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1. Introduction

An era of gravitational wave astronomy has almost arrived.

e GWs are directly related to a particle motion. So, in order to
detect GWs, we have to know more accurate particle motion in-
cluding radiation reaction.

By using assumption of adiabatic orbital evolution and conservation law
(balance argument)
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we can obtain a particle motion from the flux of GW.

In this time, for simplicity, we focus on a scalar charged particle case.
But our calculation can be applicable to the gravitational case.



Flux on the Flat Background

We consider a point particle which has a scalar charge ¢, moving on the
flat background. The scalar field ¢ induced by this point particle obeys:
Ofat® = —p,  p=qdé(xz — 2(7))

Here & and z are a field and orbital position, respectively. This equation
can be solved easily. A solution is

b = /p“—f Blegy, (R—z -z, R—|R|).

Moreover, if we assume |x| > |z|, then

=l —z[=|e|-n-z (n=a/lx|).
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Here the dot represents the derivatives with respect to ¢



Dipole Approximation and Circular Case

The energy-momentum tensor of ¥ is written by
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S0, using the relation n - V &= —dp, the energy loss can be obtained by
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Circular case,
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Eccentric Case

Eecentric case
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Therefore, the averaged value of energy loss over one period is
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In order to compare with the self-force we show later, we define rp as

a=ro(l4e*+---).
Then we can obtain
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Beyond Dipole Approx. and the Self-Force

Because a GW signal 1s very weak, we need more accurate waveform than
that obtained by the dipole approximation (quadrapole approximation
in the gravitational case).

e Current State (Gravitational case)

1). Schwarzschild, Circular (5.5PN) [Ref. Tanaka et al.(’96)]

2). Schwarzschild, Eccentric (4PN) [Ref. Mino et al.(’97)]

3). By using the method Mano et al. developed, we can calculate by
arbitrary PN order [Ref. Mano et al.(’96), Fujita and Tagoshi(’04)]

It is also important to consider beyond the balance argument, i.e. self-
force. This is because that
1). A particle, orbiting a Kerr black hole, has the Carter constant.
= Recently, we formulate the time dependence of Carter constant
< C >. [Ref. Mino (’04), Sago et al.(’05), Sago-san’s talk|
2). This argument is not valid when the orbit has large value of e.
3). In fact, the reaction force on a particle contains not only dissipative
part [F'* — —F“ as t — —t| but also conservative part [F'® — F©
as t — —t|.



2. S.F.In the Schwarzschild Spacetime

Next we consider a point particle which has a scalar charge ¢, moving on
the Schwarzschild background. The scalar field ¢ obeys;

O

VaVah(e) = —ple),  pla') =g f dr(—g) 260 (! — (7).

Considering a backreaction of this scalar field, the equation of motion
that includes the self-force can be written by

du® !
S Tt = — POl FU[Y] = qP 07 (),
dr H

The our purpose is to calculate the self-force . But the self-force I
diverges at the location of the particle.

$

It is necessary to regularize the self-force.



Regularized Self-Force and S-Part

The full field can be formally divided into two parts;
i;,’rf”” _ wS (or dir) + (ﬁbR (or ta.il}? st FS.F. _ o [('L,R {or tail]]‘

e S-Part (or direct part) = Singular term
— This comes from the field propagating along the light cone
directly from the source particle.
— It is possible to calculate directly, using the local expansion.

e R-Part (or tail part) = Regularized self-force
— This arises from the curvature scattering of the field.
— It is not possible to calculate directly, since this part depends
on the whole history of the particle.
In the last few years, it is the S-part that a large number of studies
have been made on.
Barack et al.(’02) calculated the S-part, using Yy, decomposition, in the
following form:
F[y%] =Y (AL + B* + C*/L + D*), L—t+tis C* =0,y D*=0
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New Analytical Regularization Method

1). divided the full field into two parts; [next page in detaill
Pl — ,q{]s" + a,bﬁ?

S-Part : Inhomogeneous solution, Singular
R-Part : Homogeneous solution, Regular

2). From the study of S-Part, the S-Part can be calculated, using Yy,
decomposition, in the following form

FS) = Z (A'*L+ B* + C*/L + f)“) L C* = 0.
=0
A, B are same as those of S-Part, while D is not same as D.

3). our way to regularize the self-force is

FSF = polpl] = pofptll] — Fo[ys] = (Fo[®] - Fo[pS]) + Fo[pF)
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Here, if we would like the n PN accuracy, we set fiax = n + 1.



Method of Our Decomposition

Green fen. method + Yy, decomposition + Fourier transformation

w = [ @i, i) —a [0 - (),
Gz, z") o< [R™(r)R™(r")0(r" — 1) + (1 < 1) YY* exp(—iw(t — t')).
Using the MST’s solution, homogeneous solutions are written by
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According to the property of S-Part and R-Part, we define

GS(I ') o [@l(r)o, " (r)0(r — ')+ (r < )| YY" exp(—iw(t — t')),
GR(I v’y = G (x, x") — GS{JJ x')

and
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More Detalil ...

The important fact is that the S-part in the frequency domain is given
in the form of a simple Taylor series with respect to w multiplied by
exp|—iw(t —t')].

Therefore, the integration over w just produces §(t —t') and its deriva-
tives. Using this technique we can obtain the S’-part in the time domain
relatively easily.

Summary of Our Method

e We propose the (S — ﬁ)-demmp:}sitiﬁn

e From the asymptotic form of S-Part, we can obtain the S-Part
without direct calculation.

e Our regularization method is applicable to general orbits and grav-
itational case, in Schwarzschild spacetime.



Result (Circular Case)

(S — S)-Part (Regularization part)
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This part does not contain the dissipative part [F'“ — —F“ as t — —t].

e R-Part (Remained part)
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The leading term of energy loss is consistent with the previous analysis.



Consistency Check

The value of F* (Our result: 18PN+ fmax = 19)

To 6.M 10M 20M

Our result 1.67620878 x 10™% | 1.378448171 x 107" | 4.937905866 x 10~
Detweiler et al. || 1.6772834 x 1074 1.37844828 x 107 ° 4.937906 x 107

=]

In our computation the accuracy is limited by (S — S)-part. Hence, the
accuracy of the full regularized force can be read from the Figure.

This error may seem large, but if we use our result as a template for
LISA, it turns out that the error is small enough [Ref. W.H et al.(2004)]



Error of PN expansion
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3. Bound Orbits

1). Glampedakis and Kennefick ('02)

2). Apostolatos et al.(’93)
oV (r)

or
In this parametrization, r, is written by

ro(v=1/v10) = 1 — e + 1.5e* — 2.25¢" + 3.25e* — 4.50e” + 5.91¢°
—7.20e” + 7.80e® — 6.57e” + O(e'?).

(r=r19) =0, rpzi-“ﬂ{l—l—e)

The convergence is very slow but, in this time, we used this convention.
3). (Future work) The convergence improve a little.

av(r)
ar

In this parametrization, r, is written by

ra(v = 1/V10) = 1 — e + 0.50e” — 0.25¢” + 10~ '%* — 10~ " ¢®
—0.093e% — 0.0156e” — 0.0859¢® — 0.0742¢” + O(e'?)
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Parameterization

The solution of the geodesic equation for slightly eccentric orbits has
been given by Apostolatos ef al.('93). We define ry and e as

(r=1r9) =0, V(r=ro(l+e))=0.

Here V' is an potential for the radial motion. From these equations, £
and L. are expressed in terms of rp and e as

5 (1—20%)%  v%(1—60?) , M w
Sr- — e, E}: — . h = M .
3,2 + 3.2 e” -+ N e where v = /M /rg
Then expanding the geodesic equations in power of e, the solution is
r(t) = ro[l +ecosQt+---] @(t) = Q,t —epy(v)sinQt +---
3 3
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and p; and [ are some functions of v.



Result (Eccentric Case)

R-Part (Regularized self-force):
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This energy loss is also consistent with the previous analysis.



4 . Bound Orbits Including R.R.

The equation of motion that includes the self-force can be written by

dE 1 a1

i —;FtE¢]; = ;th[“ﬂf/‘]}
i £ dp L
dr  (1-2M/r)" dr r?
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d ~0 2M L= -
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dr r e

Here we translate our results in the scalar case to the gravitational case
by identifying ¢/+/ G with the mass p of the particle.

The signature of v changes at the turning points. So if we solve numeri-
cally, the error increases.



Modify the Equation of Motion

We modify the EOM in the following.
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It seems to diverge at the turning points, however, using the relation
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The next figures are preliminary results of solution of this EOM, which
are solved by using Runge-kutta method.



In this time, we set (M, pu) = (10°Mg, 10°Mg), (ro,e) = (20M,0.3),
initially and F'® is accurate up though 3PN order and 2nd order of e.

Orbit
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Eccentricity
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What can we see the difference between full self-force and
adiabatic self-force? O

1). Energy loss 30
2). Perihelion Shift
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5. Conclusion

Summary

e I'irst we derive the dipole formula.

e We formulate the analytical method for regularizing the self-force
in Schwarzschild spacetime.

e We actually calculate the self-force for eccentric orbit. This is the
first time even if for scalar case.

e We solve the equation of motion including the self-force numeri-
cally.

e The application to gravitational case in Schwarzschild black hole
is straightforward, as Nakano-san talked.

Discussion
e We are investigating the convergence of our expansion.
e We would like to find out the difference between adiabatic case
and self-force case.



