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Introduction

About this talk:

Motivation

Teukolsky vs Sasaki-Nakamura

Regularising the Teukolsky equation

A useful approximation ?

EMRI inventory: “kludged” and Teukolsky waveforms/fluxes
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Motives

EMRI: small body initially captured in an e ≈ 1 orbit.

Initial periastron can be as small as rp ∼ 4M (Freitag) (even
smaller for a rapidly spinning BH) ⇒ Quadrupole formula expected
to fail.

Provide accurate {Ė, L̇} ⇒ firm up capture rates/background
confusion noise estimates

Compare with/complement time-domain calculations, especially
for Kerr where they face a serious challenge.

Useful benchmark problem when the self-force calculations will
become a practical tool.
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Dealing with e ≈ 1 orbits

Naive first attempt with the Teukolsky equation ⇒ integral over
source term is divergent !

Use the S-N equation instead which has a well-behaved source
term ⇒ GWs from parabolic/plunging orbits in Kerr discussed by
Kojima & Nakamura in 1984.

Drawback of the S-N approach: extra radial integration required to
obtain source term (discussed in more detail later on) ⇒ S-N code
inherently much slower than a Teukolsky code...

There is nothing intrinsically wrong with the solution of the
Teukolsky equation - rather one has to regularise certain integrals
over the source term when the latter has no compact support.

Two regularisation schemes : S. Detweiler & E.Szedenits (already
used in practise many years ago) and E. Poisson. The latter
scheme was extended for Kerr by M. Campanelli & C.Lousto.
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Teukolsky vs Sasaki-Nakamura

Traditionally, GW radiation from eccentric, plunging and parabolic orbits
has been computed by solving the S-N equation instead of the original
Teukolsky equation. For a given {`, m, ω} mode,
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The nice property of the S-N equation is that S ∼ r−5/2 as opposed
to T ∼ r−3/2. Then, the solution of the Teukolsky equation is,

R(r → ∞) =
Rup

WT

∫ +∞

−∞

dr∗
Xin

γ
S

where the integral is convergent.

On the other hand, we can formally write (following E.Poisson),

R =
1

WT

[

Rup{A +

∫ r

a

dr′ eiωT (r′)−imΦ(r′)T (r′)Rin(r′)}

+ Rin{B +

∫ b

r

dr′ eiωT (r′)−imΦ(r′)T (r′)Rup(r′)}
]

This leads to divergent integrals if, naively, we set a = r+, b = +∞
and disregard the constants A, B.
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Regularising the Teukolsky equation (I)

We are asked to regularise integrals of the form,

Iin,up(a, b) =

∫ b

a

dr eiωT−imΦRin,upT

when a → r+ and b → +∞. Take the following steps (drop in, up):

Change wavefunction: R = CY = FL[Y ] + GY where
L = d/dr∗ + iω

The function Y satisfies an equation of the form,

d2Y/dr2
∗

+ VY Y = 0

One attractive choice is Y =
√

ηX.
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Regularising the Teukolsky equation (II)

Then:

I = Iconv + Idiv =

∫ b

a

dr eiωT−imΦΓconvY +

∫ b

a

dr eiωT−imΦΓdivL[Y ]

Only second integral is divergent now.

(E.Poisson): introduce an unspecified function h(r) such as,

Idiv =

∫ b

a

dr eiωT−imΦ{Γ̃divL[Y ] + Γ̃convY } − [eiωT−imΦhL[Y ]]ba

We have that,

Γ̃div = dh/dr + (iωdT/dr − imdΦ/dr)h + Γdiv
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Regularising the Teukolsky equation (III)

Choose: Γ̃div = 0 ⇒ an ODE for h(r). Drawback: typically the
above ODE cannot be solved analyticaly...

We have ended up with convergent integrals; infinities have been
“transfered” to surface terms ⇒ absorb them into A, B.

Then, we are allowed to take r → ∞, r+. Enforcing the physically
required boundary conditions, we eliminate both A, B.

Final well-behaved result for r → ∞:

R(r) =
Rup(r)

WT

∫ r

r+

dr′ eiωT−imΦg(r′)Xin

where g(r) denotes all the mess!
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An alternative scheme (I)

Write,
Γdiv = {iωdT/dr − imdΦ/dr}h(r) + β(r)

Then

Idiv = −
∫ b

a

dr eiωT−imΦ{dh/dr + iωdr∗/drh − β}L[Y ]}

−
∫ b

a

dr eiωT−imΦΓ̃convY + [eiωT−imΦhL[Y ]]ba

Choose β = iωhdr∗/dr ⇒ fixes h too. No need to solve any ODE
now.

If Γdiv ∼ r−n then new integrand goes ∼ rn−3/2.

After performing this procedure twice we end up with convergent
integrals + divergent surface terms. Retracing the steps outlined
above we eliminate these terms.
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An alternative scheme (II)

The final result looks like,

R(r) =
Rup(r)

WT

∫ r

r+

dr′ eiωT−imΦ{GconvL[Y ] + FconvY }

The functions Gconv(r),Fconv(r) contain angular functions Saω
lm ,

orbital functions T (r), Φ(r), Θ(r) and part of the projections
Tnn, Tm̄m̄, Tm̄n.

This regularisation method was first introduced by S. Detweiler &
E. Szedenits in 1979 in their study of Schwarzschild plunging
orbits.

Although they simply dropped the surface terms with no formal
justification, they got correct results. As we discussed, one is
allowed, after all, to drop these terms following part of Poisson’s
prescription.

This “new” source integral should be the fastest to compute in a
Teukolsky code [coding in progress - need to wait for Capra 8 !]
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Near-periastron approximations (I)

Waveforms from e ≈ 1 orbits exhibit extreme zoom-whirl features:
long “silent” intervals separated by “bursts” when the small body is
at the periastron vicinity.

This behaviour is encoded in the source term integral which can
be scaled in terms of the radial velocity component as,

I =

∫ ra

rp

dr eiωT−imΦ

{

F0

ur
+ F1(r, ω) + O(ur)

}

One may be tempted to truncate the basic integral as,

I ≈
∫ ro

rp

dr eiωT−imΦ Fres(r, ω)

r − rp

This could still give a good result while saving significant amount
of computational time.
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Near-periastron approximations (II)

One can deduce (Oohara & Nakamura) that the emitted spectrum
will have a maximum at the frequency,

ωmax ≈ ` Ωφ(rp) =
2L

r2
p

(1 − 2M/rp) for a/M = 0, ` = m = 2

Simulations (Freitag) suggest that initial rp ∼ 4M − 60M , which
translates to,

fmax ≈ (0.3 − 7)mHz & LISA’s fpeak

The upper limit can become much higher for Kerr BHs.

Note: the above frequency is much higher than the naive
“circular-orbit” estimate

fmax ≈ 2

Tperiod
∼ 10−6mHz
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Quick and dirty: kludged waveforms/fluxes

Basic idea (essentially this is a rediscovery of Sasaki-Ruffini’s
semi-relativistic approximation) : Feed the quadrupole formula for
waveform/fluxes with the exact Kerr geodesic motion, pretending
that B-L coordinates are Cartesian spherical coordinates.

Hence, contributions due to backscattering higher multipoles are
ignored from the very beginning.

Results accurate to ∼ 10% down to r ∼ 5 − 6M .

Can be considered as the “poor man’s time-domain code” !

Can be adapted to any background metric once the geodesics are
known ⇒ potential data analysis tool for EMRI around non-Kerr
objects (in which case we do not enjoy the luxury of having a
Teukolsky-like equation) [work in progress].
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Sample kludged waveform
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