First cut at data-analysis problem for LISA inspiral sources

Leor Barack & Curt Cutler

Capture of a CO by a SMBH: Mechanism, & features to have in mind

- SMBHs abundant (<u>table</u>); Some evidence that rapidly rotating.
- Capture process begins when CO kicked into "loss cone" through multibody scattering
- Orbit still highly eccentric (e=0.4-0.6) when enters LI SA band. (Hils & Bender 1995; Sigurdson & Rees 1997)

• Gradual circularization, but still substantial eccentricity at LSO (Cutler, Kennefick, & Poisson 1994)

CB inspiral: a foundation for LISA's science requirement

- LI ST (Dec2001): Floor of LI SA's noise curve to be determined by requirement of detecting CB inspirals.
- Based on research done till winter 2003-2004 (toward finalizing LI SA's design) LI ST will decide between noise *requirement* and noise *goal* (×4 lower).
- Need to know: Detection rate *vs*. LI SA's noise floor.
- LIST identified this task as "especially urgent".

3 elements in determining detection rate:

"astrophysics"	"source modeling"/GR	data analysis					
Event rate	S/N for a given source	Ease of data analysis (How much S/N need for					
Hils & Bender (1995);	Finn & Thorne (2000):	confident detection?)					
Sigurdson & Rees (1997); Freitag (2003):	$S/N \sim 10 (m/M) (1 Gpc/r)$						
➤ MSeq: ~ 5/Myr/gxy	(For a 1 vr mission) (10 p r) (10 p r)						
> WD: ~ 0.5/Myr/gxy	based on study of circular	2					
> NS,BH: ~0.05/Myr/gxy	equatorial orbits)	•					
২ > 1-10 events/yr out to 1 G	Spc with S/N t 20						
0.5-5 MainSeq/yr at Sgr	• A* (!), with S/N T 10	7					
Detection rate							

"Progressive" plan for study of LISA inspiral data analysis problem

AK		NK		ТВ
An	alytic Kludge	Nu	merical Kludge	Teukolsky-Based
Ba ➤ New impr radia peria Lens all expr ➤ Quad	arack & Cutler tonian orbits, oved by including ation reaction, astron precession, e-Thirring effect based on PN essions drupole emission	Gain & T. Baba > Prec RR a > Qua emis using	r, Hughes, Kennefick Creighton // ak & Satyaprakash sise geodesics, with a la Hughes drupole wave ssion (improved g Press' formula)	 Hughes, Kennefick, Glampedakis Waveforms and RR based on Teukolsky formalism

 Groups communicate through regular telecons (reports at http://manuel.tapir.caltech.edu/listwg1/)

Searching by "matched filtering"

- "Optimal" technique (minimizes false-alarm ¥ true signal dismissals) when precise waveforms are known – as with inspirals
- Need to build up a discrete set of templates, to cover parameter space (PS) in an "efficient" manner
- Basic challenge: Large PS, long integration time fi need a huge number of templates:

 $N_{temp} \sim (\# \text{ wave cycles})^{\# par} \sim (\Delta t \cdot v)^{\# par} \sim (3 \cdot 10^7 \cdot 3 \cdot 10^{-3})^{10} \sim 10^{50}$

- fi Can't search coherently over an entire year of data!
- Solution: Apply "Stacked" search, as in NS search for LIGO (Brady & Creighton)
- Basic information for designing stacked search: $N_{temp}(\Delta t)$

Our "Analytic Kludge" model waveforms

MOTIVATION: Get quick, order-of-magnitude answers:

- \succ $N_{\text{temp}}(\Delta t)$
- Required S/N for a yr-long mission
- LISA resolution for physical parameters of inspiral sources
- Evaluate problem of self-confusion
- Design hierarchical/stacked search strategy and gauge its efficiency
- ✓ Model simple enough to allow incorporation of full (14d) par. space

AK waveforms

 Quadrupole radiation from Keplerian orbits (Peters & Mathews 1963)

 $\ddot{I}_{n}^{xy} = -\mu (2\pi v M)^{2/3} n(1-e^{2})^{1/2} \sin[n(2\pi v t + \varphi_{0})] \times [J_{n-2}(ne) - 2J_{n}(ne) + J_{n+2}(ne)]$

• Mode distribution of power emitted:

where, E.g.,

17

Features added "by hand"

✓ Inspiral:
$$\frac{dv}{dt} = \frac{96}{10\pi} (\mu/M^3) (2\pi v M)^{11/3} \left[\frac{1 + (73/24)e^2 + (37/96)e^4}{(1 - e^2)^{7/2}} \right] + ... + ∞ \vec{L} \cdot \vec{S} + ... 3.5 \text{ PN}$$

[Junker & Schäfer; Ryan]

✓ Circularization:
$$\frac{de}{dt} = -\frac{1}{15} (\mu/M) (2\pi v M)^{8/3} e (304 + 121e^2) (1 - e^2)^{-5/2} + ... + ∞ \vec{L} \cdot \vec{S} + ... 3.5 \text{ PN}$$

[Junker & Schäfer; Brumberg]

✓ Periastron precession:
$$\frac{d\gamma}{dt} = 6\pi v (2\pi v M)^{2/3} (1 - e^2)^{-1} + ... + ∞ \vec{L} \cdot \vec{S} + ∞ \vec{L} \times \vec{S} + ... 2 PN$$

[Junker & Schäfer; Brumberg; Ryan]

✓ Spin-orbit precession:
$$\frac{d\dot{B}}{dt} = \frac{4\pi^2 v^2}{\mu} (1-e^2)^{-3/2} \vec{S} \times \dot{B}_{(t)}$$
 2 PN

[Barker & O'Connell]

✓ Doppler modulation due to LISA motion: $\Phi(t) \rightarrow \Phi(t) + \delta \Phi_D(t)$

[Cutler 1998]

Features of kludged model - summary

Our model features (qualitatively) most characteristics of ٠ Kerr orbits, like

ï Features missing:

"Zoom-Whirl" effect Evolution of inclination angle

(but these may be less important for our problem)

Sample orbits

$\mu = 1M_{\odot}$, $M = 10^{6}M_{\odot}$, $f = 10^{-3}$ Hz, e = 0.4, S = 0

LISA's response (Cutler 1998)

• LISA \bowtie two independent two-arm/90° interferometers with responses h_1 , h_{11} ,

$$h_{A}(t) = \frac{1}{D} \frac{\sqrt{3}}{2} \sum_{n=1}^{\infty} \left[F_{A}^{+}(t) A_{n}^{+}(t) + F_{A}^{\times}(t) A_{n}^{\times}(t) \right]$$

$$\begin{cases} F_I^+ = \frac{1}{2}(1 + \cos^2\theta_S)\cos(2\phi_S)\cos(2\psi_S) - \cos\theta_S\sin(2\phi_S)\sin(2\psi_S) \\ F_I^\times = \frac{1}{2}(1 + \cos^2\theta_S)\cos(2\phi_S)\sin(2\psi_S) + \cos\theta_S\sin(2\phi_S)\cos(2\psi_S) \end{cases}$$

$$F_{II} = F_I(\phi_S \to \phi_S - \pi/4)$$

 $(heta_{\rm S},\phi_{\rm S})$ – direction to source $\psi_{\rm S}$ – "polarizarion angle"

Sample kludge waveforms (S=O)

 $\mu = 1M_{\odot}$, $M = 10^{6}M_{\odot}$, $f = 10^{-3}$ Hz, $\Delta t = 1$ hour

Sample kludge waveforms (S=MP)

 $\mu = 1M_{\odot}$, $M = 10^{6}M_{\odot}$, $f = 10^{-3}$ Hz, e = 0.4

Parameter Space for inspiral problem

 M, μ 2 $\vec{N} = (D, \theta_s, \varphi_s)$ 3 $\vec{S} = (S, \theta_K, \varphi_K)$ 3 $t_0 \equiv t(v_0),$ 1 $e(t_0), \Phi(t_0), \gamma(t_0),$ 3 $\dot{E}_0 = [\lambda, \alpha(t_0)]$ 2 14

Counting templates: geometric approach (Cutler & Flanagan 1994, Owen 1996)

- Introduce inner product in Para. Space: $\langle a | b \rangle \equiv 2 \int_{0}^{\infty} df \, \frac{\widetilde{a}^{*}(f) \, \widetilde{b}(f) + c.c.}{S(f)}$
- i S(f) is spectral density of detector's noise n(t)(assumed stationary & Gaussian): $E[\tilde{n}(f)\tilde{n}^*(f')] = \frac{1}{2}\delta(f-f')S(f)$
- Discretize PS with (normalized) templates $|u(t)\rangle$: $\langle u|u\rangle = 1$ Can show $\langle u|n\rangle$ is a random variable with $\overline{\langle u|n\rangle} = 0$, $rms\langle u|n\rangle = 1$
- For signal s(t) filtered by u(t) define

$$S / N \equiv \frac{\langle s | u \rangle}{rms \langle n | u \rangle} = \langle s | u \rangle$$

• Write detector's output as s(t)=n(t)+Ah(t), where A is (*t*-indep.) amplitude and h(t) shape of GW, with $\langle h|h\rangle=1$. $\sum S/N = \langle n+Ah|u\rangle = A\langle \underline{h}|u\rangle$

 $0 \le \langle h | u \rangle \le 1$ measures effectiveness of $|u(t)\rangle$ in searching for h(t)

Geometric approach (cont.)

 Discretization *mismatch* [=Relative loss of S/N due to use of a discrete template family]:

$$\frac{\Delta(S/N)}{(S/N)_{opt}} = \frac{A\langle u | u \rangle - A\langle h | u \rangle}{A\langle u | u \rangle} = 1 - \langle h | u \rangle \equiv \underline{M}(\Delta \lambda^{i})$$

• Local approx. for mismatch: $M \approx \Gamma_{ij} \Delta \lambda^i \Delta \lambda^j + O(\Delta \lambda^3)$ where the "metric" is $\Gamma_{ij} = \frac{1}{2} \frac{\partial^2 M}{\partial \lambda^i \partial \lambda^j} \Big|_{\Delta \bar{\lambda} = 0} = -\frac{1}{2} \left\langle \frac{\partial^2 h}{\partial \lambda^i \partial \lambda^j} \Big| h \right\rangle \Big|_{\Delta \bar{\lambda} = 0} = \frac{1}{2} \left\langle \frac{\partial h}{\partial \lambda^i} \Big| \frac{\partial h}{\partial \lambda^j} \right\rangle \Big|_{\Delta \bar{\lambda} = 0}$

 $i \sqrt{\det(\Gamma_{ij})}$ is proper "template density"

- Template spacing determined by prescribing M_{max} : $M_{max} = N(dl/2)^2 \implies dl = 2\sqrt{M_{max}/N}$
- Then, total # of templates is

$$\mathsf{N}_{temp} = \frac{\int \sqrt{\Gamma} \, d^N \lambda}{\left(2\sqrt{\mathsf{M}_{\max} / N}\right)^N}$$

Implementation with AK waveforms

- Short integration time \rightarrow work in time domain
- Employ LISA noise model (Hughes et al 2001):

$$\begin{split} S(f) &= S_{inst} + S_{exgal}^{conf} + S_{gal}^{conf} \\ S_{inst} &= 4.85 \times 10^{-57} \, f^{-4} + 8.38 \times 10^{-47} + 4.85 \times 10^{-43} \, f^2 \\ S_{exgal}^{conf} &= 1.1 \times 10^{-46} \, f^{-7/3} \\ S_{gal}^{conf} &= \dots \end{split}$$

- No need to search over $D \rightarrow$ ignore this parameter
- t_0 easy to search \rightarrow project t_0 (= λ^0) out (a la Owen 96) :

$$\gamma_{ij} = \Gamma_{ij} - \frac{\Gamma_{i0}\Gamma_{j0}}{\Gamma_{ij}}$$

• Calculate 12D matrix γ_{ii}

Sample data set

 γ matrix for one integration day ($\vec{S}=0)$

(for one point in parameter space)

	$\ln \mu$	$\ln M$	eo	70	Φ_0	$\cos \theta_s$	ϕ_s	$\cos \theta_L$	ϕ_L	
	/ 1.87	-378	-534	-0.245	0.0861	-5.44	0.541	-1.47	-0.0411)
	-378	934000	$1.33\cdot 10^6$	521	-183	14.4	623	2360	-294.	
	-534	$1.33 \cdot 10^{6}$	$1.89 \cdot 10^{6}$	742	-261	13.1	889	3360	-420.	
	-0.245	521	742	0.292	-0.103	0.0074	0.349	1.32	-0.165	
$\gamma_{ii} =$	0.0861	-183	-261	-0.103	0.0362	-0.00261	-0.123	-0.465	0.0582	
14	-5.44	14.4	13.1	0.0074	-0.00261	30.3	-4.46	2.06	1.01	
_	0.541	623	889	0.349	-0.123	-4.46	1.08	1.28	-0.347	
- 8	-1.47	2360	3360	1.32	-0.465	2.06	1.28	6.12	-0.68	
	-0.0411	-294	-420	-0.165	0.0582	1.01	-0.347	-0.68	0.128	1

$$\sqrt{\det(\gamma_{ij})} = 3.77 \cdot 10^{-11}$$

 $Eigenvalues(\gamma_{ij})$:

 $\{2.83\cdot 10^6,\ 33,\ 7.07,\ 0.336,\ 0.00455,\ 0.000524,\ 0.0000524,\ 0.0000337,\ 1.52\cdot 10^{-15}\}$

Eigenvectors(γ_{ij}):

{0.000231	-0.575	-0.818	-0.000321	0.000113	$-6.7 \cdot 10^{-6}$	-0.000384	-0.00145	0.000181
{-0.185	0.15	-0.105	0.000692	-0.000242	0.953	-0.14	0.0668	0.0315
{0.206	-0.779	0.547	-0.0118	0.00412	0.219	-0.0358	-0.0371	0.0148
{-0.939	-0.201	0.14	0.0441	-0.0154	-0.142	0.032	0.185	-0.0328
{0.201	-0.0028	0.000175	0.132	-0.0464	0.0158	0.263	0.929	-0.0911
{-0.0309	-0.0000429	$1.66 \cdot 10^{-6}$	0.113	-0.0399	0.151	0.828	-0.292	-0.437
{0.0327	-0.000295	0.000071	0.828	-0.291	-0.0258	-0.327	-0.0792	-0.338
0.0147	$6.67 \cdot 10^{-6}$	0.0000191	-0.414	0.146	-0.025	-0.34	0.0784	-0.828
{0.000123	$3.06 \cdot 10^{-8}$	$-5.96 \cdot 10^{-10}$	0.332	0.943	0.000021	$2.10 \cdot 10^{-6}$	$8.71 \cdot 10^{-6}$	0.000036}

Applications: I. counting templates

How much S/N needed for 1yr of data?

For first, coherent, step of stacked search, probably need

 $S/N \approx 4-5$

(from experience gained in NS search for LIGO)

fl

If first coherent integration is 1 week long, then for a year-long integration need

 $S / N \approx 5 \times \sqrt{\text{year/week}} \approx 36$

Buonanno-Chen-Vallisneri reduction of P.S.

"Extrinsic" parameters easier to search over -> reduce PS to 7D

Applications: II. S/N estimates

Analysis like Finn & Thorne (2000), but with eccentric orbits

$$(S/N)^2 = \sum_n \int \frac{h_{c,n}^2(f_n)}{5S(f_n)} d\ln f_n$$

(Average over source orientations)

$$h_{c,n} = (\pi D)^{-1} \sqrt{2 \dot{E}_n / \dot{f}_n}$$

 $(\dot{E}_n, \dot{f}_n \text{ derived from } AK \text{ model})$

 Signal Cut-off at (S=0) Iso frequency

Applications: III. LISA's resolution

$$\delta \lambda^{i} = \sqrt{(\Gamma^{-1})^{ii}} \times (S/N)^{-1}$$
$$\delta \Omega = 2\pi \left\{ \sqrt{(\Gamma^{-1})^{\cos\theta,\cos\theta} (\Gamma^{-1})^{\phi\phi}} - (\Gamma^{-1})^{\cos\theta,\phi} \right\} \times (S/N)^{-2}$$

1.4

	$\delta(t_0/\nu_0)$	$9.94 \cdot 10^{-3}$	
	$\delta(\ln\mu)$	$1.29\cdot10^{-5}$	
	$\delta(\ln M)$	$6.40\cdot 10^{-5}$	(Ryan 2.6* 10 ⁻⁴)
<i>i</i>	$\delta(e_0)$	$6.28\cdot 10^{-6}$	
	$\delta(\gamma_0)$	0.44	
	$\delta(\Phi_0)$	0.062	10.00
	$\delta(\Omega_s)$	$5.68\cdot 10^{-4}$	
	$\delta(\lambda)$	$3.66\cdot10^{-4}$	
	$\delta(lpha_0)$	0.79	
	$\delta(S/M^2)$	$6.94\cdot 10^{-5}$	(Ryan 7* 10 ⁻⁴)
	$\delta(\Omega_K)$	0.091	
	$\delta[\ln(\mu/D)]$	0.057	

-

Table 1: Resolution at S/N=30 for last of year of $10M_{\odot}/10^6 M_{\odot}$ inspiral. A year before the last stable orbit e = 0.48 and $\nu = 1.02$ mHz. At the last stable orbit e = 0.4 and $\nu = 1.40$ mHz. Noise model includes WD confusion noise.

Stacked Search Strategy: a sketch

• Divide 1yr-long waveform into time (or frequency) bins *t*~100 *i*-1 *i*+1 Х λ_2 X Х Χ λ_1 Х Х $\lambda^{i} = \lambda^{i}[t_{0}] + (t_{i} - t_{0})\dot{\lambda}^{i} + \cdots$ X Х (or, eventually, use precise EOM) Х Х X V Master Grid

Where Next?

- Finish validation of codes
- Explore parameter space; Monte-Carlo integration (project now initiated at UTB)
- Compare with NK, TB
- Develop search strategy
- Study problem of self-confusion

Census of Supermassive black holes as of March 2001

(Kormendy & Gebhardt 2001)

TABLE 1 Census of Supermassive Black Holes (2001 March)							
Galaxy	Type	M _{B.balge}	$\overline{M_{\bullet} (M_{\mathrm{tow}}, M_{\mathrm{high}})}_{(M_{\infty})}$	σ_{ϵ} (km/s)	D (Mpc)	T _{cusp} (arcsec)	Reference
Galaxy	Sbc	-17.65	2.6 (2.4-2.8) e6	75	0.008	51.40	See notes
M 31	Sb	-19.00	4.5 (2.0-8.5) e7	160	0.76	2.06	Dressler + 1988;
			. ,				Kormendy 1988a
M 32	E2	-15.83	3.9 (3.1-4.7) e6	75	0.81	0.76	Tonry 1984, 1987
M 81	Sb	-18.16	6.8 (5.5-7.5) e7	143	3.9	0.76	Bower + 2001b
NGC 821	E4	-20.41	3.9 (2.4-5.6) e7	209	24.1	0.03	Gebhardt + 2001
NGC 1023	SO	-18.40	4.4 (3.8-5.0) e7	205	11.4	80.0	Bower + 2001a
NGC 2778	E2	-18.59	1.3 (0.3-2.9) e7	175	22.9	0.02	Gebhardt + 2001
NGC 3115	S0	-20.21	1.0 (0.4 2.0) c9	230	9.7	1.73	Kormendy + 1992
NGC 3377	E5	-19.05	1.1(0.6-2.5) e8	145	11.2	0.42	Kormendy + 1998
NGC 3379	£1	-19.94	1.0(0.5 - 1.6) e8	206	10.6	0.20	Gebhardt + 2000a
NGC 3384	S0	-18.99	1.4 (1.0-1.9) e7	143	11.6	0.05	Gebhardt + 2001
NGC 3608	£2	-19.86	1.1 (0.8 - 2.5) e8	182	23.0	0.13	Gebhardt + 2001
NGC 4291	E2	-19.63	1.9 (0.8-3.2) e8	242	26.2	0.11	Gebhardt + 2001
NGC 4342	S0	-17.04	3.0 (2.0 · 4.7) c8	225	15.3	0.34	Cretton + 1999a
NGC 4473	F.5	-19.89	0.8 (0.4 + 1.8) c8	190	15.7	0.13	Gebhardt \div 2001
NGC 4486	B £1	-16.77	5.0 (0.2-9.9) e8	185	16.1	0.81	Kormendy + 1997
NGC 4564	F.3	-18.92	5.7 (4.0-7.0) e7	162	15.0	0.13	Gebhardt + 2001
NGC 4594	Sa	-21.35	1.0 (0.3 2.0) c9	240	9.8	1.58	Kormendy + 1988b
NGC 4649	El	-21.30	2.0 (1.0-2.5) e9	375	16.8	0.75	Gebhardt - 2001
NGC 4697	E_4	-20.24	1.7 (1.4-1.9) e8	177	11.7	0.41	Gebhardt + 2001
NGC 4742	E4	-18.94	1.4 (0.9-1.8) e7	90	15.5	0.10	Kaiser + 2001
NGC 5845	E	-18.72	2.9 (0.2-4.6) e8	234	25.9	0.18	Gebhardt + 2001
NGC 7457	S0	-17.69	3.6 (2.5-4.5) e6	67	13.2	0.05	Gebhardt + 2001
NGC 2787	SB0	-17.28	4.1 (3.6-4.5) e7	185	7.5	0.14	Sarzi + 2001
NGC 3245	SO	-19.65	2.1 (1.6-2.6) e8	205	20.9	0.21	Barth + 2001
NGC 4261	E2	-21.09	5.2 (4.1 - 6.2) e8	315	31.6	0.15	Ferrarese + 1996
NGC 4374	EI	-21.36	4.3 (2.6-7.5) e8	296	18.4	0.24	Bower + 1998
NGC 4459	SA0	-19.15	7.0 (5.7 - 8.3) e7	167	16.1	0.11	Sarzi + 2001
M 87	E0	-21.53	3.0 (2.0-4.0) e9	375	16.1	1.18	Harms + 1994
NGC 4596	SB0	-19.48	0.8 (0.5 · 1.2) e8	136	16.8	0.22	Sarzi + 2001
NGC 5128	SO	-20.80	2.4 (0.7-6.0) e8	150	4.2	2.26	Marconi + 2001
NGC 6251	E2	-21.81	6.0 (2.0-8.0) e8	290	106	0.06	Ferrarese + 1999
NGC 7052	E4	-21.31	3.3 (2.0-5.6) e8	266	58.7	0.07	van der Marel + 1998
IC 1459	E3	-21.39	2.0 (1.2-5.7) e8	323	29.2	0.06	Verdoes Kleijn + 2001
NGC 1068	\mathbf{Sh}	-18.82	1.7 (1.0-3.0) e7	151	15	0.04	Greenhill + 1996
NGC 4258	Sbc	-17.19	4.0 (3.9-4.1) e7	120	7.2	0.36	Miyoshi + 1995
NGC 4945	Scd	-15.14	1.4 (0.9-2.1) e6		3.7		Greenhill + 1997

Û

Mode distribution of power emitted

FIG. 3. g(n,e), the relative power radiated into the *n*th harmonic for e=0.2, 0.5, and 0.7.

[Peters & Mathews (1963)]