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Talk Outline

• Brief description of likely LISA extreme mass ratio 
inspiral (EMRIs) events

• Challenges of data analysis for EMRI detection
• Semi-coherent approach to data analysis
• Estimated EMRI detection rates using the semi-coherent 

scheme
• Alternative search algorithms
• Outstanding issues
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Extreme mass ratio inspirals

• Inspiral of a compact object (WD, NS, BH) into a 
supermassive black hole in the centre of a galaxy.

• Generate gravitational waves which can be detected by 
LISA for last several years of inspiral.

• Desire to detect many EMRI events has been driving 
part of LISA mission specification.

• Gravitational waveforms encode a map of the spacetime
structure close to the SMBH.



EMRIs – event rates

• Using galaxy luminosity function and L-σ / M-σ relations, 
estimate space density of black holes

M• dN/dM• = 1.5 x 10-3 h65
2 Mpc-3

• Use capture rates from simulations of stellar clusters.

• Specifically, take Freitag’s rates for the Milky Way and   
scale to other galaxies with a M⅜ dependence.

• Conservative rates could be a factor ~100 smaller for 
WDs, or a factor ~10 for BHs.
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EMRIs – typical parameters

• Central SMBH has mass M~few x 105M๏ – 107M๏. Set by 
location of floor of LISA noise curve.

• Central SMBH spin, S/M2 ~ 0 – 1.
• Inspiralling object is captured on an orbit with e~1, 

random inclination and rp ~ few x M – few x 10M.
• At plunge, eccentricity is still moderate, e ~ 0 – ~0.4, 

prograde orbits favoured observationally.
• Sky position, inclinations etc. randomly distributed.



EMRI detection

+

• EMRI events are faint, 
typically an order of 
magnitude below the noise.

• Detection will be by 
matched filtering using a 
bank of templates.

• Overlap of template with 
data pulls signal out of the 
noise.

• Has some parallels with 
radio astronomy, but cannot 
point LISA.



Data analysis challenges

• EMRI waveforms depend on 14 different parameters –
M, S, m, e, rp, ι, ψ0, χ0, φ0, θK, φK, θS, φS, D.

• During last year of inspiral, the gravitational waveform 
has ~105 cycles. Might naïvely estimate ~(105)8=1040

templates required.
• Computationally infeasible to do fully coherent matched 

filtering. Have been scoping out mixed 
coherent/incoherent methods using kludge waveforms. 



DA challenges – confusion
• LISA data stream will be source dominated – data analysis 
for each type of source is not decoupled.

• Confusion arises from resolvable sources, and background 
of unresolvable sources.

• Early stages of EMRIs contribute to the confusion 
background – can dominate over WD confusion near ~3mHz, 
depending on astrophysical rates.

• EMRI confusion could be even worse in suggested 
alternative scenarios.

• Detection algorithms must deal with confusion.

• Confusion affects our ability to determine source 
parameters.



Semi-coherent search algorithm

• Search is hierarchical. First stage is a fully coherent 
search for short waveform segments.

• Five parameters are extrinsic. Can maximize over these 
automatically.

• Use Fast Fourier Transforms to maximize over one 
further parameter (a time offset) cheaply.

• First stage dominates computational cost of search. 
Assuming 50 Teraflops computing power, can search 
~1010 templates. Monte Carlo simulations indicate this 
limits the coherent segments to a length ~2-3 weeks.



• SNR is built up during 
second stage by combining 
power incoherently.

• Maximize over two remaining 
phase angles (using 
templates) before stacking.

• The resulting search statistic 
is the sum of the maximized 
power along trajectories 
through the coherent 
segments.

• For a false alarm rate of 1%, 
find SNR threshold for 
detection is ~35.



• Use kludge waveforms and Synthetic LISA simulator to 
compute SNRs of typical events.

• Combine with expected astrophysical rates to estimate 
number of LISA detections under two sets of 
assumptions
– ‘Optimistic’ – 5 year mission lifetime, optimal SNRs (AET), optimistic 

WD subtraction and 3 week coherent integrations.
– ‘Pessimistic’ – 3 year mission lifetime, SNR from a single synthetic 

Michelson (X) only, pessimistic WD subtraction and 2 week coherent 
integrations.

• Events with a ‘*’ are z<1 lower limits.
• Astrophysical rate uncertainties are not included.
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• Requirements are much less stringent for detection
– Phase needs to match for ~2 weeks only.
– Typical waveform has ~1000 cycles →require 0.1% accuracy.
– Dephasing can be partially explained by errors in the other 

parameters.
– Adiabatic templates (with conservative corrections) may suffice.
– Non-template searches have no phase requirements!

• Parameter estimation requires phase tracking for up to 
several years → 0.001% accuracy requirement.

• Must understand parameter dependence of phasing in 
order to assess parameter determination accuracy and 
quantify tests of black hole geometry.

Template accuracy requirements



• Time-frequency techniques could detect brightest sources 
at considerably lower computational cost.

• Have examined a simple excess power method – bin 
power in the spectrogram using rectangular boxes and 
search for unusually high average power.

• Can detect typical EMRIs out to 2Gpc (Wen & JG)     
(~half the reach of semi-coherent technique).

• Promising, but confusion and parameter estimation are 
problematic.

• More sophisticated algorithms could reach further, help 
cope with confusion and provide input for matched filtering 
follow up. Currently exploring HACR and other techniques 
(see talk by Jones).

Time-frequency analysis techniques



Alternative algorithms

• Alternative time-frequency algorithms should be 
examined – alternative generation of the spectrogram, 
Hough transform, clustering, hierarchical schemes.

• Markov Chain Monte Carlo techniques – provides a more 
intelligent way to explore large parameter spaces. But –
no guarantee of convergence.

• Hierarchical refitting of parameters – extract sources 
sequentially, resolving for the parameters at each step.

• Final data analysis will employ a combination of 
techniques – maximize science output for given 
computing resources, ensures greater confidence in the 
results.



Outstanding issues

• Effects of source interference need to be understood –
have considered search for single sources only.

• Optimization of search algorithms – e.g., search for higher 
multipoles, division into coherent segments, threshold 
choice etc.

• Better estimates of intrinsic event rates to allow tuning of 
the search.

• Interface with data analysis for other sources – how does 
WD or BBH subtraction affect EMRI detection and 
parameter estimation?

• Efficiency of alternative search algorithms.
• Geometry mapping – astrophysics, templates, null 

hypothesis test



Summary

• EMRI detection is difficult, but algorithms are under 
development.

• LISA could see as many as several thousand events 
during the mission lifetime.

• Best search presently known is semi-coherent and 
requires templates that are phase accurate for ~2 weeks.

• Alternative algorithms may detect the brightest sources 
at a small fraction of the computational cost.

• Final parameter determination will involve a matched 
filtering search and imposes much stricter requirements 
on template phase accuracy – self-force!


