Gravitational radiation from Kerr parabolic orbits

Kostas Glampedakis

University of Southampton

Introduction

About this talk:

- Motivation
- Teukolsky vs Sasaki-Nakamura
- Regularising the Teukolsky equation
- A useful approximation ?
- EMRI inventory: "kludged" and Teukolsky waveforms/fluxes

Motives

- **•** EMRI: small body initially captured in an $e \approx 1$ orbit.
- Initial periastron can be as small as $r_p \sim 4M$ (Freitag) (even smaller for a rapidly spinning BH) \Rightarrow Quadrupole formula expected to fail.
- Provide accurate $\{\dot{E}, \dot{L}\} \Rightarrow$ firm up capture rates/background confusion noise estimates
- Compare with/complement time-domain calculations, especially for Kerr where they face a serious challenge.
- Useful benchmark problem when the self-force calculations will become a practical tool.

Dealing with $e \approx 1$ **orbits**

- Naive first attempt with the Teukolsky equation ⇒ integral over source term is divergent !
- Use the S-N equation instead which has a well-behaved source term ⇒ GWs from parabolic/plunging orbits in Kerr discussed by Kojima & Nakamura in 1984.
- Drawback of the S-N approach: extra radial integration required to obtain source term (discussed in more detail later on) ⇒ S-N code inherently much slower than a Teukolsky code...
- There is nothing intrinsically wrong with the solution of the Teukolsky equation - rather one has to regularise certain integrals over the source term when the latter has no compact support.
- Two regularisation schemes : S. Detweiler & E.Szedenits (already used in practise many years ago) and E. Poisson. The latter scheme was extended for Kerr by M. Campanelli & C.Lousto.

Teukolsky vs Sasaki-Nakamura

Traditionally, GW radiation from eccentric, plunging and parabolic orbits has been computed by solving the S-N equation instead of the original Teukolsky equation. For a given $\{\ell, m, \omega\}$ mode,

$$\left[\frac{d^2}{dr_*^2} - F\frac{d}{d_{r_*}} - U\right]X = S$$

where the source term is related to the Teukolsky source term T as,

$$S = \frac{\gamma \Delta W}{r^2 (r^2 + a^2)^{3/2}} \exp\left(-i \int \frac{K}{\Delta} dr\right)$$

and

$$\frac{d^2W}{dr^2} = \frac{r^2T}{\Delta^2} \exp\left(i\int\frac{K}{\Delta}dr\right)$$

The nice property of the S-N equation is that $S \sim r^{-5/2}$ as opposed to $T \sim r^{-3/2}$. Then, the solution of the Teukolsky equation is,

$$R(r \to \infty) = \frac{R^{up}}{W_T} \int_{-\infty}^{+\infty} dr_* \frac{X^{in}}{\gamma} S$$

where the integral is convergent.

On the other hand, we can formally write (following E.Poisson),

$$R = \frac{1}{W_T} \left[R^{up} \{ A + \int_a^r dr' \ e^{i\omega T(r') - im\Phi(r')} T(r') R^{in}(r') \} \right]$$
$$+ R^{in} \{ B + \int_r^b dr' \ e^{i\omega T(r') - im\Phi(r')} T(r') R^{up}(r') \}$$

This leads to divergent integrals if, naively, we set $a = r_+$, $b = +\infty$ and disregard the constants A, B.

Regularising the Teukolsky equation (I)

We are asked to regularise integrals of the form,

$$I^{in,up}(a,b) = \int_{a}^{b} dr \ e^{i\omega T - im\Phi} R^{in,up} T$$

when $a \rightarrow r_+$ and $b \rightarrow +\infty$. Take the following steps (drop in, up):

- Change wavefunction: $R = CY = F\mathcal{L}[Y] + GY$ where $\mathcal{L} = d/dr_* + i\omega$
- \blacksquare The function Y satisfies an equation of the form,

$$d^2Y/dr_*^2 + V_Y Y = 0$$

One attractive choice is $Y = \sqrt{\eta}X$.

Regularising the Teukolsky equation (II)

Then:

$$I = I_{conv} + I_{div} = \int_{a}^{b} dr \ e^{i\omega T - im\Phi} \Gamma_{conv} Y + \int_{a}^{b} dr \ e^{i\omega T - im\Phi} \Gamma_{div} \mathcal{L}[Y]$$

Only second integral is divergent now.

(E.Poisson): introduce an unspecified function h(r) such as,

$$I_{div} = \int_{a}^{b} dr \ e^{i\omega T - im\Phi} \{ \tilde{\Gamma}_{div} \mathcal{L}[Y] + \tilde{\Gamma}_{conv} Y \} - [e^{i\omega T - im\Phi} h \mathcal{L}[Y]]_{a}^{b}$$

We have that,

$$\tilde{\Gamma}_{div} = dh/dr + (i\omega dT/dr - imd\Phi/dr)h + \Gamma_{div}$$

Regularising the Teukolsky equation (III)

- Choose: $\tilde{\Gamma}_{div} = 0 \Rightarrow$ an ODE for h(r). Drawback: typically the above ODE cannot be solved analyticaly...
- We have ended up with convergent integrals; infinities have been "transfered" to surface terms \Rightarrow absorb them into A, B.
- *Then*, we are allowed to take $r \to \infty, r_+$. Enforcing the physically required boundary conditions, we eliminate both A, B.
- **•** Final well-behaved result for $r \to \infty$:

$$R(r) = \frac{R^{up}(r)}{W_T} \int_{r_+}^r dr' \ e^{i\omega T - im\Phi} g(r') X^{in}$$

where g(r) denotes all the mess!

An alternative scheme (I)

- Choose $\beta = i\omega h dr_*/dr \Rightarrow$ fixes h too. No need to solve any ODE now.
- If $\Gamma_{div} \sim r^{-n}$ then new integrand goes $\sim r^{n-3/2}$.

Write,

After performing this procedure twice we end up with convergent integrals + divergent surface terms. Retracing the steps outlined above we eliminate these terms.

An alternative scheme (II)

The final result looks like,

$$R(r) = \frac{R^{up}(r)}{W_T} \int_{r_+}^r dr' \ e^{i\omega T - im\Phi} \{G_{conv}\mathcal{L}[Y] + F_{conv}Y\}$$

- The functions $G_{conv}(r)$, $F_{conv}(r)$ contain angular functions $S_{lm}^{a\omega}$, orbital functions T(r), $\Phi(r)$, $\Theta(r)$ and part of the projections T_{nn} , $T_{\bar{m}\bar{m}}$, $T_{\bar{m}n}$.
- This regularisation method was first introduced by S. Detweiler & E. Szedenits in 1979 in their study of Schwarzschild plunging orbits.
- Although they simply dropped the surface terms with no formal justification, they got correct results. As we discussed, one *is allowed*, after all, to drop these terms following part of Poisson's prescription.
- This "new" source integral should be the fastest to compute in a Teukolsky code [coding in progress - need to wait for Capra 8 !]

Near-periastron approximations (I)

- Waveforms from $e \approx 1$ orbits exhibit extreme zoom-whirl features: long "silent" intervals separated by "bursts" when the small body is at the periastron vicinity.
- This behaviour is encoded in the source term integral which can be scaled in terms of the radial velocity component as,

$$I = \int_{r_p}^{r_a} dr \ e^{i\omega T - im\Phi} \left\{ \frac{F_0}{u^r} + F_1(r,\omega) + \mathcal{O}(u^r) \right\}$$

One may be tempted to truncate the basic integral as,

$$I \approx \int_{r_p}^{r_o} dr \; e^{i\omega T - im\Phi} \frac{F_{res}(r,\omega)}{r - r_p}$$

This could still give a good result while saving significant amount of computational time.

Near-periastron approximations (II)

One can deduce (Oohara & Nakamura) that the emitted spectrum will have a maximum at the frequency,

$$\omega_{max} \approx \ell \ \Omega_{\phi}(r_p) = \frac{2L}{r_p^2} (1 - 2M/r_p) \quad \text{for} \quad a/M = 0, \ \ell = m = 2$$

Simulations (Freitag) suggest that initial $r_p \sim 4M - 60M$, which translates to,

$$f_{max} \approx (0.3 - 7)mHz \gtrsim$$
 LISA's f_{peak}

The upper limit can become much higher for Kerr BHs.

Note: the above frequency is much higher than the naive "circular-orbit" estimate

$$f_{max} \approx \frac{2}{T_{period}} \sim 10^{-6} mHz$$

Quick and dirty: kludged waveforms/fluxes

- Basic idea (essentially this is a rediscovery of Sasaki-Ruffini's semi-relativistic approximation) : Feed the quadrupole formula for waveform/fluxes with the exact Kerr geodesic motion, pretending that B-L coordinates are Cartesian spherical coordinates.
- Hence, contributions due to backscattering higher multipoles are ignored from the very beginning.
- Sesults accurate to $\sim 10\%$ down to $r \sim 5 6M$.
- Can be considered as the "poor man's time-domain code" !
- Can be adapted to any background metric once the geodesics are known ⇒ potential data analysis tool for EMRI around non-Kerr objects (in which case we do not enjoy the luxury of having a Teukolsky-like equation) [work in progress].

Sample kludged waveform

