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• EMRBs consist of a Stellar-type Object (SO) (m ∼ 1− 102M�) orbiting
around a Super-Massive Black Hole (SMBH) (M• ∼ 105 − 108M�). Then:
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• The evolution of these systems is governed by a set of hyperbolic PDEs
(gravitational field description) and a set of ODEs (motion of the SO), which
are coupled. They are very hard to solve by means of analytic methods or by
frequency-domain numerical methods.
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• EMRBs consist of a Stellar-type Object (SO) (m ∼ 1− 102M�) orbiting
around a Super-Massive Black Hole (SMBH) (M• ∼ 105 − 108M�). Then:

µ =
m

M•
∼ 10−3 − 10−8

• The evolution of these systems is governed by a set of hyperbolic PDEs
(gravitational field description) and a set of ODEs (motion of the SO), which
are coupled. They are very hard to solve by means of analytic methods or by
frequency-domain numerical methods.

• There is a wealth of literature on Time-Domain numerical methods that can
help to describe this systems. As our computational capabilities increase, these
methods become a more desirable technique to be used.
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➽ The SMBH horizon: rh = 2M•

➽ The SO size: rc ∼ µM• = (10−3 − 10−8)M•

➽ GW wavelength: rw ∼ π(ro/M•)3/2M• (circular orbit estimation)

➽ Sufficiently large computational domain ➜ Outer boundaries at rb ∼ 10rw
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Motivation for the Time-Domain Numerical Approach to
EMRBs

• The computational challenge is that the problem involves a vast range of
scales:

➽ The SMBH horizon: rh = 2M•

➽ The SO size: rc ∼ µM• = (10−3 − 10−8)M•

➽ GW wavelength: rw ∼ π(ro/M•)3/2M• (circular orbit estimation)

➽ Sufficiently large computational domain ➜ Outer boundaries at rb ∼ 10rw

Range of scales that needs to be resolved: (10−3 − 10−8)M• − 103M•

⇓ ⇓ ⇓ ⇓

Strong need for (dynamical) Adaptivity!

8th Capra Meeting. Rutherford Appleton Laboratory, Oxford, UK. July 12th, 2005. 4/31



Why can Finite Element Methods help to solve this problem?
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Why can Finite Element Methods help to solve this problem?

• Let us illustrate the arguments with the example of the wave equation:[
−∂2

t +∇2 − V (r)
]
Ψ(t,x) = S(t,x) , x ∈ Ω , r2 = x · x ,(

∂t + ∂r +
1
2r

)
Ψ

∣∣∣∣
∂Ω

= 0 ,
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Why can Finite Element Methods help to solve this problem?

• FEMs can deal with complex geometries
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Why can Finite Element Methods help to solve this problem?

• FEMs can deal with complex geometries

➽ We discretize the computational domain Ω into an assembly of disjoint
element domains {Ωα}:

Ω =
⋃
α

Ωα , Ωβ ∩ Ωγ = ∅ for β 6= γ .
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• FEMs can deal with complex geometries

➽ We discretize the computational domain Ω into an assembly of disjoint
element domains {Ωα}:

Ω =
⋃
α

Ωα , Ωβ ∩ Ωγ = ∅ for β 6= γ .

➽ In 2D the elements are typically triangles and quadrilaterals

➜
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Why can Finite Element Methods help to solve this problem?

➽ Every element Ωα is equipped with a finite-dimensional functional space Fα, so
that we approximate our physical solution locally as a linear combination of
functions of Fα .
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Why can Finite Element Methods help to solve this problem?

➽ Every element Ωα is equipped with a finite-dimensional functional space Fα, so
that we approximate our physical solution locally as a linear combination of
functions of Fα .

➽ The functional spaces Fα are typically formed by piecewise polynomials.

➽ Choosing linear elements (i.e. a+ bx+ cy) leads, in general, to second-order
convergence in the L2 norm.
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• The imposition of boundary conditions can be natural in the FEM
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Why can Finite Element Methods help to solve this problem?

• The imposition of boundary conditions can be natural in the FEM

• To understand this better let us look at the spatial discretization process:

➽ We start from the weak form of our equation

L[φ,Ψ] ≡
∫

Ω

φ
{[
−∂2

t +∇2 − V
]
Ψ− S

}
dΩ (= 0 if Ψ is a solution)
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Why can Finite Element Methods help to solve this problem?

• The imposition of boundary conditions can be natural in the FEM

• To understand this better let us look at the spatial discretization process:

➽ We start from the weak form of our equation

L[φ,Ψ] =
∫

Ω

∇(φ∇Ψ)dΩ−
∫

Ω

{
φ∂2

t Ψ +∇φ∇Ψ + V φΨ + Sφ
}
dΩ

(Integration by parts)
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Why can Finite Element Methods help to solve this problem?

• The imposition of boundary conditions can be natural in the FEM

• To understand this better let us look at the spatial discretization process:

➽ We start from the weak form of our equation

L[φ,Ψ] =
∫

∂Ω

φn·∇Ψ ds−
∫

Ω

{
φ∂2

t Ψ +∇φ∇Ψ + V φΨ + Sφ
}
dΩ

(Gauss Theorem. n is the normal to ∂Ω )
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• The imposition of boundary conditions can be natural in the FEM

• To understand this better let us look at the spatial discretization process:

➽ We start from the weak form of our equation

L[φ,Ψ] = −
∫

∂Ω

φ

(
∂t +

1
2r

)
Ψ ds−

∫
Ω

{
φ∂2

t Ψ +∇φ∇Ψ + V φΨ + Sφ
}
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(Using our Boundary Conditions)
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Why can Finite Element Methods help to solve this problem?

• The imposition of boundary conditions can be natural in the FEM

• To understand this better let us look at the spatial discretization process:

➽ We start from the weak form of our equation

L[φ,Ψ] = −
∫

∂Ω

φ

(
∂t +

1
2r

)
Ψ ds−

∫
Ω

{
φ∂2

t Ψ +∇φ∇Ψ + V φΨ + Sφ
}
dΩ

(Using our Boundary Conditions)

➽ Now we approximate the solution by an expansion in terms of nodal
functions nI(x) [For a given node xJ , nI(xJ) = δIJ ]

Ψh(t,x) =
∑

I

ΨI(t)nI(x)
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Why can Finite Element Methods help to solve this problem?
➽ In a Galerkin formulation of the FEM, the discretized equations are:

EI = L[nI,Ψh] = 0 (For all I)
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Why can Finite Element Methods help to solve this problem?
➽ In a Galerkin formulation of the FEM, the discretized equations are:

EI = L[nI,Ψh] = 0 (For all I)

➽ We obtain the following linear system of ODEs for the ΨI(t):

M·Ψ̈ + G·Ψ̇ + K·Ψ = F

MIJ = (nI, nJ) =
∫

Ω

nI nJ dΩ (Mass matrix)

GIJ = [nI, nJ ] =
∫

∂Ω

nI nJ ds (Damping matrix)

KIJ = (∇nI,∇nJ) + (V nI, nJ) +
[

1
2r
nI, nJ

]
(Stiffness matrix)

F I = − (nI,S) (Force vector)
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• An additional advantages that come from this formulation is:

8th Capra Meeting. Rutherford Appleton Laboratory, Oxford, UK. July 12th, 2005. 10/31



Why can Finite Element Methods help to solve this problem?

• An additional advantages that come from this formulation is:

➽ It is to some extent natural to handle distributions in the source term S, like
for instance the typical Dirac delta distributions, like the one that appear in
some descriptions of EMRBs:
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• An additional advantages that come from this formulation is:

➽ It is to some extent natural to handle distributions in the source term S, like
for instance the typical Dirac delta distributions, like the one that appear in
some descriptions of EMRBs:

For S = f(t,x) δ (x− xp) we have

F I = − (nI,S) = −f(t,xp)nI(xp)
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Why can Finite Element Methods help to solve this problem?

• An additional advantages that come from this formulation is:

➽ It is to some extent natural to handle distributions in the source term S, like
for instance the typical Dirac delta distributions, like the one that appear in
some descriptions of EMRBs:

For S = f(t,x) δ (x− xp) we have

F I = − (nI,S) = −f(t,xp)nI(xp)

➽ The structure of the discretization process makes it suitable for modular
programming.
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➽ Versatility. The FEM can be applied to a wide range of problems: static,
quasi-static, transient, highly dynamical, linear and nonlinear, etc.
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quasi-static, transient, highly dynamical, linear and nonlinear, etc.
Moreover, the modular character of the FEM implementation makes possible
to have multi-purpose Finite Element frameworks.

8th Capra Meeting. Rutherford Appleton Laboratory, Oxford, UK. July 12th, 2005. 11/31



Why can Finite Element Methods help to solve this problem?

• Other points in favour of Finite Elements:

➽ Versatility. The FEM can be applied to a wide range of problems: static,
quasi-static, transient, highly dynamical, linear and nonlinear, etc.
Moreover, the modular character of the FEM implementation makes possible
to have multi-purpose Finite Element frameworks.

➽ Many of the procedures that one uses in the framework of the FEM have
solid theoretical foundations based on rigorous mathematical analysis.
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Our Research Projects: Scalar gravity Toy model and the
Adaptive-FEM

➽ Scalar Gravity ➜ Fixed spacetime background gµν + Dynamical scalar
gravitational field Φ:
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Our Research Projects: Scalar gravity Toy model and the
Adaptive-FEM

➽ Scalar Gravity ➜ Fixed spacetime background gµν + Dynamical scalar
gravitational field Φ:

gµν∇µ∇νΦ = 4πGeΦρ , where ρ =
∫

m√
−g

δ[x− z(τ)]dτ

dzµ

dτ
= uµ , uν∇νu

µ = −(gµν + uµuν)∇νΦ
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Our Research Projects: Scalar gravity Toy model and the
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➽ Scalar Gravity ➜ Fixed spacetime background gµν + Dynamical scalar
gravitational field Φ:

gµν∇µ∇νΦ = 4πGeΦρ , where ρ =
∫

m√
−g

δ[x− z(τ)]dτ

dzµ

dτ
= uµ , uν∇νu

µ = −(gµν + uµuν)∇νΦ

➽ The metric gµν is a 2D reduction of the Schwarzschild metric (not a solution of
Einstein’s equation) that preserves most properties, in particular the equatorial
geodesic structure.
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Our Research Projects: Scalar gravity Toy model and the
Adaptive-FEM

➽ Scalar Gravity ➜ Fixed spacetime background gµν + Dynamical scalar
gravitational field Φ:

gµν∇µ∇νΦ = 4πGeΦρ , where ρ =
∫

m√
−g

δ[x− z(τ)]dτ

dzµ

dτ
= uµ , uν∇νu

µ = −(gµν + uµuν)∇νΦ

➽ The metric gµν is a 2D reduction of the Schwarzschild metric (not a solution of
Einstein’s equation) that preserves most properties, in particular the equatorial
geodesic structure.

➽ The source describing the SO is regularized as:

δ[x− z(τ)] ➜
1

2πσ
e−(x−z(τ))2/(2σ2)
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Scalar gravity Toy model and the Adaptive-FEM

• There is a conservation law for this system:
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Scalar gravity Toy model and the Adaptive-FEM

• There is a conservation law for this system:

∇µT
µν = 0 , where: Tµν = TΦ

µν + T ρ
µν ,

TΦ
µν =

1
4πG

(
∇µΦ∇νΦ−

1
2
gµν∇σΦ∇σΦ

)
,

T ρ
µν = ρ eΦuµuν .
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Scalar gravity Toy model and the Adaptive-FEM

• There is a conservation law for this system:

∇µT
µν = 0 , where: Tµν = TΦ

µν + T ρ
µν ,

TΦ
µν =

1
4πG

(
∇µΦ∇νΦ−

1
2
gµν∇σΦ∇σΦ

)
,

T ρ
µν = ρ eΦuµuν .

• Using the Timelike Killing ξ = ∂t of the back-
ground we can derive global conservation laws
that can be used to check the numerical calcu-
lations: ∫

∂V
TµνξµdΣν = 0 .
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Scalar gravity Toy model and the Adaptive-FEM

• We have performed two types of simulations:

➽ Simulations without adaptivity around the particle (classical FEM)

➽ Simulations with adaptivity around the particle (Adaptive FEM −→ AMR)
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➽ Discretization of the spatial Domain (we have excised the singularity:
rin < 2M):
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Scalar gravity Toy model and the Adaptive-FEM

• Simulations without adaptivity around the particle

➽ Typical trajectory of the SO [Initial conditions for Φ: (Φo = 0, Φ̇o = 0) ]
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Scalar gravity Toy model and the Adaptive-FEM
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Scalar gravity Toy model and the Adaptive-FEM

• Simulations without adaptivity around the particle

➽ Error in the Energy-Balance Test:
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Scalar gravity Toy model and the Adaptive-FEM

• Simulations without adaptivity around the particle

➽ Error in the Energy-Balance Test:

➽ Using around 104 elements, these simulations work for σ & 1M .
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Scalar gravity Toy model and the Adaptive-FEM

• Simulations with adaptivity around the particle (AFEM)
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Scalar gravity Toy model and the Adaptive-FEM

• Simulations with adaptivity around the particle (AFEM)

➽ The essence of the adaptive mesh technique is to produce real-time local
mesh coarsening or refinement to achieve the desired level of smoothness in
the solution.
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➽ The essence of the adaptive mesh technique is to produce real-time local
mesh coarsening or refinement to achieve the desired level of smoothness in
the solution.

➽ To that end, we use an a posteriori error estimator to predict the regions in
the computational domain where rapidly changes take place is extremely
important.
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Scalar gravity Toy model and the Adaptive-FEM

• Simulations with adaptivity around the particle (AFEM)

➽ The essence of the adaptive mesh technique is to produce real-time local
mesh coarsening or refinement to achieve the desired level of smoothness in
the solution.

➽ To that end, we use an a posteriori error estimator to predict the regions in
the computational domain where rapidly changes take place is extremely
important.

➽ Our estimator is based on the Hessian of the source term (not of the
solution). We refine the are surrounding the particle according to this
estimator.
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Scalar gravity Toy model and the Adaptive-FEM
• Simulations with adaptivity around the particle (AFEM)
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Scalar gravity Toy model and the Adaptive-FEM
• Simulations with adaptivity around the particle (AFEM)

➽ Mesh with Adaptivity:
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Scalar gravity Toy model and the Adaptive-FEM

• Simulations with adaptivity around the particle (AFEM)

➽ In this case, with ∼ 104 elements, the simulations work for σ & 0.1M .
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Our Research Projects: Perturbative Theory + FEM
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• We apply the FEM to solve the equations for the perturbations created by a
particle on Schwarzschild spacetime.

• We have first dealt with the equations in the Regge-Wheeler gauge:

➽ The perturbations can be completely described by the master equations:[
−∂2

t + ∂2
r∗
− V

RW/ZM
l (r)

]
ψlm(t, r∗) = Slm(t, r)

➽ The source terms generated by the particle have the following structure

Slm(t, r) = Flm(t, r) δ[r − rp(t)] +Glm(t, r) δ′[r − rp(t)]

➽ Boundary Conditions and Initial Data complete the problem(
∂t ± ∂r∗

)
ψlm

∣∣
r∗→±∞

= 0
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Perturbative Theory + FEM

➽ The mesh is one-dimensional:
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Perturbative Theory + FEM

➽ The mesh is one-dimensional:

➽ We use Fixed Mesh Refinement together with Mesh Moving techniques.

➽ We use Linear Elements: nI ∼ αr∗ + β ➜ Piecewise linear approximation (2nd
order convergence) ➜ It ensures continuity of the solution.

➽ Discretization [ψlm =
∑

I ψlm,I(t)nI(r∗)] produces a system of ODEs:

M·Ψ̈ + G·Ψ̇ + K·Ψ = F

where
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Perturbative Theory + FEM

GIJ = nI(rL
∗ )nJ(rL

∗ ) + nI(rR
∗ )nJ(rR

∗ )

F I = P (t, rp)nI(rp
∗) +Q(t, rp)n′I(r

p
∗)
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Perturbative Theory + FEM

GIJ = nI(rL
∗ )nJ(rL

∗ ) + nI(rR
∗ )nJ(rR

∗ )

F I = P (t, rp)nI(rp
∗) +Q(t, rp)n′I(r

p
∗)

➽ We solve the system of ODEs by using second-order implicit solvers (Newmark
method and its generalizations).
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Perturbative Theory + FEM

Some Waveforms

Circular orbits Orbits with e = 0.2 Zoom-Whirl orbits
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Perturbative Theory + FEM
• We can improve the accuracy of the numerical algorithm by using higher-order

elements.
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• An interesting possibility is the use of Hermite Cubic elements
(nI ∼ αr3∗ + βr2∗ + γr∗ + λ):

• To obtain the discretization we need to use an expansion of the type:

ψlm(t, r∗) =
∑

I

ψlm,I(t)n2I(r∗) +
∑

I

ψ′lm,I(t)n2I+1(r∗)
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Perturbative Theory + FEM
• We can improve the accuracy of the numerical algorithm by using higher-order

elements.

• An interesting possibility is the use of Hermite Cubic elements
(nI ∼ αr3∗ + βr2∗ + γr∗ + λ):

• To obtain the discretization we need to use an expansion of the type:

ψlm(t, r∗) =
∑

I

ψlm,I(t)n2I(r∗) +
∑

I

ψ′lm,I(t)n2I+1(r∗)

• This approximation ensures continuity of the solution and its spatial
derivative ➜ 4th order convergence.
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Perturbative Theory + FEM
• What about Kerr perturbations?
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Perturbative Theory + FEM
• What about Kerr perturbations?

➽ We can describe them by second-order PDEs (we can reduce the problem to
2D by factorizing out the azimuthal angle) ➜ The numerical scheme is the
same as the one described here.

➽ A simple approach is to use quadrilateral elements:

➽ Then, the nodal functions can be constructed from the previous
one-dimensional ones:

n(x, y) −→ n(x)⊗ n(y)
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Full NR + Hydro without hydro (Finite Differences)
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Full NR + Hydro without hydro (Finite Differences)

• The idea is to explore non-linear effects (relevant for not too extreme
mass-ratios) by describing the spacetime geometry with full GR, with the SO
affecting it through the matter energy-momentum tensor, which we assume
that depends only on its trajectory zα(τ) and a finite number of parameters λI :

Gµν[gµν] = Tµν[zα(τ);λI] ,

d2zµ(τ)
dτ2

= fµ[zρ(τ), gαβ;λI]
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• The idea is to explore non-linear effects (relevant for not too extreme
mass-ratios) by describing the spacetime geometry with full GR, with the SO
affecting it through the matter energy-momentum tensor, which we assume
that depends only on its trajectory zα(τ) and a finite number of parameters λI :

Gµν[gµν] = Tµν[zα(τ);λI] ,

d2zµ(τ)
dτ2

= fµ[zρ(τ), gαβ;λI]

• In this way we include matter without solving the hydrodynamical
equations ➜ The hydro without hydro approach [Baumgarte, Hughes, &
Shapiro, PRD60, 087501 (1999)].

• The simplest case is when the matter distribution moves rigidly
(Tµν = Tµν[zα]) along spacetime geodesics [Bishop, Gomez, Husa, Lehner, &
Winicour, PRD68 084015 (2003)].
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Full NR + Hydro without hydro (Finite Differences)
• The Numerical implementation uses the Finite-Differences code MAYA,

developed at Penn State, which is based on the CACTUS code and the
Fixed-Mesh Refinement package CARPET.
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Remarks and Conclusions

• FEM techniques provide different ways of implementing adaptive-mesh
numerical simulations of EMRBs.

• We can use this simulations, in combination with analytic developments, to try
to estimate self-forces and waveforms from the inspiral.

• The projects we are presently working on are:

➽ FEM computations of Schwarzschild perturbations (RW and harmonic
gauges)

➽ FEM computations of Kerr perturbations (Teukolsky-type equations)

➽ The Hydro-Without-Hydro approach with MAYA.
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