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Introduction

e EXcitation of neutron star oscillations in a binary
(e.g. Gualtieri et al(2002), Ruoff et al(2001), ... )
Resonance w = [Q2j by tidal force

e Condition and amplification for resonant growth by incident
gravitational waves

Goals of this paper
Resonance condition? w = 2

Amplitude? ~ ht ( 'secular’ )

No exponential growth?



Possible astrophysical periodic sources
h, Q, t

e Excitation of Pulsation (f-mode) in Neutron Stars
Frequency v = a few kHz, Damping time r = a few x10~ 1 s.

GWs from SN explosion, coalescence phase of NS-NS binary
Duration is less than a few ms. = Rapid growth is relevant.

e Excitation of Pulsation (f-mode) in White Dwarfs
Frequency v = a few x10~1 Hz, Damping time 7 ~ 1010 s,

GWs from spiral-in of BH-BH binary with M ~ 103M
Duration is 103 s. = Slow growth may also be relevant.

e Amplitude h o 1/r



Resonance in a harmonic oscillator

e Resonance occurs when the frequency of external perturbation
matches with the intrinsic frequency, 2 = w

X 4+ w?X = fcos(Q). (1)
The amplitude increases linearly with the time, X oc (f/2Q)tsin(2t).

e Parametric resonance occurs for time-dependent frequency.
An example (known as the Mathieu’s equation) is

X 4+ w?(1 + hcos(Q))X = 0. (2)

The exponential growth for w/Q2 =n/2,(n=1,2,3,--+)



e The strongest instability occurs forn =1 (w/Q2 =n/2)

o The growth rate X o« exp(st) can be calculated for small h as

1 1 /2 1
in the unstable region
L <Q—2w< L (4)
——hw — 2w < —hw
2 2

¢ In a system with frictional damping exp(—~t) , resonance is
possible only when h exceeds a threshold 4~ /w.

e [ he width of resonance range decreases rapidly with increasing
n.



Stellar pulsation

The equation of motion for the pulsation driven by external force
can be written as

dv 1o = .
—=—-Vp—-V¢+g (5)

o Incident wave propagating along z-axis (4+ mode)

|>@ ) (28 — yE)) = |W%w coS(Q(t—2)) (285 — y&y) .(6)
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¢ Radiation loss by quadrupole formula

_ v >~ (5 i
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Ellipsoidal model

The dynamical motion is limited to uniform expansion and com-
pression along the three axes. Incompressible fluid is assumed.

1 G
i1 = —27Gpai A + |H _ m}bm cos(Qt)aq — mﬂ&wvﬁ (8)
ip = —21Gpands + > pbm cos(Q2)an — m| 2 (9
an C

Nonlinear dynamical system of a;(t)



Linearized system for pulsation

Toroidal motion in x-y plane is assumed.

5 5
x=221__%%2  s5..=0. (11)
a a

The system of the equations is reduced to

W

2
X 4 w? AH + Wb ADV nOmADSv X = |W¢bm cos(Qt), (12)

It is clear that two kinds of resonance are possible in eq. (12).



Numerical calculation

e Numerical calculation depends on Q = wr,w/2, h

A4GM 1  2GMuw*
w = , T T = :
5R3 25¢°

e Results

o Test cases ( Free oscillation and Damping oscillation)

o Off-resonant cases ( Free oscillation and Damping oscillation)
¢ Parametric resonance at w/Q2=1/2 (n=1)

¢ Resonance at w/Q2 =1 (n = 2)
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Test - Radiation damping -
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Damping of the oscillation by radiation loss with @ = 100.



Off-resonance without damping
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Free oscillation under incident waves with w/€2 = 0.6 and h = 0.1. The
amplitude of the pulsation is always ~ 0.1



Off-resonance without damping 2 - Invariant
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Temporal profiles are the same. They are mixture of two modes, 2 and
w = 0.692.



Off-resonance with damping
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Oscillation with damping @ = 500 under incident waves with w/2 = 0.6 and
h = 0.1. The amplitude of the pulsation tends to 0.1



Off-resonance with
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Parametric Resonance without damping
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Resonance at w/2 = 1/2. Amplitude of incident wave is h = 0.1. Amplified
stellar pulsation is realized.



Parametric Resonance without damping 2
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Damped Parametric Resonance
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Parametric excitation is damped for small incident amplitude and rapid decay
( h=0.1,Q = 300). The final oscillation is the same as the incident one.



Parametric Resonance 2
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Intrinsic stellar pulsation w(= €2/2) is damped, and oscillation is enforced to
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case.



Excited Parametric Resonance
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Parametric resonance occurs even with radiation loss for large incident am-
plitude and slow decay ( h = 0.1,Q = 500).



Excited Parametric Resonance 2
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Stellar pulsation with large amplitude is realized at the late steady state.

The amplitude is about 4 times larger than that of off-resonant oscillation.
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Resonance at w = 2
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Resonance with Q = 500 and h = 2 x 1073. Oscillation amplitude for a,
increases linearly with time at the initial stage. That for a, increases with a
longer time scale. The amplitudes are saturated by gain and loss.



Resonance 2
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Summary and Discussion 1
Resonance at 2 = 2w

e T he amplitude of the longitudinal motion along the wave prop-
agation gradually increases in the parametric instability.

e [ he parametric resonance-growth is possible, in the slowly

damping system (i.e, Q > a few hundreds ) with incident waves
of the large amplitude ( h > a few x1072)

e The amplitude is saturated around /hQ/10.



Summary and Discussion 2
Resonance at 2 = w

e T he amplitude of the motion perpendicular to the wave prop-
agation increases linearly with the time, and can get to large

value > h.

e [ he amplitude of the motion along the wave propagation sub-
sequently increases.

e The amplitude is saturated around /hQ /40.



Concluding Remarks

e Small growth rate of the resonance w/Q2 = 1/2.
( growth rate < h? )

Compare with the Mathieu's equation, in which perturbation ~
exp(st), s o h.

¢ Oscillations in the x-y plane are coupled with those of z-axis
through self-gravity and pressure in ellipsoidal model.

Say ~ (8ag)? ~ h?

After da, gets to a significant value, da, ~ daz, system of az, ay, az
blows up.

Number of degrees of freedom relevant to dynamics is important
for 'secular’ growth ( i.e, long term evolution).
Possible in realistic fluid system?



