Gravitational Self-force on a Particle in the Schwarzschild background

Hiroyuki Nakano (Osaka City) Norichika Sago (Osaka) Wataru Hikida (Kyoto, YITP) Misao Sasaki (Kyoto, YITP)

1. Introduction

Laser Interferometer Space Antenna (LISA) One of the most promising wave source Super massive black hole - Compact object binaries

Black hole perturbation: Black hole background (mass: M) + Perturbation [point particle] μ (mass:) $g_{\mu\nu} = g^{(b)}_{\mu\nu} + h^{\rm full}_{\mu\nu}$.

We want to know the precise particle motion which includes the self-force in a black hole space-time.

Point particle Self-force diverge Need regularization

MiSaTaQuWa force

Mino, Sasaki and Tanaka ('97), Quinn and Wald ('97) Detweiler and Whiting ('03) under Lorenz (L) gauge

$$h_{\mu\nu}^{\text{full},\text{L}} = h_{\mu\nu}^{\text{S}(\text{dir}),\text{L}} + h_{\mu\nu}^{\text{R}(\text{tail}),\text{L}},$$

Regularized gravitational self-force (reaction force)

$$\begin{split} \mu \frac{D^2 z^{\mu}(\tau)}{d\tau^2} &= F^{\mu}(z) \\ F^{\mu} &= -\frac{\mu}{2} (g^{\mu\nu}_{(\mathrm{b})} + u^{\mu} u^{\nu}) \left(2h^{\mathrm{R,L}}_{\nu\beta;\alpha} - h^{\mathrm{R,L}}_{\alpha\beta;\nu} \right) u^{\alpha} u^{\beta} \,, \end{split}$$

 $\{u^{lpha}\}$: Four velocity of a particle

``R-part'': Homogeneous solution of linearized Einstein equation, Depend on the history and the global structure of a space-time. It is difficult to obtain this directly.

Regularization

Regularization: Subtract the singular part.

$$h_{\mu\nu}^{\rm R,L} = h_{\mu\nu}^{\rm full,L} - h_{\mu\nu}^{\rm S,L}$$
.

S-part': Possible to calculate around the particle location. (under the Lorenz gauge condition)

``Full'': Regge-Wheeler-Zerilli formalism, Teukolsky formalism (not the Lorenz gauge)

1) Subtraction problem: How do we subtract singular part? We use the spherical harmonics expansion.

2) Gauge problem: Do we treat the gauge difference? We consider an appropriate gauge transformation.

Strategy

* Schwarzschild background

Regge-Wheeler-Zerilli formalism for full metric perturbation

- Sec. 2. Solution of the gauge problem: Finite gauge transformation
- Sec. 3. Standard form for the regularization parameters (Singular part)

Sec. 4. New analytic regularization ($\tilde{S} + \tilde{R}$ decomposition) [Hikida's talk] \rightarrow Metric perturbation, Self-force

- Sec. 5. Regularized self-force
- Sec. 6. Discussion

2. Gauge Problem

We consider the Schwarzschild background.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

Full metric perturbation is calculated by

Regge-Wheeler-Zerilli formalism under the Regge-Wheeler gauge condition.

We want to consider the regularization under the RW gauge analytically.

* R-part of the metric perturbation is the (homogeneous) solution of the linearized Einstein equation.

Finite gauge transformation: Gauge transformation for R-part

$$x_{\mu}^{\mathrm{L}} \rightarrow x_{\mu}^{\mathrm{RW}} = x_{\mu}^{\mathrm{L}} + \xi_{\mu}^{\mathrm{L} \rightarrow \mathrm{RW}} [h_{\alpha\beta}^{\mathrm{R,L}}]$$

Finite gauge transformation

Gauge transformation for R-part:

$$x_{\mu}^{\mathrm{L}} \rightarrow x_{\mu}^{\mathrm{RW}} = x_{\mu}^{\mathrm{L}} + \xi_{\mu}^{\mathrm{L} \rightarrow \mathrm{RW}}[h_{\alpha\beta}^{\mathrm{R,L}}]$$

* We can define the (regularized) self-force under the RW gauge.

$$\begin{split} F_{\alpha}^{\mathrm{RW}}(\tau) &= \lim_{x \to z(\tau)} F_{\alpha} \left[h^{\mathrm{R},\mathrm{RW}} \right] \\ &= \lim_{x \to z(\tau)} F_{\alpha} \left[h^{\mathrm{R},\mathrm{L}} - 2 \nabla \xi^{\mathrm{L} \to \mathrm{RW}} \left[h^{\mathrm{R},\mathrm{L}} \right] \right] (x) \\ &= \lim_{x \to z(\tau)} F_{\alpha} \left[h^{\mathrm{full},\mathrm{L}} - h^{\mathrm{S},\mathrm{L}} - 2 \nabla \xi^{\mathrm{L} \to \mathrm{RW}} \left[h^{\mathrm{full},\mathrm{L}} - h^{\mathrm{S},\mathrm{L}} \right] \right] (x) \\ &= \lim_{x \to z(\tau)} F_{\alpha} \left[h^{\mathrm{full},\mathrm{L}} - 2 \nabla \xi^{\mathrm{L} \to \mathrm{RW}} \left[h^{\mathrm{full},\mathrm{L}} \right] \right] \\ &\quad -h^{\mathrm{S},\mathrm{L}} + 2 \nabla \xi^{\mathrm{L} \to \mathrm{RW}} \left[h^{\mathrm{S},\mathrm{L}} \right] \\ &= \lim_{x \to z(\tau)} \left(F_{\alpha} \left[h^{\mathrm{full},\mathrm{RW}} \right] (x) \right) \\ &= -F_{\alpha} \left[h^{\mathrm{S},\mathrm{L}} - 2 \nabla \xi^{\mathrm{L} \to \mathrm{RW}} \left[h^{\mathrm{S},\mathrm{L}} \right] \right] (x) \end{split}$$

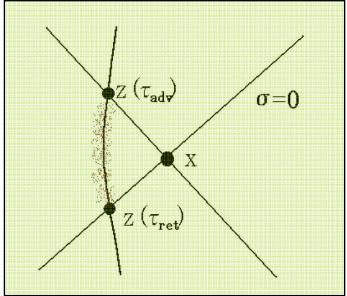
3. Singular Part

3-1. S-part under the L gauge

S-part of the metric perturbation: calculated around the particle location.

$$\bar{h}_{\mu\nu}^{\rm S,L}(x) = 4\mu \left[\frac{\bar{g}_{\mu\alpha}(x, z_{\rm ret})\bar{g}_{\nu\beta}(x, z_{\rm ret})u^{\alpha}(\tau_{\rm ret})u^{\beta}(\tau_{\rm ret})}{\sigma_{;\gamma}(x, z_{\rm ret})u^{\gamma}(\tau_{\rm ret})} \right] +2\mu(\tau_{\rm adv} - \tau_{\rm ret})\bar{g}_{\mu}{}^{\alpha}(x, z_{\rm ret})\bar{g}_{\nu}{}^{\beta}(x, z_{\rm ret})R_{\gamma\alpha\delta\beta}(z_{\rm ret})u^{\gamma}(\tau_{\rm ret})u^{\delta}(\tau_{\rm ret}) +O(y^2),$$

 $\sigma(x, z): \text{Bi-scalar of half} \\ \text{the squared geodesic distance} \\ \bar{g}_{\alpha\beta}(x, z): \text{Parallel displacement bi-vector} \\ \tau_{\mathrm{ret}}(x): \text{Retarded time for } x \\ y: \text{Coordinate difference} \\ \text{between } x \text{ and } z_0 \text{ (small)} \\ z_0: \text{Location of the particle} \end{cases}$



Local coordinate expansion

Metric component: around the particle location.

$$\begin{split} h_{\alpha\beta}^{\mathrm{S},\mathrm{H}} &= \mu_{m,n,p,q,r} C_{\alpha\beta}^{m,n,p,q,r} \frac{T^m R^n \Theta^p \Phi^q}{\epsilon^r} + O(y^2) \\ \text{Small quantities:} \\ \epsilon &:= \left(r_0^2 + r^2 - 2 \, r_0 \, r \, \cos \Theta \cos \Phi \right)^{1/2} , \\ T &:= t - t_0 \,, \quad R := r - r_0 \,, \\ \Theta &:= \theta - \frac{\pi}{2} \,, \quad \Phi := \phi - \phi_0 \,. \end{split}$$

Harmonics expansion: (Example)

$$\frac{1}{\epsilon} = \sum_{\ell m} \frac{1}{r_{>}} \left(\frac{r_{<}}{r_{>}}\right)^{\ell} Y_{\ell m}^{*}(\Omega_{0}) Y_{\ell m}(\Omega) \checkmark$$

Mode sum regularization

S-part of the self-force under the Lorenz gauge:

$$\left| F_{\mathrm{S},\mathrm{L}}^{\mu(\pm)} \right|_{\ell} = \pm A^{\mu}L + B^{\mu} + D^{\mu}_{\ell}, \ L = \ell + \frac{1}{2}.$$

 A^{μ} -term: Quadratic divergence B^{μ} -term: Linear divergence

* These terms are independent of $\,\ell$.

 D^{μ}_{ℓ} -term: Remaining finite contribution

$$D_{\ell}^{\mu} = \frac{d^{\mu}}{L^2 - 1} + \frac{e^{\mu}}{(L^2 - 1)(L^2 - 4)} + \frac{f^{\mu}}{(L^2 - 1)(L^2 - 4)(L^2 - 9)} + \cdots$$

* D_ℓ^μ -term vanishes after summing over ℓ modes from $\ell=0$ to ∞ .

We can consider regularization if we don't know the exact S-part.

Regularization under the L gauge

Regularization by using the S-force with the standard form:

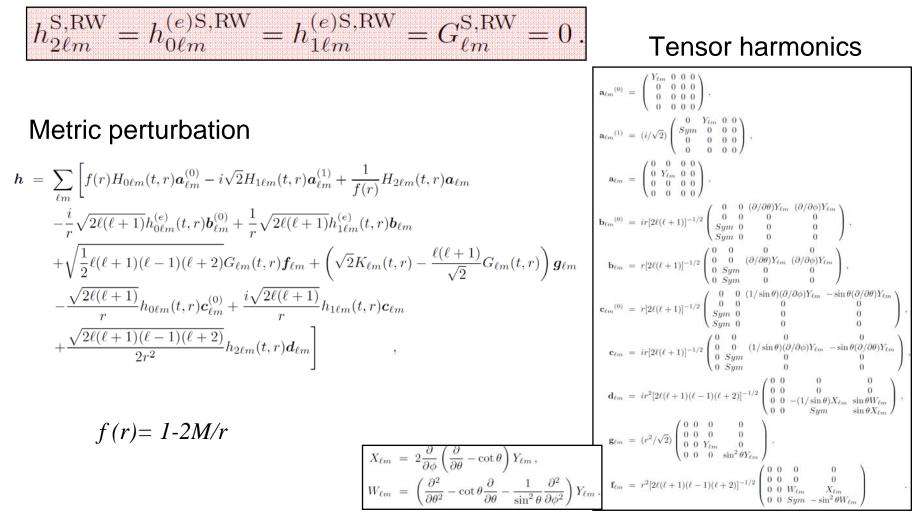
$$\begin{split} F_{\mathrm{R,L}}^{\mu} &= \sum_{\ell \geq 2} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - F_{\mathrm{S,L}}^{\mu} \Big|_{\ell} \right) \longleftarrow \end{split} \\ \begin{array}{l} \text{The R-force is derived from} \\ \text{the homogeneous metric perturbation.} \\ \end{array} \\ &= \sum_{\ell \geq 2} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - A^{\mu}L - B^{\mu} - D_{\ell}^{\mu} \right) \\ &= \sum_{\ell \geq 2} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - A^{\mu}L - B^{\mu} \right) + \sum_{\ell = 0,1} D_{\ell}^{\mu} \\ &= \sum_{\ell \geq 2} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - A^{\mu}L - B^{\mu} \right) + \sum_{\ell = 0,1} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - A^{\mu}L - B^{\mu} \right) \\ &= \sum_{\ell \geq 2} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - A^{\mu}L - B^{\mu} \right) + \sum_{\ell = 0,1} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - A^{\mu}L - B^{\mu} \right) \\ &= \sum_{\ell \geq 0} \left(F_{\mathrm{full,L}}^{\mu} \Big|_{\ell} - A^{\mu}L - B^{\mu} \right) \cdot \qquad \text{(for } r > r_0 \text{)} \end{split}$$

* We need to calculate the $\ell = 0$ and 1 modes.

3-2. About the RW gauge

Regge-Wheeler gauge condition:

* Some coefficients of the tensor harmonics expansion = 0



Gauge transformation

Generator of a gauge transformation from the L gauge to the RW gauge:

$$\begin{split} \xi_{\mu}^{(\text{odd})} &= \sum_{\ell m} \Lambda_{\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) \left\{ 0, 0, \frac{-1}{\sin\theta} \partial_{\phi} Y_{\ell m}(\theta, \phi), \sin\theta \partial_{\theta} Y_{\ell m}(\theta, \phi) \right\}, \\ \xi_{\mu}^{(\text{even})} &= \sum_{\ell m} \left\{ M_{0\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) Y_{\ell m}(\theta, \phi), M_{1\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) Y_{\ell m}(\theta, \phi), \\ M_{2\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) \partial_{\theta} Y_{\ell m}(\theta, \phi), M_{2\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) \partial_{\phi} Y_{\ell m}(\theta, \phi) \right\}. \\ \hline h_{2\ell m}^{\text{S},\text{RW}} &= h_{0\ell m}^{(e)\text{S},\text{RW}} = h_{1\ell m}^{(e)\text{S},\text{RW}} = G_{\ell m}^{\text{S},\text{RW}} = 0 \,. \end{split}$$
Solution:
$$\Lambda_{\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) &= -\frac{r^2}{2} G_{\ell m}^{\text{S},\text{L}}(t,r), \\ M_{2\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) &= -h_{0\ell m}^{(e)\text{S},\text{L}}(t,r) - \partial_t M_{2\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r), \\ M_{0\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r) &= -h_{0\ell m}^{(e)\text{S},\text{L}}(t,r) - r^2 \partial_r \left(\frac{M_{2\ell m}^{\text{S},\text{L}\to\text{RW}}(t,r)}{r^2} \right) \,. \end{split}$$

* It is not necessary to calculate any integration with respect to time or radial coordinates.

Gauge transformation (cont.)

$$\begin{array}{lll} \text{Odd:} & \Lambda_{\ell m}^{\mathrm{S},\mathrm{L}\to\mathrm{RW}}(t,r) \ = \ \frac{i}{2}h_{2\ell m}^{\mathrm{S},\mathrm{L}}(t,r) \,, \\ \text{even:} & M_{2\ell m}^{\mathrm{S},\mathrm{L}\to\mathrm{RW}}(t,r) \ = \ -\frac{r^2}{2}G_{\ell m}^{\mathrm{S},\mathrm{L}}(t,r) \,, \\ & M_{0\ell m}^{\mathrm{S},\mathrm{L}\to\mathrm{RW}}(t,r) \ = \ -h_{0\ell m}^{(\mathrm{e})\mathrm{S},\mathrm{L}}(t,r) - \partial_t M_{2\ell m}^{\mathrm{S},\mathrm{L}\to\mathrm{RW}}(t,r) \,, \\ & M_{1\ell m}^{\mathrm{S},\mathrm{L}\to\mathrm{RW}}(t,r) \ = \ -h_{1\ell m}^{(\mathrm{e})\mathrm{S},\mathrm{L}}(t,r) - r^2 \,\partial_r \left(\frac{M_{2\ell m}^{\mathrm{S},\mathrm{L}\to\mathrm{RW}}(t,r)}{r^2}\right) \,. \end{array}$$

Metric perturbation under the RW gauge:

$$\begin{array}{lll} \mbox{odd:} & h^{\rm S,RW}_{0\ell m}(t,r) \,=\, h^{\rm S,L}_{0\ell m}(t,r) + \partial_t \, \Lambda^{\rm S,L \to RW}_{\ell m}(t,r) \,, \\ & h^{\rm S,RW}_{1\ell m}(t,r) \,=\, h^{\rm S,L}_{1\ell m}(t,r) + r^2 \, \partial_r \, \left(\frac{\Lambda^{\rm S,L \to RW}_{\ell m}(t,r)}{r^2} \right) \,, \\ \mbox{even:} & H^{\rm S,RW}_{0\ell m}(t,r) \,=\, H^{\rm S,L}_{0\ell m}(t,r) + \frac{2 \, r}{r-2 \, M} \left[\partial_t \, M^{\rm S,L \to RW}_{0\ell m}(t,r) - \frac{M(r-2 \, M)}{r^3} M^{\rm S,L \to RW}_{1\ell m}(t,r) \right] \,, \\ & H^{\rm S,RW}_{1\ell m}(t,r) \,=\, H^{\rm S,L}_{1\ell m}(t,r) + \left[\partial_t \, M^{\rm S,L \to RW}_{1\ell m}(t,r) + \partial_r \, M^{\rm S,L \to RW}_{0\ell m}(t,r) - \frac{2 \, M}{r(r-2 \, M)} M^{\rm S,L \to RW}_{0\ell m}(t,r) \right] \,, \\ & H^{\rm S,RW}_{1\ell m}(t,r) \,=\, H^{\rm S,L}_{1\ell m}(t,r) + \frac{2(r-2 \, M)}{r} \left[\partial_r \, M^{\rm S,L \to RW}_{1\ell m}(t,r) + \frac{M}{r(r-2 \, M)} M^{\rm S,L \to RW}_{1\ell m}(t,r) \right] \,, \\ & H^{\rm S,RW}_{2\ell m}(t,r) \,=\, H^{\rm S,L}_{2\ell m}(t,r) + \frac{2(r-2 \, M)}{r} \left[\partial_r \, M^{\rm S,L \to RW}_{1\ell m}(t,r) + \frac{M}{r(r-2 \, M)} M^{\rm S,L \to RW}_{1\ell m}(t,r) \right] \,, \\ & K^{\rm S,RW}_{\ell m}(t,r) \,=\, K^{\rm S,L}_{\ell m}(t,r) + \frac{2(r-2 \, M)}{r^2} M^{\rm S,L \to RW}_{1\ell m}(t,r) \,, \end{array} \right]$$

* The above calculation does not include factors $1/\ell(\ell+1)$ and $1/(\ell-1)\ell(\ell+1)(\ell+2)$?

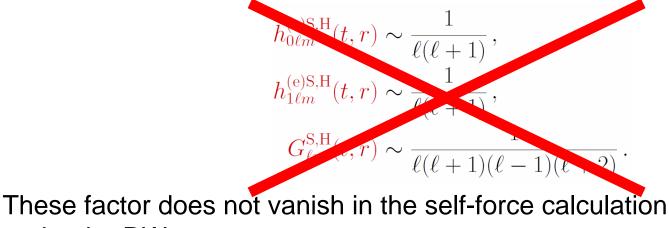
[Interruption factor for the standard form]

<u>Does the standard form recovers</u> <u>under the RW gauge?</u>

Standard form: $D_{\ell}^{\mu} = \frac{d^{\mu}}{(2\ell - 1)(2\ell + 3)} + \frac{e^{\mu}}{(2\ell - 1)(2\ell + 3)(2\ell - 3)(2\ell + 5)} + \cdots$

At first glance, (last year)

S-part of the metric perturbation under the L gauge:



under the RW gauge.

→ D-term does not vanish?

Standard form recovers under the RW gauge.

Tensor harmonics expansion:

Spherical symmetry of the Schwarzschild space-time

e.g.) Even parity $(t\theta)$ -component of the metric perturbation $\longrightarrow \partial_{\theta} Y_{\ell m}$

Tensor harmonics expansion of the S-part under the L gauge

$$\begin{aligned} \epsilon &= \left(r_0^2 + r^2 - 2r_0 r \cos \Theta \cos \Phi\right)^{1/2} \\ &= \sum_{\ell m} [\text{S. F. of } D-\text{term}](r) Y_{\ell m}(\theta, \phi) Y_{\ell m}^*(\pi/2, \phi_0) \,, \end{aligned}$$

$$\begin{aligned} \text{Corresponding quantity} \\ \partial_{\theta} \epsilon &= \sum_{\ell m} [\text{S. F. of } D-\text{term}](r) \partial_{\theta} Y_{\ell m}(\theta, \phi) Y_{\ell m}^*(\theta_0, \phi_0) \,. \end{aligned}$$

$$h_{t\theta}^{(\text{even})} &= \sum_{\ell m} h_{0\ell m}^{(\text{e})}(t, r) \partial_{\theta} Y_{\ell m}(\theta, \phi) \,. \end{aligned}$$

This fact is trivial. (We can not obtain from the local quantity.) * All components have no interruption factor ($1/\ell(\ell + 1)$ etc.).

Regularization under the RW gauge

Standard form recovers under the RW gauge.

 $\rightarrow D^{\mu}_{\ell,\text{RW}}$ -term vanishes after summing over ℓ modes. (The S-force is obtained in the form of the local coordinate expansion.)

Same regularization procedure as the L gauge:

$$\begin{split} F_{\rm R,RW}^{\mu} &= \sum_{\ell \ge 2} \left(\left. F_{\rm full,RW}^{\mu} \right|_{\ell} - F_{\rm S,RW}^{\mu} \right|_{\ell} \right) \\ &= \sum_{\ell \ge 2} \left(\left. F_{\rm full,RW}^{\mu} \right|_{\ell} - A_{\rm RW}^{\mu} L - B_{\rm RW}^{\mu} - D_{\ell,RW}^{\mu} \right) \\ &= \sum_{\ell \ge 2} \left(\left. F_{\rm full,RW}^{\mu} \right|_{\ell} - A_{\rm RW}^{\mu} L - B_{\rm RW}^{\mu} \right) + \sum_{\ell = 0,1} D_{\ell,RW}^{\mu} \\ &= \sum_{\ell \ge 2} \left(\left. F_{\rm full,RW}^{\mu} \right|_{\ell} - A_{\rm RW}^{\mu} L - B_{\rm RW}^{\mu} \right) + \sum_{\ell = 0,1} \left(\left. F_{\rm full,RW}^{\mu} \right|_{\ell} - A_{\rm RW}^{\mu} L - B_{\rm RW}^{\mu} \right) \\ &= \sum_{\ell \ge 0} \left(\left. F_{\rm full,RW}^{\mu} \right|_{\ell} - A_{\rm RW}^{\mu} L - B_{\rm RW}^{\mu} \right) \,. \end{split}$$

* The regularization parameters for the $\ell \ge 2$ modes can be used for the $\ell = 0$ and 1 modes.

4. New Analytic Regularization

Hikida, Jhingan, Nakano, Sago, Sasaki and Tanaka ('04, '05) [Hikida's talk]

Treatment of the Green function ($\tilde{S}+\tilde{R}$ decomposition)

$$g_{\ell m\omega}^{\text{full}}(r,r') = g_{\ell m\omega}^{\tilde{S}}(r,r') + g_{\ell m\omega}^{\tilde{R}}(r,r') \,,$$

 \hat{S} -part force: Possible to calculate for general orbits analytically. (if we use slow motion approximation)

* We can extract the S-part.

R-part force: Generally Need to numerical calculation.

* The ℓ mode convergence is good.

$$F_{\alpha}^{\mathrm{R}} = F_{\alpha}^{\mathrm{full}} - F_{\alpha}^{\mathrm{S}}$$
$$= (F_{\alpha}^{\tilde{\mathrm{S}}} - F_{\alpha}^{\mathrm{S}}) + \sum_{\ell=0}^{\ell_{\max}} F_{\alpha\ell}^{\tilde{\mathrm{R}}}$$

Formulation for scalar case \rightarrow Apply to Regge-Wheeler-Zerilli function.

Regge-Wheeler-Zerilli formalism

 \rightarrow Fourier component: include $\frac{1}{\omega}$

* Time integration is needed.

Improvement of Jhingan and Tanaka ('03)

The \tilde{S} - part of the Green function has only positive power of ω . We can calculate the \tilde{S} - part for general orbit.

* The \tilde{R} - part of the Green function has $\ln \omega$ terms. Third post-Newtonian (3PN) order calculation $\rightarrow \tilde{R}$ - part is also written by the positive power of ω .

<u>3PN order Calculation for general orbit</u>

 \tilde{S} -part force:

$$\begin{split} F_{\ell}^{t,\tilde{S}(-)} \; = \; \mu^2 u^r \bigg[\frac{\ell}{r_0^2} + \frac{2 \left(8 \,\ell^3 + 8 \,\ell^2 - 6 \,\ell - 15\right) M^2}{r_0^4 \left(3 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right)} - \frac{\left(\ell^2 + \ell + 3\right) \delta}{r_0^2 \left(3 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right)} \\ & - \frac{\left(8 \,\ell^3 + 15 \,\ell^2 + \ell + 6\right) L_z^2}{2 r_0^4 \left(3 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right)} + \frac{\left(8 \,\ell^3 + 8 \,\ell^2 - 6 \,\ell - 15\right) M}{r_0^3 \left(3 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right)} \\ & - \frac{\left(32 \,\ell^7 + 124 \,\ell^6 + 36 \,\ell^5 + 233 \,\ell^4 + 784 \,\ell^3 - 3447 \,\ell^2 - 3942 \,\ell + 720\right) M \, L_z^2}{r_0^5 \left(\ell + 1\right) \ell \left(5 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right) \left(-9 + 4 \,\ell^2\right)} \\ & - \frac{8 \left(\ell^4 + 2 \,\ell^3 + 4 \,\ell^2 + 3 \,\ell - 45\right) \delta M}{r_0^3 \left(5 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right) \left(-9 + 4 \,\ell^2\right)} \\ & + \frac{\left(128 \,\ell^5 + 455 \,\ell^4 - 50 \,\ell^3 + 2965 \,\ell^2 + 3702 \,\ell - 16020\right) L_z^4}{8 \,r_0^6 \left(-1 + 2 \,\ell\right) \left(5 + 2 \,\ell\right) \left(-9 + 4 \,\ell^2\right)} \\ & - \frac{3 \left(\ell^4 + 2 \,\ell^3 + 54 \,\ell^2 + 53 \,\ell - 180\right) \delta \, L_z^2}{r_0^4 \left(-1 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right) \left(-9 + 4 \,\ell^2\right)} - \frac{3 \left(\ell^4 + 2 \,\ell^3 + 4 \,\ell^2 + 3 \,\ell - 45\right) \delta^2}{r_0^2 \left(5 + 2 \,\ell\right) \left(-1 + 2 \,\ell\right) \left(-9 + 4 \,\ell^2\right)} \bigg] \end{split}$$

S-part force:

$$\begin{split} F_{\ell}^{t,S(-)} &= \mu^2 u^r \bigg[\bigg(\frac{L_z^4}{r_0^6} - \frac{2 M L_z^2}{r_0^5} - \frac{L_z^2}{r_0^4} + \frac{1}{r_0^2} + \frac{2 M}{r_0^3} + \frac{4 M^2}{r_0^4} \bigg) L \\ &- \frac{2 M^2}{r_0^4} - \frac{3 L_z^2}{8 r_0^4} - \frac{3 M L_z^2}{4 r_0^5} + \frac{135 L_z^4}{128 r_0^6} - \frac{M}{r_0^3} \\ &- \frac{1}{2 r_0^2} - \frac{M \delta}{2 r_0^3} - \frac{3 L_z^2 \delta}{16 r_0^4} - \frac{3 \delta^2}{16 r_0^2} - \frac{\delta}{4 r_0^2} \bigg] \end{split}$$

5. Regularized gravitational self-force

3PN(v^6) order regularized gravitational self-force for general orbits: (We consider only for the $\ell \geq 2$ modes.)

$$\begin{split} F^{t,R} &= F^{t,\tilde{S}-S} + \sum_{\ell} F_{\ell}^{t,\tilde{R}} \\ &= \frac{\mu^2}{r_0^2} \bigg[\frac{64\,M^3}{3\,r_0^3} + \frac{160\,M^2\,L_z^2}{3\,r_0^4} + \frac{256\,M^2\,\delta}{15\,r_0^2} - \frac{40\,M\,L_z^4}{r_0^5} + \frac{136\,M\,L_z^2\,\delta}{5\,r_0^3} + \frac{16\,M\,\delta^2}{5\,r_0} \bigg] \\ &+ \frac{\mu^2 u^r}{r_0^2} \bigg[- \frac{4\,M^2}{r_0^2} - \frac{11\,M\,L_z^2}{2\,r_0^3} - \frac{2\,M}{r_0} - \frac{M\,\delta}{r_0} + \frac{1095\,L_z^4}{64\,r_0^4} - \frac{3\,L_z^2}{4\,r_0^2} - \frac{51\,L_z^2\,\delta}{8\,r_0^2} \\ &- \frac{\delta}{2} - \frac{3\,\delta^2}{8} \bigg] \,, \end{split}$$

$$F^{r,R} = F^{r,\tilde{S}-S} + \sum_{\ell} F_{\ell}^{r,\tilde{R}} \\ &= \frac{\mu^2}{r_0^2} \bigg[\frac{490\,M^3}{3\,r_0^3} - \frac{41\,M^3\,\pi^2}{4\,r_0^3} - \frac{68\,M^2\,L_z^2}{15\,r_0^4} + \frac{369\,L_z^2\,M^2\,\pi^2}{64\,r_0^4} + \frac{196\,M^2\,\delta}{3\,r_0^2} \\ &- \frac{123\,\delta\,M^2\,\pi^2}{32\,r_0^2} - \frac{3647\,M\,L_z^4}{120\,r_0^5} - \frac{15\,M\,L_z^2}{r_0^3} + \frac{186\,M\,L_z^2\,\delta}{5\,r_0^3} - \frac{2\,M}{r_0} - \frac{3\,M\,\delta^2}{4\,r_0} \\ &- \frac{M\,\delta}{r_0} - \frac{27\,L_z^2\,\delta}{4r_0^2} - \frac{39\,L_z^2\,\delta^2}{4r_0^2} + \frac{651\,L_z^4}{64r_0^4} - \frac{\delta}{2} - \frac{5\,\delta^2}{8} - \frac{7065\,L_z^6}{256r_0^6} \\ &- \frac{11\,\delta^3}{16} + \frac{3\,L_z^2}{4r_0^2} + \frac{1703\,\delta\,L_z^4}{64r_0^4} \bigg] \\ &+ \frac{\mu^2 u^r}{r_0^2} \bigg[\frac{32\,M^2}{3\,r_0^2} + \frac{16\,M\,L_z^2}{r_0^3} + \frac{16\,M\,\delta}{5\,r_0} \bigg] \,. \end{split}$$

Circular limit

Energy and angular momentum of a point particle

$$E = \frac{1 - 2M/r_0}{\sqrt{1 - 3M/r_0}}$$
$$L = \sqrt{\frac{Mr_0}{1 - 3M/r_0}}$$

Contribution of only the $\ell \geq 2 \ \mathrm{modes}$

$$\begin{split} F^{t,R} &= -\frac{32\,\mu^2\,M^3}{5\,r_0^5}, \\ F^{r,R} &= -\frac{3\,\mu^2\,M}{4\,r_0^3} \bigg[1 - \frac{97\,M}{16\,r_0} + \frac{(164\,\pi^2 - 739)\,M^2}{192\,r_0^2} \bigg]. \end{split}$$

* We can systematically calculate higher PN order. (same as the scalar case, 18PN or higher?)

$$\omega = m \sqrt{\frac{M}{r_0^3}}$$

6. Discussion

Gravitational self-force on a particle around the Schwarzschild black hole (for general orbits)

Subtraction problem:

Spherical harmonics expansion Mode sum regularization + New analytic regularization ($\tilde{S} + \tilde{R}$ decomposition)

Gauge problem:

Full metric perturbation can be obtained the RW gauge. Gauge transformation for the R-part

→ Finite gauge transformation

Standard form recovers under the RW gauge.

To complete this self-force, we need the $\ell = 0$ and 1 modes.

* $\ell = 0$ and 1 odd modes satisfy the RW gauge automatically.

An appropriate choice of gauge

Full metric perturbation under the Zerilli gauge

→ Retarded causal boundary condition in the L gauge

Detweiler and Poisson ('04) Low multipole contribution in the L gauge

$\ell = 0 \mod \ell = 1 \text{ odd mode } \rightarrow$	analytically calculated
	need numerical calculation

 $^{\circ}$ S-part of the self-force (regularization parameter) for the $\ell \geq 2~$ modes can be used.

Transform to the RW gauge and subtract the S-part.

<u>Next step</u>

* Higher order PN calculation. (Next Capra meeting by Hikida?)
 Self-force —— dissipative / conservative part
 Adiabatic radiation reaction [Sago's talk]

* Regularization for the master variable. (Regge-Wheeler-Zerilli function, Teukolsky function)

- * Extend to Kerr background.
- * Second order metric perturbation and derive the wave form. (gauge invariant) Compare and combine with the standard PN method.