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1. Goals and motivations
To obtain practical time-domain formulae for the fluxes of

mass and angular momentum into a black hole.

For Schwarzschild holes, time-domain integration of the

Regge-Wheeler and Zerilli equations is very efficient; prior to

Martel (2004), there were no formulae linking the standard

gauge-invariant variables to horizon fluxes.

For Kerr holes, time-domain integration of the Teukolsky equation

is now feasible; the Teukolsky-Press flux formulae are formulated in

the frequency domain.

(The membrane-paradigm flux formulae are formulated in the time

domain, but this formalism does not involve the standard

gauge-invariant quantities and is less practical.)
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To calculate the fluxes in a SH/SM approximation, in

which the black-hole mass M and the background

spacetime’s radius of curvature R are such that M/R � 1.

If the black hole is in on a circular orbit of radius b in the field of

another body of mass Mext, then

M

R ∼
M

M +Mext
V 3, V =

√
M +Mext

b

This is small whenever M/Mext � 1, in which case V can be

arbitrary (small-hole approximation).

This is also small whenever V � 1, in which case M/Mext can be

arbitrary (slow-motion approximation).
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2. Main results
For a Schwarzschild hole, the flux formulae are expressed in terms

of gauge-invariant Regge-Wheeler and Zerilli-Moncrief functions,

〈Ṁ〉 =
1

64π

∑

lm

(l − 1)l(l + 1)(l + 2)
〈

4
∣∣Ψlm

RW(v)
∣∣2 +

∣∣Ψ̇lm
ZM(v)

∣∣2
〉

For a Kerr hole, the flux formulae are expressed in terms of the

gauge-invariant Teukolsky function

Cαγβδk
αmγkβmδ ≡ ψ0(v, r+, θ, ψ) =

∑

m

ψm(v, θ)eimψ

For example,

〈Ṁ〉 =
r2
+ + a2

4κ

∑

m

[
2κ

∫ 〈
|Φm+ |2

〉
sin θ dθ

− imΩH

∫ 〈
Φ̄m+ Φm− − Φm+ Φ̄m−

〉
sin θ dθ

]
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For a small Schwarzschild hole on a circular orbit (radius b) in the

field of another Schwarzschild black hole (mass Mext �M),

〈Ṁ〉 =
32

5

(
M

Mext

)6

V 18 (1− V 2)(1− 2V 2)

(1− 3V 2)2
, V =

√
Mext

b

For a small Kerr hole on the same (equatorial) orbit,

〈Ṁ〉 = −ε8

5

(
M

Mext

)5

χ(1 + 3χ2)V 15
(1− 2V 2)

(
1− 4+27χ2

4+12χ2V
2
)

(1− 3V 2)2

where χ ≡ a/M ≡ J/M2 and ε ≡ L̂ · ŝ = ±1.
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3. Generator dynamics
[The techniques described here are adapted from Hawking & Hartle (1972), Price &

Thorne (1986), and the Membrane Paradigm book.]

The null generators of an (evolving) event horizon are described by

parametric relations zα(v, θA), with v the parameter (“advanced

time”) and θA generator labels (“comoving coordinates”).

The vectors

kα =
∂zα

∂v
: tangent to generators

eαA =
∂zα

∂θA
: transverse to generators

are tangent to the horizon; kα is null and is orthogonal to eαA.
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The tangent vector satisfies the geodesic equation, kα;βk
β = κkα,

which defines the surface gravity κ.

The expansion scalar θ and shear tensor σAB are defined by

kα;βe
α
Ae

β
B =

1

2

∂γAB
∂v

=
1

2
θ γAB + σAB

where

γAB = gαβe
α
Ae

β
B

is the horizon metric.

In the absence of matter, the expansion and shear evolve according

to (
∂

∂v
− κ
)
θ = −1

2
θ2 − σABσAB

(
∂

∂v
− κ
)
σAB = −θσAB − CAB
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Here,

CAB = Cαγβδe
α
Ak

γeβBk
δ

are tangential components of the Weyl tensor.

In the absence of caustics, the horizon area grows according to

Ȧ =
d

dv

∮ √
γ d2θ =

∮
∂
√
γ

∂v
d2θ =

∮
θ dS

where dS =
√
γ d2θ is an element of surface area.
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4. Perturbation equations

The perturbation of the horizon is driven by the Weyl curvature,

CAB = O(ε), which implies that σAB = O(ε) and θ = O(ε2).

To leading order in ε, the perturbation equations reduce to
(
∂

∂v
− κ
)
σAB = −CAB +O(ε2)

(
∂

∂v
− κ
)
θ = −σABσAB +O(ε3)

where κ now stands for the unperturbed (Kerr) surface gravity.
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The Weyl curvature varies over a short time scale — the

generators rotate with a fast angular velocity ΩH and the hole

might be in a tidal field that varies rapidly.

The shear equation must be integrated exactly, with teleological

boundary conditions:

σAB(v, θA) =

∫ ∞

v

eκ(v−v′)CAB(v′, θA) dv′

The shear also varies over a short time scale, but its square

contains a piece that varies slowly, and this will drive a slow,

secular change in the expansion.

This is described by (∂v � κ)

〈θ〉 =
1

κ

〈
σABσ

AB
〉

Integrating this over dS gives the averaged rate of growth of the

horizon area.
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Finally, integration of the metric equation ∂vγAB = 2σAB gives

γAB(v, θA) = γ0
AB(θ) + δγAB(v, θA)

where γ0
AB is the Kerr horizon metric, and

δγAB(v, θA) = 2

∫ v

−∞
σAB(v′, θA) dv′

=
2

κ

∫ v

−∞
CAB(v′, θA) dv′

+
2

κ

∫ ∞

v

eκ(v−v′)CAB(v′, θA) dv′

is the perturbation.
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5. From area growth to fluxes
For matter perturbations it can be shown [Carter (1979)] that the

rates of change of area, mass, and angular momentum are related

by
κ

8π
Ȧ = Ṁ − ΩHJ̇ (first law)

We assume that this holds also for gravitational perturbations, at

least on average.

For matter perturbations it can be shown [Carter (1979)] that if the

matter field is decomposed into modes e−iωveimψ, then the mode

contributions to the averaged fluxes are related by

〈Ṁ〉m,ω =
ω

m
〈J̇〉m,ω

We assume that this holds also for gravitational perturbations

[Teukolsky & Press (1974)].
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These relations imply

〈Ṁ〉m,ω =
ω

k

κ

8π
〈Ȧ〉m,ω

〈J̇〉m,ω =
m

k

κ

8π
〈Ȧ〉m,ω

where k = ω −mΩH.

In spacetime coordinates (v, r, θ, ψ) the mode decomposition of the

metric perturbation is

δγAB =
∑

m

∫
dω γm,ωAB (r, θ)e−iωveimψ

In horizon coordinates (v, r = r+, θ, φ = ψ − ΩHv) we have

δγAB =
∑

m

∫
dω γm,ωAB (θ)e−ikveimφ
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The shear tensor is

σAB =
1

2

∑

m

∫
dω (−ik)γm,ωAB (θ)e−ikveimφ

Then

κ

8π
〈Ȧ〉 =

1

8π

∮ 〈
σABσAB

〉
dS

=
∑

m

∫
dω
−ik
16π

∮ 〈
σABγm,ωAB (θ)e−ikveimφ

〉
dS

It follows that

〈Ṁ〉 =
∑

m

∫
dω
−iω
16π

∮ 〈
σABγm,ωAB (θ)e−ikveimφ

〉
dS

〈J̇〉 =
∑

m

∫
dω
−im
16π

∮ 〈
σABγm,ωAB (θ)e−ikveimφ

〉
dS
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Substituting −iω → £t and im→ £φ and reconstructing the

metric perturbation, we arrive at

〈Ṁ〉 =
1

16π

∮ 〈
σAB£tγAB

〉
dS

〈J̇〉 = − 1

16π

∮ 〈
σAB£φγAB

〉
dS

The Lie derivatives are in the directions of tα and φα, the timelike

and rotational Killing vectors of the Kerr spacetime;

kα = tα + ΩHφ
α.

These flux formulae first appeared in the Membrane Paradigm

book, but the derivation given here is different.

They can now be re-expressed in terms of standard

gauge-invariant quantities.
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6. Curvature formalism
Let ψ0 be a complex component of the perturbed Weyl tensor,

ψ0 = δ
(
Cαγβδk

αmγkβmδ
)

=
(
δCαγβδ

)
kαmγkβmδ

Then we have

CAB = m̄Am̄Bψ0 +mAmBψ̄0, mα = mAeαA

The shear tensor is obtained by integration

σAB = m̄Am̄BΦ+ +mAmBΦ̄+

where

Φ+(v, θA) ≡
∫ ∞

v

eκ(v−v′)ψ0(v′, θA) dv′

Finally, the metric perturbation is

δγAB =
2

κ

[
m̄Am̄B(Φ− + Φ+) +mAmB(Φ̄− + Φ̄+)

]
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where

Φ−(v, θA) ≡
∫ v

−∞
ψ0(v′, θA) dv′

After decomposition into modes eimψ, substitution of these

expressions into the flux formulae returns

〈Ṁ〉 =
r2
+ + a2

4κ

∑

m

[
2κ

∫ 〈
|Φm+ |2

〉
sin θ dθ

− imΩH

∫ 〈
Φ̄m+ Φm− − Φm+ Φ̄m−

〉
sin θ dθ

]

〈J̇〉 = −r
2
+ + a2

4κ

∑

m

(im)

∫ 〈
Φ̄m+ Φm− − Φm+ Φ̄m−

〉
sin θ dθ

The gauge-invariant function ψ0 =
∑
m ψ

m(v, θ)eimψ can be

obtained by solving the Teukolsky equation.

In the frequency domain these formulae are the same as in

Teukolsky & Press (1974).
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7. Metric formalism
For a perturbed Schwarzschild black hole, the metric perturbation

(in the adopted comoving gauge) can be expressed in terms the

Regge-Wheeler and Zerilli-Moncrief functions, which are

gauge invariant.

We have

δγAB(v, θA) = 2M
∑

lm

[
2X lm

AB(θA)

∫ v

Ψlm
RW(v′) dv′

+ ZlmAB(θA)Ψlm
ZM(v)

]

where X lm
AB(θA) and ZlmAB(θA) are respectively odd-parity and

even-parity tensorial spherical harmonics.
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This expression gives rise to the horizon flux formulae

〈Ṁ〉 =
1

64π

∑

lm

(l − 1)l(l + 1)(l + 2)
〈

4
∣∣Ψlm

RW(v)
∣∣2 +

∣∣Ψ̇lm
ZM(v)

∣∣2
〉

〈J̇〉 =
1

64π

∑

lm

(l − 1)l(l + 1)(l + 2)(im)

×
〈

4Ψlm
RW(v)

∫ v

Ψ̄lm
RW(v′) dv′ + Ψ̇lm

ZM(v)Ψ̄lm
ZM(v)

〉

These were first obtained and used by Martel (2004); flaws in his

derivation (based on the Isaacson stress-energy tensor) have been

eliminated.

With v → u, the same formulae apply at future null infinity.
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8. SH/SM approximation (S)

The metric of a nonrotating black hole of mass M immersed in an

external universe with radius of curvature R can be expressed as an

expansion in powers of M/R � 1 [Detweiler (2001); Alvi (2000);

Poisson (2004)].

If the black hole is on a circular orbit of radius b in the field of

another body of mass Mext, then

M

R ∼
M

M +Mext
V 3, V =

√
M +Mext

b

When M � R the hole can be thought of as moving on a world

line γ in the background spacetime of the external universe, with a

4-velocity uα.
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The hole is distorted by the tidal gravitational field supplied by

the external universe, which is described by

Eαβ(v) ≡ Cµανβ(γ)uµuν , Bαβ(v) ≡ 1

2
uµε γδ

µα Cνβγδ(γ)uν

where Cµανβ is the Weyl tensor of the background spacetime.

From the perturbed metric the Regge-Wheeler and Zerilli-Moncrief

functions can be computed, and these can be substituted into the

flux formulae.

This gives

〈Ṁ〉 =
16M6

45

〈
Ėαβ Ėαβ + ḂαβḂαβ

〉
= O(M6/R6)

〈J̇〉 = −32M6

45
uµεµαγδ

〈
ĖαβEβγ + ḂαβBβγ

〉
sδ = O(M6/R5)

where sα is the spin direction and Ėαβ = Eαβ;µu
µ.
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For a small Schwarzschild hole on a circular orbit (radius b) in the

field of another Schwarzschild black hole (mass Mext �M),

〈Ṁ〉 =
32

5

(
M

Mext

)6

V 18 (1− V 2)(1− 2V 2)

(1− 3V 2)2

〈J̇〉 =
32

5

(
M

Mext

)6

MextV
15 (1− V 2)(1− 2V 2)

(1− 3V 2)2

where V =
√
Mext/b.

In the slow-motion limit (V � 1), this agrees with Poisson &

Sasaki (1995) and Alvi (2001).
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9. SH/SM approximation (K)

For a Kerr black hole one must rely on the curvature formalism and

solve the Teukolsky equation in the regime M/R � χ, where

χ ≡ a/M ≡ J/M2.

To leading order it suffices to solve the time-independent Teukolsky

equation; the dependence of ψ0 on v is inherited from the

asymptotic conditions in the external universe, which are encoded

in Eαβ(v) and Bαβ(v).

23



The final result is

〈Ṁ〉 = O(M5/R5)

〈J̇〉 = − 2

45
M5χ

[
8(1 + 3χ2)〈E1 +B1〉 − 3(4 + 17χ2)〈E2 +B2〉

+ 15χ2〈E3 +B3〉
]

= O(M5/R4)

where

E1 = EαβEαβ , E2 = EαβsβEαγsγ , E3 =
(
Eαβsαsβ

)2

B1 = BαβBαβ , B2 = BαβsβBαγsγ , B3 =
(
Bαβsαsβ

)2

These results were previously obtained by D’Eath (1996).
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For a small Kerr hole on an equatorial, circular orbit (radius b) in

the field of a Schwarzschild black hole (mass Mext �M),

〈Ṁ〉 = −ε8

5

(
M

Mext

)5

χ(1 + 3χ2)V 15
(1− 2V 2)

(
1− 4+27χ2

4+12χ2V
2
)

(1− 3V 2)2

and 〈J̇〉 = 〈Ṁ〉/Ω, where ε ≡ L̂ · ŝ = ±1 and MextΩ = εV 3.

In the slow-motion limit (V � 1), this agrees with Tagoshi et al

(1997) and Alvi (2001).
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10. SH/SM approx. (S vs K)

For a Kerr black hole we have obtained

〈Ṁ〉 = O(M5/R5), 〈J̇〉 = O(M5/R4)

For a Schwarzschild black hole we have obtained

〈Ṁ〉 = O(M6/R6), 〈J̇〉 = O(M6/R5)

These scalings can be understood by examining the special case of

rigid rotation with an angular velocity Ω, for which

〈Ṁ〉 = Ω(Ω− ΩH)C, 〈J̇〉 = (Ω− ΩH)C, C = O(M6/R4)
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For Kerr, the SH/SM approximation implies Ω� ΩH , so that

〈Ṁ〉 = −ΩΩHC = O(M5/R5), 〈J̇〉 = −ΩHC = O(M5/R4)

For Schwarzschild, ΩH = 0 and

〈Ṁ〉 = Ω2C = O(M6/R6), 〈J̇〉 = ΩC = O(M6/R5)

The scalings are thus naturally explained.

These observations were first made by Thorne and then elaborated

on by Alvi (2001).
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