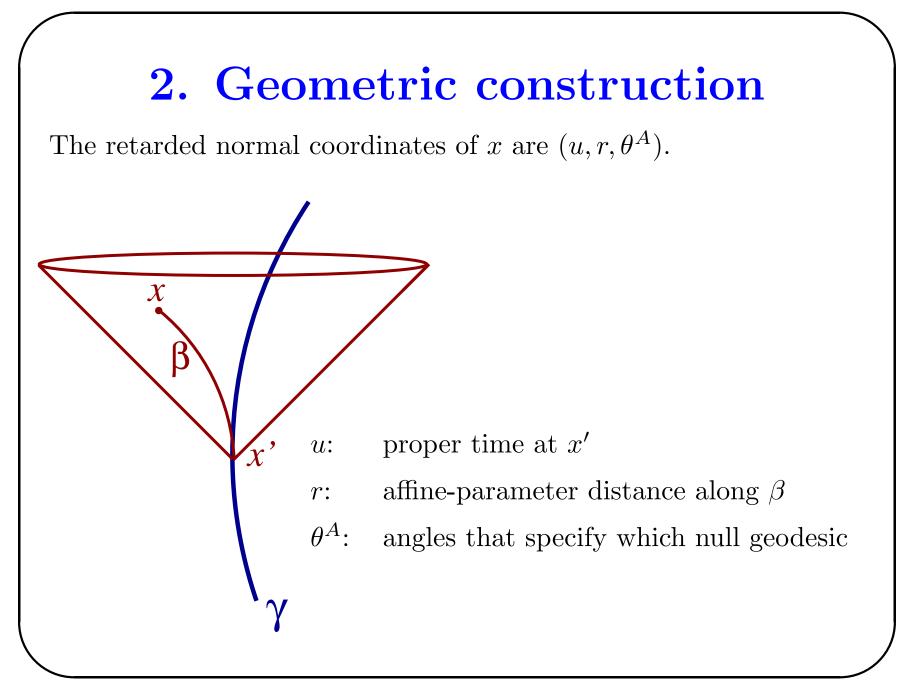
To implement this idea, it is useful to construct a coordinate system based on null geodesics emanating from the world line.

These coordinates — **retarded normal coordinates** — will be defined in a (normal) neighbourhood of the world line.

This idea, a variation on the theme of Fermi normal coordinates, is spelled out in Synge's 1964 book.

He didn't, however, push it to completion.

His goal was also slightly different: he was interested in a large neighbourhood of the world line in a weakly curved spacetime, while I'm interested in a small neighbourhood in an arbitrary spacetime.



3. Warning from flat spacetime

The transformation from Lorentzian coordinates (t, x, y, z) to retarded coordinates (u, r, θ, ϕ) in flat spacetime is

t = u + r $x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

These are based on the geodesic x = y = z = 0.

The transformation brings the metric to the form

$$ds^{2} = -du^{2} - 2\,dudr + r^{2}(d\theta^{2} + \sin^{2}\theta\,d\phi^{2})$$

The metric is **singular** on γ .

This means that tensor components are not defined on γ , and this property survives in curved spacetimes.

This difficulty is easily dealt with by introducing an **orthonormal tetrad**

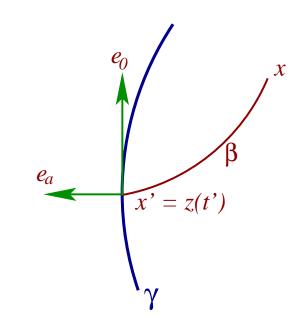
$$e_0 = \frac{\partial}{\partial t}, \quad e_1 = \frac{\partial}{\partial x}, \quad e_2 = \frac{\partial}{\partial y}, \quad e_3 = \frac{\partial}{\partial z}$$

and working with **frame components** of tensors.

These will be well defined on and off γ .

Tetrads play a central role in the construction of the retarded null coordinates — they are the fundamental objects from which the metric is constructed.

4. Definition of RNC



Let γ be an arbitrary world line $z^{\alpha'}(t')$ with tangent vector $u^{\alpha'} = dz^{\alpha'}/dt'$; t' is proper time.

Let $(u^{\alpha'}, e_a^{\alpha'})$ be an orthonormal tetrad that is Fermi-Walker transported on γ .

Let x be a point in the normal neighbourhood of γ . Let β be the unique null geodesic that connects x to γ . Let x' be the point at which β intersects γ . Then the **quasi-cartesian** version of the retarded normal coordinates of the point x are defined by

 $u \equiv t' \equiv$ proper time at x'

$$\hat{x}^a \equiv -e_a^{\alpha'} \sigma_{\alpha'}(x', x)$$

where $\sigma(x', x)$ is Synge's world function.

The statement that x and x' are linked by a null geodesic is

$$\sigma(x',x) = 0$$

To go from the quasi-cartesian coordinates \hat{x}^a to the **quasi-spherical** coordinates (r, θ^A) we first define a radius

 $r \equiv \sqrt{\delta_{ab} \hat{x}^a \hat{x}^b} = u^{\alpha'} \sigma_{\alpha'}$

This can be shown to be an **affine parameter** on all null geodesics β that emanate from x'.

These geodesics are described by the relations $\hat{x}^a = r \Omega^a$, in which Ω^a is a constant unit vector: $\delta_{ab}\Omega^a\Omega^b = 1$.

The transformation to quasi-spherical coordinates is then

 $\hat{x}^a(r,\theta^A) = r\Omega^a(\theta^A)$

where θ^A are two angles that parameterize the vector Ω^a . For example, $\Omega^a = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$.

5. Metric in RNC

The metric at x is computed by first constructing $(e_0^{\alpha}, e_a^{\alpha})$, an orthonormal tetrad obtained by parallel transport of $(u^{\alpha'}, e_a^{\alpha'})$ on the null geodesic β .

The metric is expressed in terms of frame components of the **Riemann tensor** evaluated on γ .

For example, it involves

$$R_{a0b0}(u) \equiv R_{\alpha'\gamma'\beta'\delta'}(x')e_a^{\alpha'}u^{\gamma'}e_b^{\beta'}u^{\delta'}$$

The dependence of the metric on u comes from these frame components.

The metric is expressed as an expansion in powers of r.

The dependence on the angles comes from the unit vector $\Omega^a(\theta^A)$.

We have

$$ds^{2} = g_{uu} du^{2} - 2 du dr + 2g_{uA} du d\theta^{A} + g_{AB} d\theta^{A} d\theta^{B}$$

with

$$g_{uu} = -1 - r^2 R_{c0d0} \Omega^c \Omega^d + O(r^3)$$

$$g_{uA} = \frac{2}{3} r^3 (R_{a0c0} \Omega^c + R_{acd0} \Omega^c \Omega^d) \Omega^a_A + O(r^4)$$

$$g_{AB} = r^2 \Omega_{AB} - \frac{1}{3} r^4 (R_{a0b0} + R_{a0bc} \Omega^c + R_{b0ac} \Omega^c)$$

$$+ R_{acbd} \Omega^c \Omega^d \Omega^a_A \Omega^b_B + O(r^5)$$

and

$$\Omega_A^a \equiv \frac{\partial \Omega^a}{\partial \theta^A}, \qquad \Omega_{AB} \equiv \delta_{ab} \Omega_A^a \Omega_B^b = \operatorname{diag}(1, \sin^2 \theta)$$

These results, and those below, assume that the world line γ is a **geodesic**, but there is no difficulty in generalizing to arbitrary world lines.

Because the metric is obtained from a tetrad, we have immediate access to the **parallel propagator** on β :

$$g^{\alpha}_{\ \alpha'}(x,x') = -e^{\alpha}_0(x)u_{\alpha'}(x') + e^{\alpha}_a(x)e^{a}_{\alpha'}(x')$$

The retarded normal coordinates permit an easy construction of world tubes of constant r.

These have a surface element given by

$$d\Sigma_{\alpha} = r_{,\alpha} \left[1 - \frac{1}{6} r^2 \left(R_{00} + 2R_{0a}\Omega^a + R_{ab}\Omega^a\Omega^b \right) + O(r^3) \right] r^2 du d\Omega$$

It involves the frame components of the Ricci tensor.

6. Electromagnetic field tensor

Straightforward computations based on the DeWitt-Brehme electromagnetic Green's functions yield the frame components of the retarded electromagnetic field tensor of a point electric charge:

$$F_{a0} = \frac{e}{r^2}\Omega_a + \frac{e}{3}R_{c0d0}\Omega^c\Omega^d\Omega_a - \frac{e}{6}\left(5R_{a0c0}\Omega^c + R_{ac0d}\Omega^c\Omega^d\right) + \frac{e}{6}\left(2R_{a0} - R_{ac}\Omega^c\right) + \frac{e}{12}\left(5R_{00} + R + R_{cd}\Omega^c\Omega^d\right)\Omega_a + F_{a0}(\text{tail}) + O(r)$$

$$F_{ab} = \frac{e}{2}\left(R_{a0bc} - R_{b0ac}\right)\Omega^c + \frac{e}{2}\left(R_{a0c0}\Omega_b - R_{b0c0}\Omega_a\right)\Omega^c - \frac{e}{2}\left(R_{a0}\Omega_b - R_{b0}\Omega_a\right) + F_{ab}(\text{tail}) + O(r)$$

These can be substituted into the electromagnetic stress-energy tensor for integration across a world tube of constant r.

7. What's left to do

- Generalize results to arbitrary world lines (easy).
- Complete the derivation of the DeWitt-Brehme equations of motion (straightforward but tedious).
- Implement the Quinn-Wald comparison axiom (first attempt failed, perhaps because of computational error; neighbourhood identification might be tricky).
- Consider scalar and gravitational self-forces (straightforward but tedious).
- See if the RNC simplify the computation of mode-sum regularization parameters (????).

In the end, no new result will be derived with this framework, but I believe that it is the **natural** framework for self-force calculations.