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1. Goals and motivations

To obtain practical time-domain formulae for the fluxes of

mass and angular momentum into a black hole.

For Schwarzschild holes, time-domain integration of the
Regge-Wheeler and Zerilli equations is very efficient; prior to
Martel (2004), there were no formulae linking the standard

gauge-invariant variables to horizon fluxes.

For Kerr holes, time-domain integration of the Teukolsky equation
is now feasible; the Teukolsky-Press flux formulae are formulated in

the frequency domain.

(The membrane-paradigm flux formulae are formulated in the time
domain, but this formalism does not involve the standard

gauge-invariant quantities and is less practical.)




To calculate the fluxes in a SH/SM approximation, in
which the black-hole mass M and the background

spacetime’s radius of curvature R are such that M/R <« 1.

If the black hole is in on a circular orbit of radius b in the field of
another body of mass M.y, then
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This is small whenever M /M., < 1, in which case V' can be

arbitrary (small-hole approximation).

This is also small whenever V' < 1, in which case M /Mgy can be

arbitrary (slow-motion approximation).




2. Main results

For a Schwarzschild hole, the flux formulae are expressed in terms

of gauge-invariant Regge-Wheeler and Zerilli-Moncrief functions,
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For a Kerr hole, the flux formulae are expressed in terms of the
gauge-invariant Teukolsky function
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For a small Schwarzschild hole on a circular orbit (radius b) in the
field of another Schwarzschild black hole (mass Meyxt > M),
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For a small Kerr hole on the same (equatorial) orbit,
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where y = a/M = J/M? and e= L - § = +1.




3. (Generator dynamics

[The techniques described here are adapted from Hawking & Hartle (1972), Price &

Thorne (1986), and the Membrane Paradigm book.]

The null generators of an (evolving) event horizon are described by
parametric relations z%(v,#4), with v the parameter (“advanced

time”) and 0 generator labels (“comoving coordinates”).

The vectors
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are tangent to the horizon; £% 1s null and is orthogonal to €.




The tangent vector satisfies the geodesic equation, ke ﬁkﬁ = rk®,

which defines the surface gravity k.

The expansion scalar 6 and shear tensor o 4p are defined by
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where
YAB = gageie%
is the horizon metric.

In the absence of matter, the expansion and shear evolve according

to




Here,
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are tangential components of the Weyl tensor.

In the absence of caustics, the horizon area grows according to
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where dS = \ﬁdQH is an element of surface area.




4. Perturbation equations

The perturbation of the horizon is driven by the Weyl curvature,
Cap = O(e), which implies that 45 = O(¢) and 6 = O(e?).

To leading order in ¢, the perturbation equations reduce to

0
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where x now stands for the unperturbed (Kerr) surface gravity.




The Weyl curvature varies over a short time scale — the
generators rotate with a fast angular velocity {2y and the hole
might be in a tidal field that varies rapidly.

The shear equation must be integrated exactly, with teleological
boundary conditions:
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The shear also varies over a short time scale, but its square
contains a piece that varies slowly, and this will drive a slow,
secular change in the expansion.

This is described by (9, < k)

(0) = %<O‘ABO'AB>

Integrating this over dS gives the averaged rate of growth of the
horizon area.




Finally, integration of the metric equation 0,vap = 204p gives

vap(v,0%) =% 5(0) + 5vap(v,07)

where 7Y 5 is the Kerr horizon metric, and

d0van (v, QA)

is the perturbation.




5. From area growth to fluxes

For matter perturbations it can be shown [Carter (1979)] that the
rates of change of area, mass, and angular momentum are related
by

B A= QuJ (first law)
8T

We assume that this holds also for gravitational perturbations, at

least on average.

For matter perturbations it can be shown [Carter (1979)] that if the
matter field is decomposed into modes e~*“Ve!™¥  then the mode
contributions to the averaged fluxes are related by

We assume that this holds also for gravitational perturbations

[Teukolsky & Press (1974)].




These relations imply

where k = w — mQy.

In spacetime coordinates (v, r,0,1) the mode decomposition of the

metric perturbation is

0VAB = Z/dw VS (1, 0)e” Wl ety

In horizon coordinates (v,r =1r1,0,¢ =1 — Qyv) we have




The shear tensor is
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Substituting —iw — £; and im — £, and reconstructing the

metric perturbation, we arrive at
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The Lie derivatives are in the directions of t* and ¢%, the timelike

and rotational Killing vectors of the Kerr spacetime;
kY =t* 4+ Quo“.

These flux formulae first appeared in the Membrane Paradigm

book, but the derivation given here is different.

They can now be re-expressed in terms of standard

gauge-invariant quantities.




6. Curvature formalism
Let 19 be a complex component of the perturbed Weyl tensor,

Yo = 6(Canpsk®m K’ m®) = (8Cayps) k*m Kk m’

Then we have
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The shear tensor is obtained by integration
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Finally, the metric perturbation is
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d_(v,04) = /U vo(v',04) dv’

After decomposition into modes €™V, substitution of these
expressions into the flux formulae returns
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The gauge-invariant function g = >  ¥™(v,0)e"™? can be
obtained by solving the Teukolsky equation.

In the frequency domain these formulae are the same as in
Teukolsky & Press (1974).




7. Metric formalism

For a perturbed Schwarzschild black hole, the metric perturbation
(in the adopted comoving gauge) can be expressed in terms the
Regge-Wheeler and Zerilli-Moncrief functions, which are

gauge invariant.

We have
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where XU (04) and Z4'5(04) are respectively odd-parity and
even-parity tensorial spherical harmonics.




This expression gives rise to the horizon flux formulae
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These were first obtained and used by Martel (2004); flaws in his
derivation (based on the Isaacson stress-energy tensor) have been

eliminated.

With v — u, the same formulae apply at future null infinity.




8. SH/SM approximation (S)

The metric of a nonrotating black hole of mass M immersed in an
external universe with radius of curvature R can be expressed as an
expansion in powers of M /R < 1 [Detweiler (2001); Alvi (2000);
Poisson (2004)].

If the black hole is on a circular orbit of radius b in the field of
another body of mass M.y, then
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When M < 'R the hole can be thought of as moving on a world
line ~ in the background spacetime of the external universe, with a

4-velocity u®.




The hole is distorted by the tidal gravitational field supplied by
the external universe, which is described by

Eap(v) = Cpavp(y)utu”,

where C,q.3 is the Weyl tensor of the background spacetime.

From the perturbed metric the Regge-Wheeler and Zerilli-Moncrief

functions can be computed, and these can be substituted into the

flux formulae.

This gives
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where s® is the spin direction and gaﬁ = EuppUt.




For a small Schwarzschild hole on a circular orbit (radius b) in the
field of another Schwarzschild black hole (mass Moyt > M),
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where V' = / Myt /b.

In the slow-motion limit (V' < 1), this agrees with Poisson &
Sasaki (1995) and Alvi (2001).




9. SH/SM approximation (K)

For a Kerr black hole one must rely on the curvature formalism and

solve the Teukolsky equation in the regime M /R < x, where
X =a/M = J/M?>.

To leading order it suffices to solve the time-independent Teukolsky
equation; the dependence of 1y on v is inherited from the

asymptotic conditions in the external universe, which are encoded
in E,p(v) and Bys(v).




The final result is
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These results were previously obtained by D’Eath (1996).




For a small Kerr hole on an equatorial, circular orbit (radius b) in
the field of a Schwarzschild black hole (mass Mexs > M),
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and (J) = (M)/Q, where e = L - § = +1 and My Q = V3.

In the slow-motion limit (V' <« 1), this agrees with Tagoshi et al
(1997) and Alvi (2001).




10. SH/SM approx. (S vs K)

For a Kerr black hole we have obtained

(M) =O(M°/R), (J) = O(M°/R*)
For a Schwarzschild black hole we have obtained

(M) =0(M°/R®),  (J)=O(M°/R®)

These scalings can be understood by examining the special case of

rigid rotation with an angular velocity €2, for which

(M) =Q@Q-on)C, (J)=©Q—-m)C, C=0M°*R




For Kerr, the SH/SM approximation implies 2 < Qp, so that

= —QQuC = O(M°/R?),  (J) = —QuC = O(M®/RY)

For Schwarzschild, 0y = 0 and

(M) =Q2C =0(M°/R®),  (J)=QC =0(M°%/R5)

The scalings are thus naturally explained.

These observations were first made by Thorne and then elaborated
on by Alvi (2001).




