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Retarded normal coordinates
Work in progress (1/4 completed);

in collaboration with Claude Barrabès
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Motivation
In his classic 1938 paper, Dirac calculated the self-force acting on

an electrically charged particle by invoking energy-momentum

conservation across a world tube that surrounds the particle’s

world line.

The world tube is constructed by emitting spacelike geodesics in

the directions orthogonal to the world line; the tube is at a fixed

spacelike distance away from the world line.
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By relating field quantities at x to the state of the particle at x′

(with x and x′ linked by a spacelike geodesic), Dirac brought

unnecessary complications to the computations.

Dirac did it the hard way.

As a consequence, DeWitt and Brehme did it the hard way.

As a consequence, Mino, Sasaki, and Tanaka did it the hard way.
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Calculations in flat spacetime are much simplified if the world tube

is constructed with null geodesics instead [Teitelboim, Villarroel, van

Weert (1980); E.P. gr-qc/9912045].
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The field quantities at x are much more naturally related to the

state of the particle at x′ if x and x′ are linked by a null geodesic.
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Calculations in curved spacetime will also benefit from the use of

world tubes constructed from null geodesics.

To implement this idea, it is useful to construct a coordinate

system based on null geodesics emanating from the world line.

These coordinates — retarded normal coordinates — will be

defined in a (normal) neighbourhood of the world line.
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This idea, a variation on the theme of Fermi normal coordinates, is

spelled out in Synge’s 1964 book.

He didn’t, however, push it to completion.

His goal was also slightly different: he was interested in a large

neighbourhood of the world line in a weakly curved spacetime,

while I’m interested in a small neighbourhood in an arbitrary

spacetime.
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2. Geometric construction
The retarded normal coordinates of x are (u, r, θA).
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u: proper time at x′

r: affine-parameter distance along β

θA: angles that specify which null geodesic
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3. Warning from flat spacetime
The transformation from Lorentzian coordinates (t, x, y, z) to

retarded coordinates (u, r, θ, φ) in flat spacetime is

t = u+ r

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

These are based on the geodesic x = y = z = 0.

The transformation brings the metric to the form

ds2 = −du2 − 2 dudr + r2(dθ2 + sin2 θ dφ2)

The metric is singular on γ.

This means that tensor components are not defined on γ, and this

property survives in curved spacetimes.
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This difficulty is easily dealt with by introducing an orthonormal

tetrad

e0 =
∂

∂t
, e1 =

∂

∂x
, e2 =

∂

∂y
, e3 =

∂

∂z

and working with frame components of tensors.

These will be well defined on and off γ.

Tetrads play a central role in the construction of the retarded null

coordinates — they are the fundamental objects from which the

metric is constructed.
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4. Definition of RNC
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x’ = z(t’)
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Let γ be an arbitrary world line zα
′
(t′)

with tangent vector uα
′

= dzα
′
/dt′;

t′ is proper time.

Let (uα
′
, eα

′
a ) be an orthonormal tetrad

that is Fermi-Walker transported on γ.

Let x be a point in the normal neighbourhood of γ.

Let β be the unique null geodesic that connects x to γ.

Let x′ be the point at which β intersects γ.
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Then the quasi-cartesian version of the retarded normal

coordinates of the point x are defined by

u ≡ t′ ≡ proper time at x′

x̂a ≡ −eα′a σα′(x′, x)

where σ(x′, x) is Synge’s world function.

The statement that x and x′ are linked by a null geodesic is

σ(x′, x) = 0

11



'

&

$

%

To go from the quasi-cartesian coordinates x̂a to the

quasi-spherical coordinates (r, θA) we first define a radius

r ≡
√
δabx̂ax̂b = uα

′
σα′

This can be shown to be an affine parameter on all null geodesics

β that emanate from x′.

These geodesics are described by the relations x̂a = rΩa, in which

Ωa is a constant unit vector: δabΩ
aΩb = 1.

The transformation to quasi-spherical coordinates is then

x̂a(r, θA) = rΩa(θA)

where θA are two angles that parameterize the vector Ωa.

For example, Ωa = (sin θ cosφ, sin θ sinφ, cos θ).
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5. Metric in RNC
The metric at x is computed by first constructing (eα0 , e

α
a ), an

orthonormal tetrad obtained by parallel transport of (uα
′
, eα

′
a ) on

the null geodesic β.

The metric is expressed in terms of frame components of the

Riemann tensor evaluated on γ.

For example, it involves

Ra0b0(u) ≡ Rα′γ′β′δ′(x′)eα
′
a u

γ′eβ
′

b u
δ′

The dependence of the metric on u comes from these frame

components.

The metric is expressed as an expansion in powers of r.

The dependence on the angles comes from the unit vector Ωa(θA).
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We have

ds2 = guu du
2 − 2 dudr + 2guA dudθ

A + gAB dθ
AdθB

with

guu = −1− r2Rc0d0ΩcΩd +O(r3)

guA =
2

3
r3
(
Ra0c0Ωc +Racd0ΩcΩd

)
ΩaA +O(r4)

gAB = r2ΩAB −
1

3
r4
(
Ra0b0 +Ra0bcΩ

c +Rb0acΩ
c

+RacbdΩ
cΩd

)
ΩaAΩbB +O(r5)

and

ΩaA ≡
∂Ωa

∂θA
, ΩAB ≡ δabΩaAΩbB = diag(1, sin2 θ)

These results, and those below, assume that the world line γ is a

geodesic, but there is no difficulty in generalizing to arbitrary

world lines.
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Because the metric is obtained from a tetrad, we have immediate

access to the parallel propagator on β:

gαα′(x, x
′) = −eα0 (x)uα′(x

′) + eαa (x)eaα′(x
′)

The retarded normal coordinates permit an easy construction of

world tubes of constant r.

These have a surface element given by

dΣα = r,α

[
1− 1

6
r2
(
R00 + 2R0aΩa +RabΩ

aΩb
)

+O(r3)

]
r2dudΩ

It involves the frame components of the Ricci tensor.
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6. Electromagnetic field tensor
Straightforward computations based on the DeWitt-Brehme

electromagnetic Green’s functions yield the frame components of

the retarded electromagnetic field tensor of a point electric charge:

Fa0 =
e

r2
Ωa +

e

3
Rc0d0ΩcΩdΩa −

e

6

(
5Ra0c0Ωc +Rac0dΩ

cΩd
)

+
e

6

(
2Ra0 −RacΩc

)
+

e

12

(
5R00 +R+RcdΩ

cΩd
)
Ωa

+ Fa0(tail) +O(r)

Fab =
e

2

(
Ra0bc −Rb0ac

)
Ωc +

e

2

(
Ra0c0Ωb −Rb0c0Ωa

)
Ωc

− e

2

(
Ra0Ωb −Rb0Ωa

)
+ Fab(tail) +O(r)

These can be substituted into the electromagnetic stress-energy

tensor for integration across a world tube of constant r.
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7. What’s left to do
• Generalize results to arbitrary world lines (easy).

• Complete the derivation of the DeWitt-Brehme equations of

motion (straightforward but tedious).

• Implement the Quinn-Wald comparison axiom (first attempt

failed, perhaps because of computational error; neighbourhood

identification might be tricky).

• Consider scalar and gravitational self-forces (straightforward

but tedious).

• See if the RNC simplify the computation of mode-sum

regularization parameters (????).

In the end, no new result will be derived with this framework, but I

believe that it is the natural framework for self-force calculations.
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