Resonant Growth by

Gravitational Waves Incident

Y. Kojima (Hiroshima Univ.)

Introduction

- Resonance $\omega=l\Omega_K$ by tidal force (e.g. Gualtieri et al(2002), Ruoff et al(2001), ...) Excitation of neutron star oscillations in a binary
- gravitational waves Condition and amplification for resonant growth by incident

Goals of this paper

Resonance condition? $\omega = \Omega$

Amplitude? $\sim ht$ ('secular')

No exponential growth?

Possible astrophysical periodic sources

$$h, \Omega, t$$

Frequency $\nu = a$ few kHz, Damping time $\tau = a$ few $\times 10^{-1}$ s. Excitation of Pulsation (f-mode) in Neutron Stars

GWs from SN explosion, coalescence phase of NS-NS binary Duration is less than a few ms. \Rightarrow Rapid growth is relevant

Frequency $\nu = \text{a few} \times 10^{-1} \text{ Hz}$, Damping time $\tau \sim 10^{10} \text{ s}$. Excitation of Pulsation (f-mode) in White Dwarfs

GWs from spiral-in of BH-BH binary with $M \sim 10^3 M_{\odot}$ Duration is 10^3 s. \Rightarrow Slow growth may also be relevant.

ullet Amplitude $h \propto 1/r$

Resonance in a harmonic oscillator

matches with the intrinsic frequency, $\Omega=\omega$ Resonance occurs when the frequency of external perturbation

$$\ddot{X} + \omega^2 X = f \cos(\Omega t). \tag{1}$$

The amplitude increases linearly with the time, $X \propto (f/2\Omega)t\sin(\Omega t)$.

An example (known as the Mathieu's equation) is Parametric resonance occurs for time-dependent frequency.

$$\ddot{X} + \omega^2 (1 + h \cos(\Omega t)) X = 0.$$
 (2)

The exponential growth for $\omega/\Omega=n/2, (n=1,2,3,\cdots)$

The strongest instability occurs for n=1 $(\omega/\Omega=n/2)$

The growth rate $X \propto \exp(st)$ can be calculated for small h

$$s = -\frac{1}{2} \left[-(\Omega - 2\omega)^2 + \frac{1}{4} h^2 \omega^2 \right]^{1/2} \sim \frac{1}{4} h\omega \tag{3}$$

in the unstable region

$$-\frac{1}{2}h\omega<\Omega-2\omega<\frac{1}{2}h\omega$$

 \diamond In a system with frictional damping $\exp(-\gamma t)$, resonance is possible only when h exceeds a threshold $4\gamma/\omega$.

The width of resonance range decreases rapidly with increasing

Stellar pulsation

can be written as The equation of motion for the pulsation driven by external force

$$\frac{d\vec{v}}{dt} = -\frac{1}{\rho}\vec{\nabla}p - \vec{\nabla}\phi + \vec{g} \tag{5}$$

♦ Incident wave propagating along z-axis (+ mode)

$$\vec{g} = \frac{1}{2}\ddot{A}(t-z)(x\vec{e}_x - y\vec{e}_y) = -\frac{1}{2}h\Omega^2\cos(\Omega(t-z))(x\vec{e}_x - y\vec{e}_y).$$
(6)

Radiation loss by quadrupole formula

$$\vec{g} = -\nabla \frac{G}{5c^5} I_{ij}^{(5)} x^i x^j. \tag{7}$$

Ellipsoidal model

pression along the three axes. Incompressible fluid is assumed. The dynamical motion is limited to uniform expansion and com-

$$\ddot{a}_1 = -2\pi G \rho a_1 A_1 + \frac{K}{a_1} - \frac{1}{2} h\Omega^2 \cos(\Omega t) a_1 - \frac{G}{5c^5} I_{xx}^{(5)} a_1 \tag{8}$$

$$\ddot{a}_2 = -2\pi G \rho a_2 A_2 + \frac{K}{a_2} + \frac{1}{2} h \Omega^2 \cos(\Omega t) a_2 - \frac{G}{5c^5} I_{yy}^{(5)} a_2 \tag{9}$$

$$\ddot{a}_3 = -2\pi G \rho a_3 A_3 + \frac{K}{a_3} - \frac{G}{5c^5} I_{zz}^{(5)} a_3 \tag{10}$$

Nonlinear dynamical system of $a_i(t)$

Linearized system for pulsation

Toroidal motion in x-y plane is assumed.

$$X = \frac{\delta a_1}{a} = -\frac{\delta a_2}{a}, \quad \delta a_3 = 0. \tag{11}$$

The system of the equations is reduced to

$$\ddot{X} + \omega^2 \left(1 + \frac{1}{2} h \left(\frac{\Omega}{\omega} \right)^2 \cos(\Omega t) \right) X = -\frac{1}{2} h \Omega^2 \cos(\Omega t), \quad (12)$$

It is clear that two kinds of resonance are possible in eq. (12).

Numerical calculation

Numerical calculation depends on $Q = \omega \tau, \omega/\Omega, h$

$$\omega = \frac{4GM}{5R^3}, \quad \tau^{-1} = \frac{2GM\omega^4}{25c^5}.$$

- Initially static state $(a_x = a_y = a_z = 1.0, \dot{a}_x = \dot{a}_y = \dot{a}_z = 0.)$
- Results
- Test cases (Free oscillation and Damping oscillation)
- \diamond Off-resonant cases (Free oscillation and Damping oscillation)
- \diamond Parametric resonance at $\omega/\Omega=1/2$ (n=1)
- \diamond Resonance at $\omega/\Omega = 1$ (n = 2)

Test - Free oscillation -

conditions are $a_x = 1.1, a_y = 0.9, a_z = 1.0, \dot{a}_x = \dot{a}_y = \dot{a}_z = 0.$ Amplitudes for a_x and a_z are shown as a function of time $\Omega t/(2\pi)$. Initial

Amplitude of δa_z is not zero exactly, but is of order $(\delta a_x)^2$.

Test - Radiation damping -

Damping of the oscillation by radiation loss with $\mathcal{Q}=100$.

Off-resonance without damping

amplitude of the pulsation is always $\sim 0.1\,$ Free oscillation under incident waves with $\omega/\Omega=0.6$ and h=0.1.

Off-resonance without damping 2 - Invariant

Early stage.

Temporal profiles are the same.

 $\omega = 0.6\Omega$.

Late stage.

They are mixture of two modes, Ω and

Off-resonance with damping

h=0.1. The amplitude of the pulsation tends to 0.1Oscillation with damping Q=500 under incident waves with $\omega/\Omega=0.6$ and

off-resonance with damping 2 - Transition -

Early stage.

Late stage.

external mode with Ω at the late phase. Intrinsic stellar pulsation $\omega(=0.6\Omega)$ is damped, and oscillation is enforced to

Parametric Resonance without damping

stellar pulsation is realized. Resonance at $\omega/\Omega=1/2$. Amplitude of incident wave is h=0.1. Amplified

Parametric Resonance without damping 2

Damped Parametric Resonance

(h=0.1, Q=300). The final oscillation is the same as the incident one. Parametric excitation is damped for small incident amplitude and rapid decay

Damped Parametric Resonance 2

Intrinsic stellar pulsation $\omega(=\Omega/2)$ is damped, and oscillation is enforced to external mode with Ω at the late phase. This is the same as in off-resonant

Excited Parametric Resonance

plitude and slow decay (h = 0.1, Q = 500). Parametric resonance occurs even with radiation loss for large incident am-

Excited Parametric Resonance 2

The amplitude is about 4 times larger than that of off-resonant oscillation Stellar pulsation with large amplitude is realized at the late steady state

Resonance at $\omega = \Omega$

Resonance with Q=500 and $h=2\times 10^{-3}$. Oscillation amplitude for a_x increases linearly with time at the initial stage. That for a_z increases with a longer time scale. The amplitudes are saturated by gain and loss

Resonance 2

Summary and Discussion 1 Resonance at $\Omega = 2\omega$

- agation gradually increases in the parametric instability. The amplitude of the longitudinal motion along the wave prop-
- of the large amplitude (h > a few $\times 10^{-2}$) damping system (i.e, Q > a few hundreds) with incident waves The parametric resonance-growth is possible, in the slowly
- The amplitude is saturated around $\sqrt{hQ/10}$.

Summary and Discussion 2 Resonance at $\Omega = \omega$

- value $\gg h$. agation increases linearly with the time, and can get to large The amplitude of the motion perpendicular to the wave prop-
- sequently increases The amplitude of the motion along the wave propagation sub-
- The amplitude is saturated around $\sqrt{hQ}/40$.

Concluding Remarks

(growth rate $\propto h^2$) Small growth rate of the resonance $\omega/\Omega = 1/2$.

 $\exp(st)$, $s \propto h$ Compare with the Mathieu's equation, in which perturbation \sim

 $\delta a_z \sim (\delta a_x)^2 \sim h^2$ Oscillations in the x-y plane are coupled with those of z-axis through self-gravity and pressure in ellipsoidal model.

dn swold After δa_z gets to a significant value, $\delta a_z \sim \delta a_x$, system of a_x, a_y, a_z

Possible in realistic fluid system? for 'secular' growth (i.e, long term evolution). Number of degrees of freedom relevant to dynamics is important