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Introduction

* The basic problem: Divergence of the force field

* The basic idea:

Although the field diverges, the individual spherical-
harmonic modes of the field are regular. |e

Example -- Static electric charge in flat space:

—- The Coulomb-force field diverges like (distance)~> .

- However, the field of each individual mode is regular --
even at the particle's location.

Iwo motivations:

* Regularizing the particle's force field

* Allows practical calculations: Solving ODEs (for each
mode) instead of PDEs.



Example: Static electric charge in flat space

Charge e located at the pole (B =0),at r =1.

We wish to calculate the r-component, P;‘.?Egc
The "full-force” field: £, =eA’. .

==> Decompose in spherical harmonics:

£(r,0) = § £l(r)P(cosB)
(=0

==> Evaluate the force at @ = ():

£Ar) = ;ﬂ'(r)

The radial functions:
) ] r!— |

£r) ={€ : b
L+ s
==> Evaluate at r=1:
&2l r—=1_)
fl = - ') = —(1/ 2)é?
{—Ez(f +1) (r—1) - <f ) e
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* At r=1, f,,U'ﬂ} has two well-defined values: (0,—&‘2) ;

Its average value: f;(.{tgmgﬂ) = —(1/ 2)¢*

* Same qualitative behavior for all value of [:




* The naive idea: Sum over the average values of all ff ;

* The problem: The sum diverges!

For example--for static charge in flat space:

Pa. — 1
ﬁ.!' = € : (r _) e <f;_!> _ -(]! 2)32
—*(1+1) (r—1,)

=> Sum over [ diverges!

==> The mode sum needs be regularized!

* Important input for the regularization method--
The asymptotic behavior of f,.f as [ — o,

In the above example: fir - _EE(-._-L + %) ) L=l _,_%
* The most general behavior:
fea =AgL+B, +C,/L+OL? , L=l+1/2

[In above flat-space case: A = iez, B v i’ /12,C=0.]

* It turns out that C, always vanishes---see below.



The tail formulation for the SF

* The full-force field:

9P cspatia (qD(¢)  (scalar)
£0x) = {eF g L =leDA,)  (EM)
s Hgﬂﬁ{tﬁr}ﬁ ulu® Vepetal \uD(h,,) (grav)

==> Schematically: ff””(x) = QD(T,Uf“H) .
* Separate the full force into direct part and tail part:

* fdir is known analytically: Mino-Nakano-Sasaki 2001

The regularized SF is then given by TE

F (7) = f’”ﬂ(x — 7) (+ local terms...) [

For the EM case -- see DeWitt-Brehme 1960; For the grav. SF see
Mino-Sasaki-Tanaka 1997, and also Quinn-Wald 1997. For the scalar SF
see Quinn 2000. For all cases, see also the alternative formulation by

Detweiler-Whiting 2002.



Mode decomposition

* Decompose the full force, also the tail and direct parts:

f( ﬁll,dir,tail)(x) _ 2 fl( Jull dir tail) (x) .
[
* Rewrite the SF (ignoring the trivial local terms):
)

Now use £/ = 7 — f%" to obtain

Fself (Z) _ ? [flfull(x s Z) _ ldir(x s Z)]
-3 (1) - fir(z))

The two terms can be summed separately after we
subtract the dominant large-/ piece:

< fAr ~ AL+B+C/L=h, (L=1+1/2)

+*

* We obtain:
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FY (7) = > L7 f4z) - ) - 3 [fa'@) -]

Define now

D=3 [/ =(AL+B+CIlL)].
[ I
hy

Then,

F @) =3 @) - (AL +B+C/L)] - D.
[

* Four regularization parameters (RP): A, B,,C,,D, .

==> The RP A,B,C,D are extracted analytically from f'ﬁr:

(i) First expand f dir into spherical harmonics f:fr.
(i) Extract A,B,C from the large-/ behavior of f, dir

[+ 1

(iii) Then calculate D from the above formula.

* This method yields the SF, provided that

(1) we calculate the mode contributions ffﬁ‘” of the full
force (e.g. numerically),

(2) we calculate the RP, A,B,C,D (analytically).



Calculating A.B.C.D

* Analytic expression for fdfr: Mino-Nakano-Sasaki 2001

_ F
Expanding £%" in powers of ox* = x* — z%: L
2 P(lfl P{4] P(T"J' -
[* =—F5—+—=—+——+(terms vanishing at x = )
£ g £

a P a W g i1 g

¢ is infinitesimal geodesic distance: & = gﬂﬁéxaﬁxﬂ.

P are polynomials of homogeneous order N in &x.

[f[‘q} is the usual flat-space Coulombic term: f x5x /€ ;

i B are higher-order corrections. ]

The magnitude of the various terms:
f{"” cd 2 f(B} wdt f(m sead

To find A,B,C,D we need ﬁ'ﬂr --- therefore we need to
C)

decompose fm‘ﬂ‘ in spherical harmonics.



Mode decomposition of f“4-2:©) :

To find A,B,C,D we need the quantities /. But

| ph  pé)  p()
fdir =f(A} +f{ﬂ:' +f{C} = E—3'.|. 3 + 7 + ...
E E £

C)

AB,C) . : .
so we need to decompose f ( in spherical harmonics.

==> (ne obtains the exact result:

W =sal, fP =b, fO=0 (L=1+1/2)

Recalling ﬁfrﬂAL+ B+ C/L, wefind
A=zxa , B=b , C=0.

The definition of D: |
D=Y (/%) -(AL + B+C/L)],
/

I+

now Yyields:
D=0.
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Calculating A,B,C,.D --- general results:

* In all cases (generic geodesic orbit in Kerr, and for
scalar, EM or grav. SF), we find
C=D=0.

* The two-sided values of A,B are

A,=+A , B,=B.

==> The final expression for the self force:

FY2) =3 [£1"z) - (AL + B)].
)
* F self may be calculated from either the "+" side or the
-" side.

* Alternatively one can take their average,

flfull E[fli‘ull_l_ lj_‘ull]/z,

(ave)

in which case A cancels out and the SF is
FY =3 (i _B).
l

(ave)
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Actual calculations of the RP values

Scalar SF:

* Static and circular orbits in Schwarzschild: A.0. (1999)
(unpublished).

* Radial orbits in Schwarzschild: Barack and Ori (2000).

Gravitational SF:

* For radial orbits in Schwarzschild: Barack (2001).

For all three cases (scalar, EM, and gravitational SF):

* For generic (equatorial) geodesic orbits in Schwarzschild:
Barack, Mino, Nakano, Ori, Sasaki (2002).

* For generic geodesic orbits in Kerr: Barack and Ori
(2003).
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Closely related mode-sum methods

* Gravitational SF for radial geodesics in Schwarzschild
(RW gauge): Lousto (2000); Barack and Lousto (2002).

* Gravitational SF for circular geodesics in Schwarzschild
(RW gauge): Barack and Lousto (in progress).

* Scalar SF for circular geodesics in Schwarzschild:
Detweiler and Whiting (2002).
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Implementations of the mode-sum method

* |Implementation requires two ingredients:

(i) The RP --- already calculated analytically for all relevant
cases.

(ii) The mode contributions jjﬁ’ﬂ: These quantities were
calculated, numerically, in several case:

Scalar SF in_Schwarzschild:

Static charge: Burko (2000);
Circular orbits: Burko (2000); Detweiler & Whiting (2002)
Radial orbits: Barack and Burko (2000).

Scalar SF for static charge in Kerr: Burko&Liu (2001) #

Gravitational SF in Schwarzschild (RW gauge): #

Radial geodesic: Lousto (2000); Barack & Lousto (2002)
Circular geodesics: Barack and Lousto (in progress)

# Using other variants of the mode-sum method
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Calculating EM/gravitational SF in Kerr

In Kerr, separability is achieved using the Teukolsky
formalism: The equations for the Weyl scalars 3,44

(grav. case) or the Maxwell scalars ¢,¢, (EM case) are
separable.

However, for calculating the SF, we need the full-force field

faﬁ”(-’:) .

eF g’ | DA, (EM)
~ |uD(my,)  (grav)

A
h_xug aﬁ(ﬁr}ﬁ”?“ }spatial J
This requires the basic perturbations A,, A, .
==> Need to reconstruct Ah from ¥, 3y or @y,¢>
Reconstruction formalism (Chrzanowski,Wald):
— —s
Yo Yy S h

(A,h in the radiation gauge)

Construction of W form tﬁugz or Y4 : A.0.(2003).
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Gravitational SF: Gauge transformations

* The gravitational SF is gauge-dependent:

a A e
OF i = —ul(g™" +u"u") &, +Rﬁlvu“§lu" 1= A(§)
% fﬁfu undergoes the same transformation:

guu = OFserp = A(E)

= f4ir 15 gauge-invariant.

Implication to the mode-sum method:

I
0 0

FUO) =3 #L"P@) - (+AL + B+C/ L)) - D
[

* The RP are gauge-invariant!
In particular: C = D=0 in all gauges.

==> (Calculate the RP once and forever, e.g. in the
harmonic gauge.
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The gauge-regularization problem

g(harmnnjc—hmd] .

The radiation gauge is singular: is ill-defined

at the particle's worldline.

==> F‘serf is ill-defined in the radiation gauge!

==> Need to transform to a regular gauge, memg}.

Implications to the mode-sum method:

in principle: F*¢/"¢8)(z) = S ﬂf Hree) ) — (+AL + B)]
[
But more practical:

Fele9) = 3 [fL"D() - (AL + B)]- 5D~
[

* Calculation of SDV ") is done by decomposing

5f§§fﬂd_wg] = D(E) into spherical harmonics.

—=> Results for 8D "8 (A 0., unpublished):

* General formula (for generic geodesic in Kerr);

* Fully-explicit (but preliminary) result for a specific case---
Circular orbit in weak-field Schwarzschild:

SDY = =3/ 2)mQ /¥ .
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Summary

* Mode-sum formula:

e (7) = g; £ z) - (AL + B)].

* |In the Gravitational case in Kerr, where one uses the
(singular) radiation gauge:

Fvres) ) = 5 [0 (z) ~ (+AL + B)]- 6D
!

* All required RP were calculated analytically, for a generic
geodesic orbit in Kerr.

full

==> To calculate the SF one needs to calculate ff (e.q.
numerically) in all cases of interest.
* In the EM/grav case, one may calculate ff‘ i) through

["Poa'i’z l N {‘PEM} R {A} _, phullirady
Yo Yy W h

* Need to decompose fﬁ:m{md} in spherical harmonics.
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The remaining technical difficulty

* In Kerr, the construction of f Juli from (¢, A, h) is carried
out in (spin-weighted) spheroidal harmonics.

* However, to apply the mode-sum method we need to
decompose fﬁ"ﬂ in spherical-harmonics modes ﬁﬁ o

=> Needs to decompose the spheroidal harmonics in
spherical harmonics.

* This decompaosition is known in principle, but one needs
to explicitly apply it to our problem.
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