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The “trouble” with self-force

• Consider a point particle carrying charge q coupled to a mass-
less field φ and moving freely in a curved background geom-
etry.

• In the absence of curvature and external matter, the particle
does not interact with itself.

• However, in a curved background, even in vacuum, the charge
can exert a force on itself because:

– light-cones can be deformed sufficiently that the particle
can be in it’s own null past.

– Huygen’s principle fails in curved spacetimes, so the field
propagates in time-like as well as null directions.

• The interaction of the particle at the present with its own field
from the past gives rise to a self-force.
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The “trouble” with self-force (cont.)
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• The worldline of a particle and
its past lightcone at τ2 .

• The field generated by the
particle at τ1 can affect the
particle at τ2 because mass-
less fields have time-like prop-
agating components in curved
space.

• At time τ0 , the particle is
light-like separated from its fu-
ture self (at τ2 ), so the light-
like propagating components
of the field from τ0 can also in-
teract with the particle at τ2 .
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The “trouble” with self-force (cont.)

• Schematically, the self-force is given by the gradient of the
tail field,

fα(x(τ )) ∼ q∇αφtail(x(τ )). (1)

• The tail field at x from the particle on worldline x′(τ ′) is

φtail(x) ∼ q lim
ε→0+

∫ τret(x)−ε

−∞
dτ ′Gret[x, x′(τ ′)], (2)

– Gret is the retarded
Green’s function for the
field φ

– τret(x) is the proper time
at which the past light-
cone from x intersects
the world-line x′(τ ′) .
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The “trouble” with self-force (cont.)

• The ε limit in

fα ∼ q2 lim
ε→0+

∫ τ−ε

−∞
dτ ′∇αGret[x(τ ), x′(τ ′)], (3)

allows us to formally avoid a singular distributional contribu-
tion to ∇αGret[x(τ ), x′(τ ′)] when x(τ ′) = x(τ )

• Usually, however, one must approximate Gret by a finite sum
over the mode (eigenfunction) solutions of the wave function

Gret(x, x′) ∼
∑

k

u(k; x)ū(k, x′). (4)

• Although the modes are all finite, they are localized in fre-
quency space rather than coördinate space, and are “aware”
that they must sum to an infinite value at x′ = x . This causes
the number of modes needed to achieve a finite accuracy di-
verge as ε→0 .
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The “trouble” with self-force (cont.)
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• To illustrate, consider

δ(x) =

∫ ∞

−∞
dk e2πikx.

• We approximate by truncating at
a finite mode number n ,

δn(x)≡
∫ n

−n

dk e2πikx =
sin(2πnx)

πx
.

• We need n�1/x to have δn(x)
settle down at x . In the limit
x→0 , we need n→∞ to achieve
a given accuracy.
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The Poisson-Wiseman Approach
• One method for solving this problem was proposed by Pois-

son and Wiseman, First Capra Ranch Radiation Reaction
Meeting, Frank Capra’s Ranch, (1998) .

• They noted that within a normal neighbourhood of x the re-
tarded Green’s function can be expressed in the Hadamard
form

Gret(x, x′) ∼ Θ(t− t′)

[
U(x, x′) δ[σ(x, x′)] (5)

− V (x, x′) Θ[−σ(x, x′)]

]
.

Here:

– Θ(t−t′) is 1 for x in the causal future of x′ and 0 otherwise,
– σ(x, x′) is half the square of the geodesic distance from x

to x′ , and
– U(x, x′) and V (x, x′) are everywhere smooth.
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The Poisson-Wiseman Approach (cont.)

• Let us break the self-force integral into two parts

fα ∼ q2

[∫ τ−∆τ

−∞
dτ ′∇αGret[x, x′(τ ′)]

+ lim
ε→0+

∫ τ−ε

τ−∆τ

dτ ′∇αGret[x, x′(τ ′)]

]
(6)

• Provided that we choose ∆τ such that x(τ ′) is within the nor-
mal neighbourhood of x(τ ) for all τ − ∆τ < τ ′ < τ , we can
use for the second integral above

Gret(x, x′) ∼ Θ(t− t′)

[
U δ[σ]− V Θ[−σ]

]
. (7)

• Notice, however, that the particle moves on a timelike world-
line, so σ[x(τ ), x′(τ ′)] = 0 only for τ ′ = τ , which is not inte-
grated over. Thus, the U term can never contribute to the
self-force.
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The Poisson-Wiseman Approach

• We can therefore write the self-force as

fα ∼ q2

[∫ τ−∆τ

−∞
dτ ′∇αGret[x, x′(τ ′)]

−
∫ τ

τ−∆τ

dτ ′∇αV [x, x′(τ ′)]

]
(8)

• We have dropped the Θ s from the second term because
they are always unity in the domain of integration. We have
dropped the ε limit because ∇αV is everywhere finite, so the
end point does not change the value of the integral.

• Gret(x, x′) can now be approximated throughout the domain
of the first integral to any given (non-zero) accuracy with a
finite (but possibly large) number of terms, because we are
no longer approaching arbitrarily close to the singularity at
x′ = x .

• How can we approximate ∇αV ?
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Calculating Hadamard’s V

• ∇αV is a bitensor, meaning it acts as a two-index tensor at
both x and at x′ .

• There is an extensive literature on series expansions of biten-
sors. One begins with a formal power series in σ(x, x′) ,

V (x, x′) =

∞∑
n=0

V n(x, x′)σn. (9)

• Substituting this expansion into the Hadamard form for Gret
which in turn is substituted into the Green’s function differ-
ential equation and equating powers of σ , one gets a set of
differential equations for the coefficients V n(x, x′)σn .
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Calculating Hadamard’s V (cont.)

dU = 0, (10)

V 0 + dV 0 = −1

2
DU, (11)

(n + 1)V n + dV n = − 1

2n
DV n−1, (12)

where

• d ≡ σ;µ
[
∇µ − 1

2 (ln ∆);µ

]
,

• D is the wave operator for the field φ ,

• ∆ ≡ det
[
−g α′

α (x, x′)σ;α′β

]
is the Van Vleck - Morrette deter-

minant, and

• gα
α′(x, x′) is the bivector of parallel displacement, which is

defined such that gα
α′u

α′(x′) = uα(x) where uα≡dxα/dτ .
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Calculating Hadamard’s V (cont.)

• The solution to the U is well known to be

U = ∆1/2. (13)

• We look for power series solutions to the equations for the
V n s, i.e. assume

V n(x, x′) = vn + vn
λσ

;λ +
1

2
vn

λρσ
;λσ;ρ + . . . . (14)

• Following e.g. Allen, Follaci and Ottewill, PRD 38, (1988) ,
we can use known expansions of bitensors, such as

�∆1/2 =
1

240
CµνλρC

µνλρgαβσ
;ασ;β + O

[
(σ;α)3

]
, (15)

to solve the differential equations for V n s order by order for
the vn coefficients.
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Calculating Hadamard’s V (cont.)

• Results to date:

– Roberts, Class. Quantum Grav. 6, (1989) stopped just
short calculating the leading term in the expansion of the
normal neighbourhood integral. A trivial extension of his
result gives:

fα
QL ≡ −q2

∫ τ

τ−∆τ

∇α V (z(τ ), z(τ ′)) dτ ′

= −q2

4
Cα

βγ
δ
;δu

βuγ ∆τ 2 + O(∆τ 3) (16)

– P. R. Anderson and Hu, Phys. Rev. D. 69 (2004) used
a Hadamard-WKB expansion for the Euclidean Green’s
function to calculate V to sixth order for a minimally-coupled
scalar charge in a Schwarzschild background. They did
not explicitly calculate the self-force in that paper, how-
ever.
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Calculating Hadamard’s V (cont.)

• Anderson, Flanagan and Ottewill, PRD 71, (2005) have re-
cently found the first two non-vanishing orders for this part
of the gravitational self-force,

fα
QL(τ, ∆τ ) = −µ2(δαβ + uαuβ)

{
Cβγδε C γ ε

σ ρ uδuσuρ ∆τ 2

+uγuδ

[
1

6
CγµδνC

µ ν
ε σ ;β uεuσ − 3

20
Cβγµδ;νC

µ ν
ε σ uεuσ

+
1

3

(
1

2
CµνγλC

µν λ
δ ;β + CµεγλC

µ λ
σδ ;βu

εuσ

)
−19

60

(
1

2
CµνγλC

µν ;λ
δβ + CµεγλC

µ ;λ
σδβ uεuσ

) ]
∆τ 3

+O(∆τ 4)

}
. (17)
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Convergence of expansions

• We now know how to expand both integrals in

fα ∼ q2

[∫ τ−∆τ

−∞
dτ ′∇αGret[x, x′(τ ′)]

+ lim
ε→0+

∫ τ−ε

τ−∆τ

dτ ′∇αGret[x, x′(τ ′)]

]
(18)

• The larger ∆τ is chosen, the better the expansion of the first
integral converges. The smaller ∆τ is chosen, the better the
expansion of the second integral converges.

• Recall that τ −∆τ must be within the normal neighbourhood
of τ for a valid expansion of the second integral.

• Is there any ∆τ such that both expnasions converge suffi-
ciently well?
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Convergence of expansions (cont.)

• Recently, Alan Wiseman and I have investigated this ques-
tion by examining

– QL convergence for:
∗ minimally coupled scalar field
∗ Schwarzschild background (mass M )
∗ static particle and circular geodesic (Schwarzschild ra-

dius R ).

– mode-sum convergence for:
∗ minimally coupled scalar field
∗ Schwarzschild background
∗ static particle at 6M
∗ orderM Green’s function

• See gr-qc/0506136 for details (Warning: there are typos we
discovered in proof that are not corrected on archived ver-
sion yet.)
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Convergence of expansions (cont.)

• For QL expansion, we use the Anderson and Hu result. Al-
though expansion is to seventh order, only two terms remain
for both static particle and circular geodesic orbits.

• E.g. for the static particle, the only non-vanishing parts are
the fifth and seventh order terms of the radial component

f r
QL[5]≡ 9

2240

q2M 2

R15
(4R− 11M) (R− 2M)5 ∆τ 5, (19)

f r
QL[7]≡ 1

3360

q2M 2

R20

(
20R3 − 195MR2 + 598M 2R− 585M 3

)
(R− 2M)6 ∆τ 7. (20)

• To estimate truncation error, we use

ε≡
f r

QL[7]

f r
QL[5] + f r

QL[7]
. (21)
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Convergence of expansions (cont.)

• This is an estimate of the local truncation error, i.e. an esti-
mated bound on the fractional error of not including the next
term in the series. Unfortunately, there is no way to estimate
global truncation error.
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φ Component for Circular Orbit at Order ∆τ6
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Convergence of expansions (cont.)

• For the mode sum expansion, we use the multipole expan-
sion of order M Green’s function for a static scalar charge.

• The sum up to the N th multipole for the mode-sum integral
gives

fr(∆τ,N) = − q2

R2ut

(N + 1)

4
√

2

∫ cos βmax

−1

PN+1(ξ)− PN(ξ)

(1− ξ)3/2
dξ , (22)

where ut = 1−M/R + O[M 2] and

cos βmax≡1− 1

2

(
∆τ

ut R

)2

. (23)
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Convergence of expansions (cont.)

• On dimensional grounds, one can argue that the radial com-
ponent of the self force should be of the form

fr = λ
q2M

R3
, (24)

• We know in this case that λ = 0 .

• Taking ∆τ = R , we get

Modes (M 2ut/q2)fr(∆τ,N) bound on λ
10 0.0017 0.36
50 0.00078 0.17
100 0.00056 0.12
200 0.00041 0.088
300 0.00036 0.078
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Summary

• The Poisson-Wiseman approach breaks the self-force into
two integrals, the near-past (QL) integral and the far-past
integral.

• The near-past integral admits a power series expansion within
a normal neighbourhood of the particle. This expansion seems
to converge well out to near the edge of the normal neigh-
bourhood.

• The far-past integral admits a mode sum expansion. This
did not converge very well if a substantial part of the normal
neighbourhood was within the domain of the integral.

• There are many open issues:

– Can the mode-sum convergence be accelerated?
– To what order is the quasi-local expansion feasible?
– Are convergence calculations for the simple cases we

looked at indicative of more interesting cases?
– Gauge problems for the gravitational case?


