Self-force calculations using the mode-sum method

Amos Ori

Outline

- * Introduction: The basic idea
- The need to regularize the mode sum
- * Formulation of the mode-sum method:

 Derivation from the tail formulation
- * Calculating the regularization parameters
- * Previous applications
- * Application to EM/gravitational SF in Kerr
- * Summary

Introduction

- * The basic problem: Divergence of the force field
- * The basic idea:

Although the field diverges, the individual sphericalharmonic modes of the field are regular.

Example -- Static electric charge in flat space:

- -- The Coulomb-force field diverges like (distance)⁻².
- However, the field of each individual mode is regular -even at the particle's location.

Two motivations:

- Regularizing the particle's force field
- * Allows practical calculations: Solving ODEs (for each mode) instead of PDEs.

Example: Static electric charge in flat space

Charge e located at the pole ($\theta = 0$), at r = 1.

We wish to calculate the r-component, F_r^{self}

The "full-force" field:
$$f_r = eA_r^t$$
.

==> Decompose in spherical harmonics:

$$f_r(r,\theta) = \sum_{l=0}^{\infty} f_r^l(r) P_l(\cos\theta)$$

==> Evaluate the force at $\theta = 0$:

$$f_r(r) = \sum_{l} f_r^l(r)$$

The radial functions:

$$f_r^l(r) = \begin{cases} e^2 l r^{l-1} & (r < 1) \\ -e^2 (l+1) r^{-l-2} & (r > 1) \end{cases}$$

==> Evaluate at r=1:

$$f_r^l = \begin{cases} e^2l & (r \to 1_-) \\ -e^2(l+1) & (r \to 1_+) \end{cases} \Rightarrow \left\langle f_r^l \right\rangle = -(1/2)e^2$$

Example: l = 0

* At r=1, $f_r^{(l=0)}$ has two well-defined values: $(0,-e^2)$.

Its average value: $f_{r(avarage)}^{(l=0)} = -(1/2)e^2$

* Same qualitative behavior for all value of l:

- * The naive idea: Sum over the average values of all f_r^l .
- * The problem: The sum diverges!

For example--for static charge in flat space:

$$f_r^l = \begin{cases} e^2l & (r \to 1_-) \\ -e^2(l+1) & (r \to 1_+) \end{cases} \Rightarrow \left\langle f_r^l \right\rangle = -(1/2)e^2$$

 \Rightarrow Sum over l diverges!

- ==> The mode sum needs be regularized!
- * Important input for the regularization method-- The asymptotic behavior of f_r^l as $l \to \infty$.

In the above example:
$$f_{\pm r}^l = -e^2(\pm L + \frac{1}{2})$$
, $L \equiv l + \frac{1}{2}$

* The most general behavior:

$$f_{\pm \alpha}^{l} = A_{\alpha}L + B_{\alpha} + C_{\alpha}/L + O(L^{-2})$$
 , $L = l + 1/2$

[In above flat-space case: $A = \mp e^2$, $B = -e^2/2$, C = 0.]

* It turns out that $\,C_{\!lpha}\,$ always vanishes---see below.

The tail formulation for the SF

* The full-force field:

$$\begin{split} f_{\alpha}^{\textit{full}}(x) &= \begin{cases} q(\phi_{,\alpha})_{\text{spatial}} \\ eF_{\alpha\beta}u^{\beta} \\ -\mu g_{\alpha\beta}(\delta\Gamma_{\gamma\lambda}^{\ \beta}u^{\gamma}u^{\lambda})_{\text{spatial}} \end{cases} \end{bmatrix} \equiv \begin{cases} qD(\phi) & (\textit{scalar}) \\ eD(A_{\lambda}) & (EM) \\ \mu D(h_{\lambda\nu}) & (\textit{grav}) \end{cases} \end{split}$$

==> Schematically:
$$f^{full}(x) = QD(\psi^{full})$$
.

* Separate the full force into direct part and tail part:

$$f^{full}(x) = f^{dir}(x) + f^{tail}(x) .$$

* f^{dir} is known analytically: Mino-Nakano-Sasaki 2001

The regularized SF is then given by

$$F^{self}(z) = f^{tail}(x \rightarrow z)$$
 (+ local terms...)

For the EM case -- see DeWitt-Brehme 1960; For the grav. SF see Mino-Sasaki-Tanaka 1997, and also Quinn-Wald 1997. For the scalar SF see Quinn 2000. For all cases, see also the alternative formulation by Detweiler-Whiting 2002.

Mode decomposition

* Decompose the full force, also the tail and direct parts:

$$f^{(full,dir,tail)}(x) = \sum_{l} f_{l}^{(full,dir,tail)}(x)$$
.

* Rewrite the SF (ignoring the trivial local terms):

$$F^{self}(z) = f^{tail}(x \rightarrow z) = \sum_{l} f_{l}^{tail}(x \rightarrow z)$$
.

Now use $f_l^{tail} = f_l^{full} - f_l^{dir}$ to obtain

$$F^{self}(z) = \sum_{l} \left[f_{l}^{full}(x \rightarrow z) - f_{l}^{dir}(x \rightarrow z) \right]$$
$$= \sum_{l} \left[f_{l\pm}^{full}(z) - f_{l\pm}^{dir}(z) \right]$$

The two terms can be summed separately after we subtract the dominant large-l piece:

$$f_{l\pm}^{full} \approx f_{l\pm}^{dir} \approx AL + B + C/L \equiv h_l$$
 $(L \equiv l + 1/2)$

* We obtain:

$$F^{self}(z) = \sum_{l} [f_{l\pm}^{full}(z) - h_{l}] - \sum_{l} [f_{l\pm}^{dir}(z) - h_{l}].$$

$$F^{self}(z) = \sum_{l} [f_{l\pm}^{full}(z) - h_{l}] - \sum_{l} [f_{l\pm}^{dir}(z) - h_{l}]$$

Define now

$$D \equiv \sum_{l} \left[f_{l\pm}^{dir}(z) - (AL + B + C/L) \right].$$

Then,

$$F^{self}(z) = \sum_{l} [f_{l\pm}^{full}(z) - (AL + B + C/L)] - D$$
.

* Four regularization parameters (RP): A_{α} , B_{α} , C_{α} , D_{α} .

==> The RP A,B,C,D are extracted analytically from f^{dir} :

- (i) First expand f^{dir} into spherical harmonics $f^{dir}_{l\pm}$,
- (ii) Extract A,B,C from the large-l behavior of $f_{l\pm}^{dir}$,
- (iii) Then calculate D from the above formula.
- * This method yields the SF, provided that
- (1) we calculate the *mode contributions* f_l^{full} of the full force (e.g. numerically),
- (2) we calculate the RP, A,B,C,D (analytically).

Calculating A,B,C,D

* Analytic expression for f^{dir} : Mino-Nakano-Sasaki 2001

Expanding
$$f^{dir}$$
 in powers of $\delta x^{\alpha} \equiv x^{\alpha} - z^{\alpha}$:

 $f^{dir} = \frac{P^{(1)}}{\varepsilon^3} + \frac{P^{(4)}}{\varepsilon^5} + \frac{P^{(7)}}{\varepsilon^7} + \text{(terms vanishing at } x = z\text{)}$

$$\equiv f^{(A)} + f^{(B)} + f^{(C)} + \dots$$

 ε is infinitesimal geodesic distance: $\varepsilon^2 = g_{\alpha\beta} \delta x^{\alpha} \delta x^{\beta}$. $P^{(N)}$ are polynomials of homogeneous order N in δx^{α} .

 $\left[f^{(A)}\right.$ is the usual flat-space Coulombic term: $\vec{f}\propto\!\delta\vec{x}\,/\,\varepsilon^3$; $f^{(B,C)}$ are higher-order corrections.]

The magnitude of the various terms:

$$f^{(A)} \propto \delta x^{-2} \; , \quad f^{(B)} \propto \delta x^{-1} \; , \quad f^{(A)} \propto \delta x^0 \; .$$

To find A,B,C,D we need f_l^{dir} --- therefore we need to decompose $f^{(A,B,C)}$ in spherical harmonics.

Mode decomposition of $f^{(A,B,C)}$:

To find A,B,C,D we need the quantities f_l^{dir} . But

$$f^{dir} = f^{(A)} + f^{(B)} + f^{(C)} + \dots \equiv \frac{P^{(1)}}{\varepsilon^3} + \frac{P^{(4)}}{\varepsilon^5} + \frac{P^{(7)}}{\varepsilon^7} + \dots$$

so we need to decompose $f^{(A,B,C)}$ in spherical harmonics.

==> One obtains the exact result:

$$f_l^{(A)} = \pm aL$$
, $f_l^{(B)} = b$, $f_l^{(C)} = 0$ $(L \equiv l + 1/2)$.

Recalling $f_{l\pm}^{dir} \approx AL + B + C/L$, we find

$$A = \pm a$$
 , $B = b$, $C = 0$.

The definition of D:

$$D = \sum_{l} [f_{l\pm}^{dir}(z) - (AL + B + C/L)],$$

now yields:

$$D = 0$$
.

Calculating A,B,C,D --- general results:

* In all cases (generic geodesic orbit in Kerr, and for scalar, EM or grav. SF), we find

$$C = D = 0$$
.

* The two-sided values of A,B are

$$A_{\pm} = \pm A \quad , \quad B_{\pm} = B .$$

==> The final expression for the self force:

$$F^{self}(z) = \sum_{l} \left[f_{l\pm}^{full}(z) - (\pm AL + B) \right].$$

- * F^{self} may be calculated from either the "+" side or the "-" side.
- * Alternatively one can take their average,

$$f_{l(ave)}^{full} \equiv [f_{l+}^{full} + f_{l-}^{full}]/2 ,$$

in which case A cancels out and the SF is

$$F^{self} = \sum_{l} (f_{l(ave)}^{full} - B) .$$

Actual calculations of the RP values

Scalar SF:

- Static and circular orbits in Schwarzschild: A.O. (1999) (unpublished).
- * Radial orbits in Schwarzschild: Barack and Ori (2000).

Gravitational SF:

For radial orbits in Schwarzschild: Barack (2001).

For all three cases (scalar, EM, and gravitational SF):

- * For generic (equatorial) geodesic orbits in Schwarzschild: Barack, Mino, Nakano, Ori, Sasaki (2002).
- For generic geodesic orbits in Kerr: Barack and Ori (2003).

Closely related mode-sum methods

- * Gravitational SF for radial geodesics in Schwarzschild (RW gauge): Lousto (2000); Barack and Lousto (2002).
- * Gravitational SF for circular geodesics in Schwarzschild (RW gauge): Barack and Lousto (in progress).
- * Scalar SF for circular geodesics in Schwarzschild: Detweiler and Whiting (2002).

Implementations of the mode-sum method

- * Implementation requires two ingredients:
- (i) The RP --- already calculated analytically for all relevant cases.
- (ii) The mode contributions f_l^{full} : These quantities were calculated, numerically, in several case:

Scalar SF in Schwarzschild:

Static charge: Burko (2000);

Circular orbits: Burko (2000); Detweiler & Whiting (2002)

Radial orbits: Barack and Burko (2000).

Scalar SF for static charge in Kerr: Burko&Liu (2001) #

Gravitational SF in Schwarzschild (RW gauge):

Radial geodesic: Lousto (2000); Barack & Lousto (2002)

Circular geodesics: Barack and Lousto (in progress)

Using other variants of the mode-sum method

Calculating EM/gravitational SF in Kerr

In Kerr, separability is achieved using the Teukolsky formalism: The equations for the Weyl scalars ψ_0, ψ_4 (grav. case) or the Maxwell scalars ϕ_0, ϕ_2 (EM case) are separable.

However, for calculating the SF, we need the full-force field

$$f_{\alpha}^{\textit{full}}(x) = \begin{cases} eF_{\alpha\beta}u^{\beta} \\ -\mu g_{\alpha\beta}(\delta\Gamma_{\gamma\lambda}^{\ \beta}u^{\gamma}u^{\lambda})_{\text{spatial}} \end{cases} \equiv \begin{cases} eD(A_{\lambda}) & (EM) \\ \mu D(h_{\lambda\nu}) & (\textit{grav}) \end{cases}$$

This requires the basic perturbations $A_{\lambda}, h_{\lambda \nu}$.

==> Need to reconstruct A,h from ψ_0,ψ_4 or ϕ_0,ϕ_2

Reconstruction formalism (Chrzanowski, Wald):

(A,h in the radiation gauge)

Construction of Ψ form $\phi_{0,2}$ or $\psi_{0,4}$: A.O. (2003).

Gravitational SF: Gauge transformations

* The gravitational SF is gauge-dependent:

$$\delta F^{\alpha}_{self} = -\mu [(g^{\alpha\lambda} + u^{\alpha}u^{\lambda})\dot{\xi}_{\lambda} + R^{\alpha}_{\mu\lambda\nu}u^{\mu}\xi^{\lambda}u^{\nu}] \equiv \Delta(\xi)$$

* f_{full}^{α} undergoes the same transformation:

$$\delta f^\alpha_{full} = \delta F^\alpha_{self} = \Delta(\xi)$$
 $\Rightarrow f^\alpha_{dir}$ is gauge-invariant.

Implication to the mode-sum method:

$$F^{self(G)}(z) = \sum_{l} [f_{l\pm}^{full(G)}(z) - (\pm AL + B + C/L)] - D_{\parallel}$$

* The RP are gauge-invariant!

In particular: C = D = 0 in all gauges.

==> Calculate the RP once and forever, e.g. in the harmonic gauge.

The gauge-regularization problem

The radiation gauge is singular: $\xi^{(harmonic \rightarrow rad)}$ is ill-defined at the particle's worldline.

- $==>F^{self}$ is ill-defined in the radiation gauge!
- ==> Need to transform to a regular gauge, $F^{self(reg)}$.

Implications to the mode-sum method:

In principle:
$$F^{self(reg)}(z) = \sum_{l} [f_{l\pm}^{full(reg)}(z) - (\pm AL + B)]$$

But more practical:

$$F^{self (reg)}(z) = \sum_{l} \left[f_{l\pm}^{full(rad)}(z) - (\pm AL + B) \right] - \delta D^{(rad \to reg)}$$

- * Calculation of $\delta D^{(rad \to reg)}$ is done by decomposing $\delta f_{full}^{\alpha(rad \to reg)} \equiv \hat{D}(\xi)$ into spherical harmonics.
- ==> Results for $\delta D^{(rad \rightarrow reg)}$ (A.O., unpublished):
- General formula (for generic geodesic in Kerr);
- * Fully-explicit (but preliminary) result for a specific case---Circular orbit in weak-field Schwarzschild:

$$\delta D^{\varphi} = \pm (3/2) m\Omega / r^3.$$

Summary

* Mode-sum formula:

$$F^{self}(z) = \sum_{l} [f_{l\pm}^{full}(z) - (\pm AL + B)].$$

* In the Gravitational case in Kerr, where one uses the (singular) radiation gauge:

$$F^{self\,(reg)}(z) = \sum_{l} \left[f_{l\pm}^{full(rad)}(z) - (\pm AL + B) \right] - \delta D$$

- * All required RP were calculated analytically, for a generic geodesic orbit in Kerr.
- ==> To calculate the SF one needs to calculate $f_l^{\it full}$ (e.g. numerically) in all cases of interest.
- * In the EM/grav case, one may calculate $f_{l\pm}^{\it full(rad)}$ through

$$\begin{cases} \phi_0, \phi_2 \\ \psi_0, \psi_4 \end{cases} \rightarrow \begin{cases} \Psi_{EM} \\ \Psi_g \end{cases} \rightarrow \begin{cases} A \\ h \end{cases} \rightarrow f^{full(rad)}$$

* Need to decompose $f^{full(rad)}$ in spherical harmonics.

The remaining technical difficulty:

- * In Kerr, the construction of f^{full} from (ϕ, A, h) is carried out in (spin-weighted) spheroidal harmonics.
- * However, to apply the mode-sum method we need to decompose f^{full} in spherical-harmonics modes f_I^{full} .
- ==> Needs to decompose the spheroidal harmonics in spherical harmonics.
- * This decomposition is known in principle, but one needs to explicitly apply it to our problem.