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§ 1.Introduction

GW observatory
LIGO, TAMA300 and GEO600 are currently in the early stage of
their operations
Space-based interferometer project (LISA) is in rapid progress
Targets for these detectors
Binary systems, Pulsar, Big Bang, etc
Here we focus on an extreme mass-ratio binary system.

'\

Effective method
BH perturbation approach + point-particle approximation
And

It is then important to consider the self-force.



§ l.Introduction

Self-Force=R-part

However, the self-force diverges at x — Z and hence should
be regularized.
Split the retarded Green function into two pieces

Direct£S-p
x field pt.

particle pt. z

tail~R-part
Self-force = R-part (but it is hard to calculate directly)
FSElf—FOI“EE (Eﬂl) — FR(EI‘.]) — lim (Ffull(,]:) _ FS (3;))

X—=In

lim FU(x) = lim F°(x) = o0
However xX—2p x—2

It is necessary to develop a regularization scheme to calculate
this subtraction.



§ l.Introduction

Mode-Sum Reg. and Problems

The most successful method developed so far is
mode-sum (or mode-decomposition) regularization.
[Mino, Nakano & Sasaki ('03), Barack et al.('02)]

Fa() = ) lim (FRi(x) — Fy ()
£

However there are some problems in this method.

i) Gauge Mismatch (Gauge problem)
each force of r.h.s has the different gauge
ii) Domain Mismatch (Subtraction problem)

F™I : the Fourier decomposition of time-dependence,
in order to treat easily.

— the full-part is calculated in the frequency domain.

FS : only determined near the particle, so it cannot
perform the Fourier decomposition.

— the S-part js only calculated in the time domain.
Let's consider about these problems in details.



§ 2 Method for calculation (S-part)

The S-part js determined by local expansion near the particle
and can be expressed by

T"R"®FD1 5
hSH_ﬂZCmﬂpqr - + 0(y*)

€ = (15 + 1~ — 2ryrcos O cos ®)'/*
(x-—20)"=T,R,0,0), e~T~R~0~~O0(y)
Here 'H' represents harmonic gauge.
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§ 2 Method for calculation

S-part (II)

Force
S,H _ S,H : ~ *
Foo = L1k, where L :some differential operator

mode-sum (or mode decomposition) regularization

[Mino, Nakano & Sasaki ('03), Barack et al.('02)]
{ -mode of this Force

Fj:f = Ayl + By +Cy/L+ Doy, L=¢€+1)2,

In harmonic gauge, it is known that

C, =Z£:DM=0

This property is called "Standard Form"



§ 2 Method for calculation
Full part (e.g. Schwarzschild case)

Master equation for BH perturbations (RW gauge),
after the Fourier Harmonic expansion.

Lrw Rﬁrﬂ; =S tmw
Metric Reconstruction
RO = L [YEv ], where Why = REY (1)Y (6, 0)e™ "

pv, £ £ £ £

Force
fulLRW full, RW
Fﬂ:j o (“C [h,uv.,fmm ])
Fidu
(cf. S-part)
Fl = AL+ By + Co/L + Doy
Mismatch
S.H S.RW
Gauge ---gauge transformation (Fo™ — Fo )

full, RW full,RW
Domain ---integration over (Qimer F a.tmw For ™)



§ 2 Method for calculation
full part calculation (numerical approach)

To this time, the calculation of the full part and the
regularization have been done numerically.

e.g. Schwarzschild + Scalar

Radial orbits [Barack & Burko ('00)]

Circular orbits [Burko('00), Detweiler et al.('03)]
etc.

But
It is necessary to get the (small) = (large) - (large). So it is hard
to calculate accurately.

It is necessary to decide to cut off the number of £ . But there is
no systematic method for controling the error.

l
So we would like to solve the RW eq., perform the

integration over ® and subtract more analytically.



§ 2 Method for calculation
full part calculation (analytical approach)

Recently, analytical BH perturbation approach is developing.
[Review Sasaki & Tagoshi ('03)]

Solving Master equation by the Green function method
Fourier-Harmonic Transformation:

! dliU' —ien(t— # !
G"(x,x') = f Se DN g (T )Y en(0,0)Y 1, (6, ),

2w
6 _ !
lé‘fﬁ + w’ — V] g?,ﬂu(r, r)=-— (rr: d ), : RW eq.

The Green function is represented by in- and up-going
homogeneous solutions.

full

Eomo 1) = o )(t??n(r) OO = 1)+ (r o 1)
in» $Yup




§ 2 Method for calculation
Character of the analytical approach

i) Mano-Suzuki-Takasugi's solution
Homogeneous solution of Regge-Wheeler/Teukolsky eq.
use V , in place of ¢

(called as renormalized angular momentum)
The explanation in details is at the next page.

ii) Slow motion approximation

assumption that Z = rw ~ O(v) and € = 2Mw ~ O(Vj), which are
used by MST's solution, are small
In principle, it is possible to expand up to the order you want



§ 2 Method for calculation
Decomposition by MST's solution

The in- and up-going homogeneous solutions can be
decomposed by Mano-Suzuki-Takasugi's solutions.

B = e+ P By = T+ B

where ¢: is the Coulomb wave function calculated by MST;

oo

¢ ~ Z ape (22" F(an, @23 2iz),
h==—00

v={+0() (v=~_upto?2.5PN)
here,

a., B, ¥, v: the functions of €
@1, a3 : the functions of n and v
F(ay, as; 2iz) : the confluent hypergeometric function

Relation of the coefficients
a . .ja, = O (n>0)

n+l

a, =1 (n=20)
a_/a, = 0(e) (n<0)



§ 2 Method for calculation
Problems of analytical approach

We can easily expand ¢, up to the order you want, with
respect to z=rwand € = 2Mw
The results are

¢ = (22)" @,
I z (€% = 5 - 10)ez

T2020+3) 2z 8QL+3)2A+5) A2+ + D)
s 156 +15¢ - 11 2,
YTt T 20— D2e+ DL +3)

-v—1 . ¥ .
and ¢c  is obtained using the { — —{—1.
In order to integrate over @ , we have to re-expand with
respect to @ . Then

(ZE)V -~ (QFLU)E_{ZMM}E - (ZFM)f (1 — 4_|. o )

Due to this Inw, it is hard to transform from the
frequency domain to the time domain analytically.



§ 3 New method (new decomposition)

Here, we propose a new decomposition of the full part into

two parts, the S -part and the ﬁ-paﬂ
This decomposition naturally arises from the developed by

Mano, Suzuki and Takasugi.
Property

S-part ---contains all the singular terms to be subtracted
R-part ---remaining term, hence finite (not need to regularize)

The part that we need to regularize is only the S-part
Therefore

F3™(zo) = Fi(z0) = Z lim (FRH(x) — F ()
= llI‘ﬂ (F " A0+ ﬂ,j{x) - F g,f(x))

= > lim (Fg{(x) Fsﬁ{x) Z R (@0).

X—ID
£



§ 3 New method (new decomposition)

LS; -pal’l

Important fact about the S -part

As long as we use the slow motion approximation, the 9 -part of
the Green function in the frequency domain is given by

GS(I x ) _f Z — 1 f— I}Y ";(9 Q)Yfm(f},,@

expanded by only positive power of ®
So, using the formula
fdw g‘fw[!—r'}wu _ 2ﬂ5[n}(5 _ EI),

we are able to perform integration over® (namely,

inverse Fourier transformation) , for a general orbit
analytically.



§ 3 New method (new decomposition)

(S — S)-part

The S-part under RW gauge is given by
Fo¥ = ARVL + BRY + X /L + DY)
Sincethe S-part contains all the singular terms to be
subtracted, the S-part under RW gauge is given by
Fﬁ:fw =ASVL +BYY +CXY /L + DY

Then regularization is given by

lim (FS (1) = F$.,(0) = > (DEY (z0) — DY (20))

x—
£=0 @ £=0

If the S-part under RW gauge becomes "Standard Form', then

lim (FS () = FS () = Z AW (20)

f—ﬂ £=0



§ 3 New method (new decomposition)
Summary

Self-force
FR(z0) = Z lim (F2(x) — F3 (%))

x—‘z.u.

method for calculating the full part:

numerical analytical
New decomposition: l
(S — S)-part ﬁ-part
m E(El))

qf(fu[)) ﬂrf'le‘.])

E_D
Recover the "Starfard FOFNW gauge
Yes

f(-&.[l) — Z D& E({.{)) + Z g(ﬂﬂl) F‘ff - &f(hﬂ) D, E{LD)) Z Fig’(
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§ 4 Example (Schwarzschild + Scalar case)

For simplicity, we consider the scalar case.
oM (x - x")

\/__g

yl(x) = —q f dr GU(x,2(1)),  VoV,G"(x,x) = -
Fourier-harmonic decomposition

’ dw ’ e !
GM(x, x') = f S G a0, 9)Y (06,
iy

) 5(r—r
|07+ w? - V| ghm (r.r) = - T=r) . RWeq(s = 0)

r.h'

The Green function is represented by
in-going and up-going homogeneous solutions.

W (@in, dup) (80 G000 = 1) + (r > 1)
s ¥up

full
g{’n;m(r& rf) —



§ 4 Example (Schwarzschild + Scalar case)
New decomposition

The Green functions is represented by MST's solutions and
decomposition by whether there is step function or not.

-1 y v g ’
8oma7) = G (61,(r) ¢, (O 1) + (r & 1)

= ﬁm)wm, =
[(qbc(r) + B ) () + 677 )6 = 1) + (o )|

= gfm(rﬂ r ) + g{’n:m(rﬂ ¥ )'
where

ggmw(r )= — |¢c(r)¢c" Ler — N+(rer )]

g (1) = i _;ﬂw 1BY (X027 () + ¢ (Nel(r) +




§ 4 Example (Schwarzschild + Scalar case)

~

S -part

A

The only term to be regularized of full part is the S -part,
-1

gﬁmw(n r') = — :qb:(r)qﬁ;"_l(r')ﬁ(r' -nN+(re r')]
. _—“i :(23)_1(13"(r)(13_"_1(r’)9(r’ -+ e r’)]

Except for the overall fractional powers z" and z', they
contain only the terms with positive integer powers of ® .

Because ' is cancel out, the S-part of the Green

functions are represented by positive series of o .
¢. = (22)" ©°,
’ z? fe z (£2 — 5¢ - 10)ez
O =1-—— - —+ + +
22¢+3) 2z 8RE+3)2E+5) A2 +3)E+ 1)
1562 +156-11
y=F-— € +--,
226 — DL+ D2 + 3)
20+1 496£° + 14886° + 1336¢* + 1926° — 75767 — 605¢ + 338 .
2
2 16(26 — 12(2€ + 1)(2€ + 3)?

wW = —




§ 4 Example (Schwarzschild + Scalar case)

S =5 )-part
This part of the self-force is obtained by
; §-s( s UL
F;?-S ZC n. FS—S 0. Fi—s — CS S
4:1'1‘2 4:’1')“2
0 n=0
where n indicates the order of PN expansion and
73
=S _ 7
€0 = 133
CS_S{” 61{) 6 %E_ﬁgﬁgﬂ
¢ T T3207% T 1501 2 31521
oS-se _ 2296958 , [14127898 L2 20571064 | . 5579893 L' 59116 LU 18112
© T TBRI84I5C T | BBIS4IS 2 26635245 | 1775683 ri 253669 12 10507

CS-S®) _ 115291414894 , N l434?19?mzﬁ L 48448379368
! 269415503175 ¢ [ 17961033545 2 89805167725
22584903396 L' 508295808 LU (244692415685DB4 . ZInE)UZF
2565861935 r! 2565861935 r: 8336485426815 32 &
+151545|:-43 J:E' 201581166 LU +(122513312??5314 N mﬁn:) L2
1301367 .-~6 32479265 1 1667297085363 64 re
_( 170795’?14491-1294 ?rr’-’) 3

+
25009456280445 4

¢ 10507’



§ 5 Simple case (Schwarzschild + Scalar + Circular)

We use the slow motion approximation. So it is necessary to
answer how fast the convergence of the PN expansion is.

We investigate the Simplest case (Sch.+Scalar+Circular).
Orbit

@y = (4 ooy of = "o o_ 1
Z(T)_(HrsrﬂazruT)a U J,ﬁ]—?ﬁM’” rﬂ. ?‘D—?)M'

Result of the (S —3)-part
) 2
Ff_s _ q |- 73 .\ lﬁlﬁlvz N 39556?w +(110?23403?66063?
Arry 133 21014 106808 400151300487120
7 )V6 ( 182118981911377689978271 29?1‘3) 9
+ |- 1% ‘+

+—1 +
64 8548630707351386171520 1024

where V = VM/ro and we show our results up to the 4PN
order.




§ 5 Simple case (Schwarzschild + Scalar + Circular)
Convergence test

Ff_S In — F§_S In—l N |Ff_3|n - Ff_3|r1—1|
F}ﬂewmn +F§_S +F§ M,U/Iﬁ
where n indicates the order of the PN expansion.

(convergence) =
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We can see that the convergence is good in the far zone
In the ISCO, the convergence is very slow.



§ 5 Simple case (Schwarzschild + Scalar + Circular)

o~

R-part

In circular case, the spectrum is discrete. So it is possible to

calculate the R-part of the self-force analytically.

2
k@ [73 16151 , 395567 , (4 4  1196206548879997)\
= o133~ 21014" 106808 1737~ 3@V~ Zoors1300887120 ) ¥
59372120592232147984979 14 66 14y . 9]
+( 1709726141470277234304 3 V)~ 5 M@ - )V +ow)

/M
Here, V = e v: the Euler’s constant
0

Self-force in case of a circular orbit:

2
R_ 4 [(_4,. T o 4 _2
F! _4m§;|( Y+~ 3 ev) 9)1/6

604 297> 66 14 14 8 9
+( T © In(2) - ?IH(V)— ?}‘)V ] +007)




§ 5 Simple case (Schwarzschild + Scalar + Circular)
Comparison with previous results

The regularized self-force obtained by Detweiler et al. is
FR =1.37844828(2) x 107 (ro = 10M).

The most accurate self-force in our calculation is
FR = 1.378448203 x 107> (rp = 10M).

coincidence at the Yaccuracy 107{-8}!
Table: the r-component of the| self-force

PN order FR(rg = 6M) FR(ro = 10M) FR(rg = 20M)
4 —3.698897009 x 10™*  §.438965544 x 107%  4.009204942 x 107’
6 3.900997486 x 1077 15734502 x 10~ 4.900744665 x 1077
8 1.469034988 x 10+ 1870724270 x 10 4.937547086 x 1077
10 1.634644402 x 10~ 1.3§7874928 x 10>  4.937898906 x 10~
12 1.665705633 x 107 1.388392510 x 1075 4.937905702 x 1077
14 1.674516681 x 10~ 1.378443247 x 1075 4.937905862 x 1077
16 1.676513985 x 10™*  1.378%847488 x 10> 4.937905865 x 1077
18 1.677456783 x 10~ 4.937905865 x 10~



§ 5 Simple case (Schwarzschild + Scalar + Circular)

The error of cycle of the GW

We can roughly estimate the cycle of the gravitational wave
by regarding scalar charge as mass of the particle.
Result in the mass ratio = 1076 case

Ad

N=2

L (7 _dE/dry, 1 jvf dE [dro
- [ a L
nf dEja ™ "), SR 9

Order | (6.2M, 6M) (10M,9.995M) (20M, 19.9991 M)

N© 1.345475356 x 10° 6.881110147 x 10* 2.265486877 x 10*

N©® 1.345382272 x 1(° 6.881094334 x 107 2.265486831 x 10°

NUO) 1.345388366 x 10° 6.881094827 x 104 2.265486831 x 10¢

N2 1.345387979 x 10° 6.881094812 x 10* 2.265486831 x 10*

N 1.345388001 x 10° 6.881094812 x 10* 2.265486831 x 10*

NU6) 1.345388000 x 10° 6.881094812 x 107 2.265486831 x 10°

The n-th ords neans that they are expanded in terms of

@ to O(W"n).
We choose each set of (r i, r f) such that the time interval during
the particle moves is nearly equal 1 year.



§ 5 Simple case (Schwarzschild + Scalar + Circular)

.

R-part

1o0 ¢

10

n.o0n1 g

The relative difference of the cycle
=
[y

g.oo001l .
le+0d le+05 le+06

mass ratioc

Cycle error vs Mass ratio

» We choose each set of (r_i, 6M) such that the time interval during
the particle moves is nearly equal 1 year.



§ 6 Summary & Conclusion

We propose the new analytical method for Self-Force
regularization. (S - R decomposition)

We calculate the (S —S)-part of the self-force for a general
orbit in the Sch.+Scalar case.

In order to investigate the convergence of the PN expansion,
we calculate the self-force in the Sch.+Scalar+Circular case.

For a circular orbit, we calculate the R-part of the self-force
analytically. But it is easy to calculate numerically. So this
method isapplicable to general orbital case.

In the future, we want to calculate in the grav. and Kerr case.



