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The “trouble” with self-force

e Consider a point particle carrying charge ¢ coupled to a mass-
less field ¢ and moving freely in a curved background geom-
etry.

¢ In the absence of curvature and external matter, the particle
does not interact with itself.

e However, in a curved background, even in vacuum, the charge
can exert a force on itself because:

— light-cones can be deformed sufficiently that the particle
can be in it's own null past.

— Huygen'’s principle fails in curved spacetimes, so the field
propagates in time-like as well as null directions.

e The interaction of the particle at the present with its own field
from the past gives rise to a self-force.
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The “trouble” with self-force (cont.)

particle at

time T, e The worldline of a particle and
its past lightcone at 7, .

e The field generated by the
particle at =, can affect the
particle at » because mass-

_ less fields have time-like prop-
R agating components in curved
space.

e At time 7, , the particle is
light-like separated from its fu-
i ture self (at » ), so the light-
time T like propagating components
of the field from 7, can also in-

teract with the particle at 7 .

worldline of particle
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The “trouble” with self-force (cont.)
e Schematically, the self-force is given by the gradient of the

tail field, |
f(@(7)) ~ ¢V Prai(x(7)). (1)
e The tail field at = from the particle on worldline x/(7') is
Tret(x)—¢
bule) ~qlim [ a7 Gele (), (@

field point x

— Gt IS the retarded
Green’s function for the
field ¢

— Tret(x) IS the proper time
at which the past light- _
cone from z intersects i
the world-line 2/(7') .
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The “trouble” with self-force (cont.)

e The < limit in

o~ g hm+/ vdT' ) ()], (3)
e—0 5

allows us to formally avoid a singular distributional contribu-

tion to VGietlx(7), 2'(7")] when z(7') = z(7)

e Usually, however, one must approximate G by a finite sum
over the mode (eigenfunction) solutions of the wave function

@i, 2 Zu (k; z)u (4)

e Although the modes are all finite, they are localized in fre-
guency space rather than coordinate space, and are “aware”
that they must sum to an infinite value at ' = = . This causes
the number of modes needed to achieve a finite accuracy di-
verge as ¢—0 .
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The “trouble” with self-force (cont.)

e To illustrate, consider

o(x) = / Gk

8,(%) s

85 (x)
879(x)

—+ e \We approximate by truncating at
a finite mode number n ,

4}5‘\ s i

/ E\ ) <x>_/n dk 627?7?/{:1: o S111<27Tn:13>
PNy i Mo
P -.\‘.7./. .: e X

1 U e We need n>>1/x to have ¢,(z)
settle down at = . In the limit
x—0 , we need n—oo to achieve
a given accuracy.

(K]
Kl
[>]
]
(4]
[»]
]



The Poisson-Wiseman Approach

e One method for solving this problem was proposed by Pois-
son and Wiseman, First Capra Ranch Radiation Reaction
Meeting, Frank Capra’s Ranch, (1998) .

e They noted that within a normal neighbourhood of x the re-
tarded Green’s function can be expressed in the Hadamard
form

Gret(z,2') ~ Ot — ) |U(x,2') d[o(z, 2")] (5)

— V(z,2') O|—0c(z,2")]|.

Here:

— O(t—t")is 1 for x in the causal future of 2’ and 0 otherwise,

—o(x,2') 1s half the square of the geodesic distance from =
to 2/ , and

—U(x, o) and V(x,2") are everywhere smooth.
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The Poisson-Wiseman Approach (cont.)
e Let us break the self-force integral into two parts

T—AT
fﬂ i q2 [/ d’/"/ vaGret[gj; ZE/<’7'/>}

—c9

+ lim / dr’ VQGret[l‘,ZEl(T/ﬂ] (6)
e—07 T—AT
e Provided that we choose A7 such that = (7') is within the nor-
mal neighbourhood of z(7) for all - — AT < 7/ < 7, we can
use for the second integral above

Gret(z,2') ~ Ot — ') |U d[o] — V ©[-0]|. (7)

e Notice, however, that the particle moves on a timelike world-
line, so o[z(7),2'(7")] = 0 only for 7/ = 7, which is not inte-
grated over. Thus, the U term can never contribute to the
self-force.
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The Poisson-Wiseman Approach

e \We can therefore write the self-force as

T—AT
Jay- [/ A e, (7))

—(69

— /T &' VoV, z' (T (8)

T—AT

e \We have dropped the © s from the second term because
they are always unity in the domain of integration. We have
dropped the ¢ limit because V“V is everywhere finite, so the
end point does not change the value of the integral.

e Gret(x, 2') can now be approximated throughout the domain
of the first integral to any given (non-zero) accuracy with a
finite (but possibly large) number of terms, because we are
no longer approaching arbitrarily close to the singularity at
ol —

e How can we approximate V1 ?
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Calculating Hadamard's V/

e V*V is a bitensor, meaning it acts as a two-index tensor at
both = and at 2/ .

e There is an extensive literature on series expansions of biten-
sors. One begins with a formal power series in o(x, 2') ,

Vige =) = Z Vi(z,z o 9)

n=0

e Substituting this expansion into the Hadamard form for G'g;
which in turn is substituted into the Green’s function differ-
ential equation and equating powers of ¢ , one gets a set of
differential equations for the coefficients V" (z, 2")o" .
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Calculating Hadamard’s V' (cont.)

it — 0, (10)
1
AL 7 e —590, (11)
| | L
(n+1)V"+oV" = —%QV’”, (12)

where
¢ =gt [v,,, — L(n A)A ,
e 9 is the wave operator for the field ¢ ,
o A\ = det [—g(g“(a;, ZC’)O;(klgg} is the Van Vleck - Morrette deter-

minant, and

e ¢“ (x,2") is the bivector of parallel displacement, which is
defined such that ¢°,u® (z/) = u*(x) where u*=dz"/dr .
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Calculating Hadamard’s V' (cont.)

e The solution to the U is well known to be

U =AY2, (13)

e \We look for power series solutions to the equations for the
Vs, l.e. assume

. 1 N
Vi z,z') = 0" + UK’J’A + Ev;})a“a’/’ -- (14)

e Following e.g. Allen, Follaci and Ottewill, PRD 38, (1988) ,
we can use known expansions of bitensors, such as

OAY2 — L
240

to solve the differential equations for V" s order by order for
the v" coefficients.

Coon O P guga®a” + OM(c*)®], (15)
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Calculating Hadamard’s V' (cont.)

e Results to date:

— Roberts, Class. Quantum Grav. 6, (1989) stopped just
short calculating the leading term in the expansion of the
normal neighbourhood integral. A trivial extension of his
result gives:

fo = ¢ VUV
2

= —TC% WA+ O(A)  (16)

—P. R. Anderson and Hu, Phys. Rev. D. 69 (2004) used
a Hadamard-WKB expansion for the Euclidean Green’s
function to calculate V' to sixth order for a minimally-coupled
scalar charge in a Schwarzschild background. They did
not explicitly calculate the self-force in that paper, how-
ever.
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Calculating Hadamard’s V' (cont.)

e Anderson, Flanagan and Ottewill, PRD 71, (2005) have re-
cently found the first two non-vanishing orders for this part
of the gravitational self-force,

e A — M2(5(‘j+u“uj){037550 p © wuuf Ar?

D)

1 3
X onov ISP () ) . £
ECA/,[LOVC&_ _/j) U u - O‘fj“/ﬂd:ﬂc&“ /O. u - u

A~/ O
+u'u
A 20

1 1 WA
+§ (20,,m @ 5 j+C/ AAC“O duu)
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Convergence of expansions

e We now know how to expand both integrals in

T—AT
f(}' o q2 [/ dT/ v(yGret{x; CE/<’7'/>}

—00

+lim/ ~ dT'VO"Gret[:L’,at'(T’)}] (18)

e=0" J 7_Ar

e The larger A7 is chosen, the better the expansion of the first
integral converges. The smaller A7 is chosen, the better the
expansion of the second integral converges.

e Recall that 7 — A7 must be within the normal neighbourhood
of 7 for a valid expansion of the second integral.

e Is there any A7 such that both expnasions converge suffi-
ciently well?
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Convergence of expansions (cont.)

e Recently, Alan Wiseman and | have investigated this ques-
tion by examining

— QL convergence for:
«x minimally coupled scalar field
x Schwarzschild background (mass M )
« static particle and circular geodesic (Schwarzschild ra-

dius R).
— mode-sum convergence for:

x minimally coupled scalar field
x Schwarzschild background

x static particle at 6/

x orderM/ Green'’s function

e See gr-gc/0506136 for details (Warning: there are typos we
discovered in proof that are not corrected on archived ver-
sion yet.)
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Convergence of expansions (cont.)

e For QL expansion, we use the Anderson and Hu result. Al-
though expansion is to seventh order, only two terms remain
for both static particle and circular geodesic orbits.

e E.g. for the static particle, the only non-vanishing parts are
the fifth and seventh order terms of the radial component

C o 9 ¢>M? 5 s

fablE g pn (4R — 11M) (R — 2M)° Ar®, (19)

A 1 QQMQ 3 2 = 2 VL

=555 (20R® — 195M R* + 598 M°R — 585M°)
(R —2M)° AT, (20)

e To estimate truncation error, we use

B
~fauldl + oLl

(21)
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Convergence of expansions (cont.)

e This is an estimate of the local truncation error, i.e. an esti-
mated bound on the fractional error of not including the next
term in the series. Unfortunately, there is no way to estimate
global truncation error.

Estimated Error in Quasi-Local Self-Force
¢ Component for Circular Orbit at Order At

0.1

0.01

0.001F

Estimated Fractional Truncation Error

0.0001——+—
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Convergence of expansions (cont.)

e For the mode sum expansion, we use the multipole expan-
sion of order M Green’s function for a static scalar charge.

e The sum up to the N multipole for the mode-sum integral
gives

cos Omax i e D
f’(AT’ N) y i q2 (N + 1)/ PN+1<€> Py <€>d§ . (22)

R 0/ Jo Q-0
where u' =1 — M/R + O[M?] and
1/ A7 \?
COS ﬁmale =y 5 <ﬁ) . (23)
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Convergence of expansions (cont.)

e On dimensional grounds, one can argue that the radial com-
ponent of the self force should be of the form

¢ M

f,.:ARS )

(24)

e \We know in this case that A = 0 .
e Taking A7 = R, we get

Modes | (M*u'/q*) f,(A7, N) | bound on \
10 0.0017 0.36
50 0.00078 0.17
100 0.00056 0.12
200 0.00041 0.088
300 0.00036 0.078
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Summary

e The Poisson-Wiseman approach breaks the self-force into
two integrals, the near-past (QL) integral and the far-past
integral.

e The near-past integral admits a power series expansion within
a normal neighbourhood of the particle. This expansion seems
to converge well out to near the edge of the normal neigh-
bourhood.

e The far-past integral admits a mode sum expansion. This
did not converge very well if a substantial part of the normal
neighbourhood was within the domain of the integral.

e There are many open issues:

— Can the mode-sum convergence be accelerated?
— To what order is the quasi-local expansion feasible?

— Are convergence calculations for the simple cases we
looked at indicative of more interesting cases?

— Gauge problems for the gravitational case?
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