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Context

Extreme mass ratio inspirals (EMRIs)
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Small parameter for perturbative treatment ¢ = % ~ M <=

Test mass 1n orbit: Geodesic motion of SMBH geometry

Small, finite mass: Accelerated motion from MST-OW self-force
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Entails interactions with back-scattered waves emitted in the past
Intrinsically non-local and history-dependent force

Gauge-dependent

However, may need corrections to MST-QW self-force...



Why higher order selt-force?

Waveforms computed using first-order self-force:

1 cycle of error in about 100,000 during year-long waveform

Sufficient for detection purposes, not measurement -- need "Capra" waveforms
Match-filtered search over year-long waveform:

A coherent search is not computationally possible -- need 10*° templates

Alternatively, search over 3-week intervals and "stitch" together waveforms
Could use "kludge" and/or "Teukolsky" waveforms for detection

Use to restrict parameter space of templates

Perform refined searches with increasingly longer and more accurate templates

To reach LISA's desired precision, may need 2nd order self-force



Why higher order radiation?

Worldline for Gravitational

Compact Object Perturbations

Geodesic

\.\

First order > Leading order

self-force radiation

S NLO radiation

=

self-force

NNLO radiation

Include 3rd order gravitational perturbations in "measurement" templates



Eftective field theory

Systematically include effects from CO's multipole moments
Tidally induced moments from companion SMBH, spin, intrinsic moments, etc.
Effacement Principle for EMRIs -- O(g*)
Use to compute higher order self-force and gravitational radiation
Calculate systematically using Feynman diagrams
Generate suthciently accurate waveforms for LISA's measurement phase
Efficiently handles divergences: Dimensional regularization + Fp
Covariant and gauge invariant
Power divergences vanish & log divergences renormalize couplings

Extend to curved spacetime using Bunch & Parker's approach



Brief overview of EFT

Partition degrees of freedom as either "heavy"

or "light" (fast/slow, small/large,...)

Integrate out heavy fields to find influence on
light fields at low energies

= (z'sef /I, A]) = / P (iS[z, h])

Effective Action:

+  Real (tull theory is unitary) and local (Uncertainty Principle)
+ Integrate out heavy fields if path integral can be performed

+ Include all possible terms that are consistent with symmetries

Physical observables at low energies

/ DL exp (iSess[6,A])



EFT of a compact object

Integrate out short distance
\y gravitational perturbations
Resulting theory describes a particle interacting \/\/ /\/\
with long wavelength perturbations

Compact object + GR

RG flow of effective particle
Point particle + GR couplings (induced moments)
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Effective point particle

Integrate out Include all terms consistent
short wavelength

gravitational perturbations

with symmetries:

General coordinate transformations
Reparameterizations

SO(3) rotations (e.g., spherical CO)

Sppl2] = _m/dT+CR/dTR‘|‘ CV/dTR(wZO‘ZB + CE/dTé’agEO‘B —l—CB/dTBagBO‘ﬁ Sy

Ricci tensor terms can be removed by:
Using leading order classical equations of motion
Field redefinition of metric

Spplz] = —m/dT s CE/dTgaﬁgaﬁ + CB/dTBagBaﬂ T



Non-minimal couplings

+ To make predictions:
+  Treat non-minimal couplings as free parameters to be fit by data

+  Match observables in effective theory to those of the long wavelength limit of
the ftull theory (explicit example later)

+ Example: Neutron star

+  External, adiabatic quadrupole tidal field
induces a quadrupole moment on NS

+ Let NS be in weak-field Q(n) —An&ij

region of a SMBH Thorne, PRD 58, 124031 (1998)
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Closed-Time-Path formalism

Start with quantum theory for worldline and metric perturbations

CTP (or in-in) generating functional schwinger 1961), Keldysh (1964)
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Initial-value formulation of QFT, valid even in curved spacetime

Generates expectation values and correlations

of quantum operators

Guarantees real and causal equations of motion
for expectation values of quantum operators

Compare with in-out construction
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Usetul for scattering processes between asymptotic in and out states

In curved spacetime, in-out fails to give real and causal dynamics



CTP generating functional

Effective point particle & full spacetime geometry
Stot|2, g] = S(g] + Sppl2, g

Long wavelength gravitational perturbations on a vacuum background
spacetime

Juv = Guv + v /mp)

v

StOt[th] == 8(2) —|—S(3) = e SZ(?(Z)} e Sz(jzl?) = 51(7129) o

"Integrate out" the gravitational perturbations at scale of background
curvature
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Gravitational waves

Generating functional for connected correlation functions:
AR et S A o

Derivatives yield (true) expectation values of quantum operators

Example: One-point functions of metric perturbations and worldline coordinates

oW oW
e SH =
< > 5Ja <ZCL (A) 5]'3

Waveform of gravitational waves given by
2

R @) = 5 3 (haala))

a=1
Possesses a perturbative expansion expressable as Feynman diagrams

Needed for computing templates for matched filter searches in LISA



CTP eftective action & selt-torce

Why effective action?

ol
Real & causal equations of motion » = 5 25()\»

Self-consistent description of particle and field dynamics

Z1=—2Z29

Effective action is Legendre transform of generating functional

R sum of all 1PI
irl{Ze)] i / S ( connected diagrams
"IPI" -- one-particle irreducible diagrams

"connected" diagrams are those that are contiguous

For small quantum corrections only need tree-level diagrams

2 :
ZFRZA’SH = —imZ/dTa = ( sum of all tree-level ) = rav
ar==1:

connected diagrams correc



Review

Generating functional

Z

Gravitational waves from log of generating functional
=

Self-force from effective action

I' = Legendre transtform of W



Power counting rules

Interaction terms can be interpreted diagrammatically
Streamlines perturbative calculations

How does one know what diagrams appear at a given order?

Power counting rules: z* ~ R =T
| i
hyy ~ R L ~mR

Power counting the interactions: S;,[2,h] =S¥ + ... + S{) + 53) 4 ...
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Feynman rules

Translate diagrams into mathematics using Feynman rules:

Include a factor of Z'V;O(g ) for a particle-field vertex and V(™ for a field self-
Interaction vertex

Include a factor of (—1)a+1 for each vertex with CTP label a

Insert a factor of DCOL‘bB LE (z, ") for each graviton line starting (ending) at a
vertex labelled by the CTP index a(b) at spacetime event & (x')

Sum over all CTP indices, integrate over proper time for each particle-field
vertex and integrate over all spacetime for each graviton self-interaction vertex

Divide by the appropriate symmetry factor

For each external graviton, insert a factor of 1/2 and sum over its CTP index



Example: MSTQW selt-force
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MSTQW self-force -- first order correction to LO geodesic

A2 = —zm/dT—l— (6666%)
1 m a / 25
E () B foforsmnis 1
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Worldline fluctuations are small (decoherence) so expand to first

order in coordinate difference 2" = 2 — 24

Integral of retarded propagator diverges at coincidence...



Dimensional regularization

Many techniques developed to regularize UV divergences in QFT

Pauli-Villars, cut-off, point-splitting, dimensional regularization,...

Dimensional regularization is particularly attractive
Covariant
Preserves gauge symmetry

Mass-independent scheme

Mass-independent scheme
Beta functions involve only logarithms of renormalization scale
Power divergences vanish in 4d for massless fields
Logarithmic divergences renormalize non-minimal couplings -- RG flow

Fewer Feynman diagrams to compute vs mass-dependent schemes



Regularizing the effective action

UV divergences are quasi-local but effective action is non-local
Use Hadamard's partie finie method: D™" =D, — D% = Pf(D,)
Renormalized propagator as pseudo-function

Integral of pseudo-function gives the finite part (by definition)

/

Fp/ dTDret( 705)’ ,

= lim ( / / )dT re(2%,2%)j(r") = /_ O;dT’Ddiv(za,za’)j(T’)

Divergent part is evaluated using momentum space techniques
Familiar techniques and manipulations from flat spacetime QFT
Originally developed for scalar field by Bunch & Parker

Valid in any dimension & for massive, non-minimally coupled field, etc.



(Finite) MSTOW self-force

Divergence in
Power :
first order - Vanishes
divergence

effective action

[ k; e k, kI k"
Divergent part( (ésﬁmbbbb) )ocwmz/kﬁ and nm(ZUO)Ra:f'Ok/k 6 — (
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Finite & non-local remainder of effective action yields self-force

equations of MSTQW
- )
m2 Ll / / /
A w0 [2*] lim G RAT S Bl P e B 29
2m2l e—0 g By
R Mino, Sasaki & Tanaka, PRD 55, 3457 (1997)
e Quinn & Wald, PRD 56, 3381 (1997) 3

Real, causal and history-dependent -- guaranteed with CTP

Does not provide suthciently accurate waveforms to precisely measure
parameters of GW sources of LISA mission



Recipe for selt-force

Follow recipe for calculating self-force at desired order:

Use power counting rules to draw all connected tree-level Feynman diagrams
at desired order

Use Feynman rules to translate diagrams into mathematical expressions

Expand the effective action to linear order in the worldline difference
coordinate (assume astrophysical bodies are strongly decohered)

Isolate the quasi-local divergent part from the non-local finite part using
Hadamard's partie finie

Use dimensional regularization to renormalize the mass and non-minimal
couplings in the effective point particle action

Vary the resulting (finite) effective action with respect to the difference
coordinate to find the self-force equation



Example: GWs from a geodesic

Use Feynman rules to translate diagram
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Effacement Principle for EMRIs

Action for effective point particle
Spplz] = —m/dT = CE/dTgagé’o‘ﬁ = CB/dT BQBBO‘B K benpa:

Non-minimal couplings determined through matching calculation
Need to know the low-energy expansion of observables for full theory

To demonstrate matching procedure, an order of magnitude estimate suffices

Perturb geometry about a given vacuum background
Eop = g(o) 5(1) = 5(2)

Compute amplitude for graviton Compton scattering

4 )
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Effacement Principle for EMRIs

Scattering cross-section in effective point particle theory

2
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Scattering cross-section in full theory
10
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Match the cross-sections:
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Leading order diagram due to finite size effects
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Effacement Principle for EMRIs

For a white dwarf (WD) finite size effects are enhanced due to
stronger tidal interactions with companion SMBH

Diagram with leading order induced tidal moments:

T'm = feoGM ‘ (CE,B > ~ f0054L ~ SSL)

r T A 2
For a Schwarzschild SMBH: ¢ = % — 23/431/4fco ( )
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Second order self-force o

Previous work on second order self-force
First formal expression given by Rosenthal rosenthal, PRD 74, 084018 (2006)
Expressed in a non-standard gauge
Potentially difficult to implement in practical calculations

Second order self-force calculations with EFT:

All orders computed In same gauge throughout (Lorenz here)

Feynman diagrams:

ETET L,

First diagram represents first non-linear particle-field contribution

Second diagram represents first contribution from nonlinearities of GR
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Contribution to second order effective action O(¢°L)
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All divergences vanish leaving a regular remainder (finite part)



This diagram is built upon the 3-graviton vertex
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Calculation in progress but easily doable...
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Second order contribution from effective action at g,
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Can interpret as a correction to CO's mass
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Can interpret as contribution to 2nd order self-force with constant
mass

sabren’’:)

2917 < =]

8m dT Zﬁ [w'uaﬁl/ T —|— 2w (/Ywé)aﬁy} /dT’V,/D;%Z/C/u_I_C /dT/, ,7;%77;//6//U+ g
pl



Second order selt-force equations

Second order self-force so far...
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Necessity of CTP formalism

Other approaches to potentially study EMRIs

Goldberger and Rothstein's approach extended to curved spacetime
(PN-EFT, in-out)

Kol and Smolkin's Classical EFT (CIEFT)
What is the problem with using these other formalisms?

Non-causal self-force equations of motion

For example, one diagram of second order selt-force in PN-EFT and CIEFT

/ 7 /0
W /deT dT’/ Daﬁv,(g/uv ’U/5 ’I,L ’U/ D €' C'n //Quun U

AN N

Dp = _2 (Dret s Dadv) s ZDH Daﬁ’y’é’ = <{ha5(33), hW’(S/ (x/)}>

Real part of variation gives equations of motion, which are not causal

Or, replace Feynman propagator with (Dyet + Dady)/2 but self-force then

involves advanced propagator...



Nonlinear scalar gravity

May be useful as a toy model:
Study practical methods for computing higher order selt-force and radiation

Can check computations with known results at first order (more to say
later...)

May help to resolve issues regarding relevance/importance of higher order
perturbations (e.g., 2nd order self-force)

Derive higher order self-force and radiation as a model for IMRIs

Include finite size effects, which might be relevant for IMRIs



Nonlinear scalar gravity

A class of non-linear scalar models on a vacuum background:

Slevdl = —5 [ dog" 20,0023 (¢/mp) —m [ dr B(6/my)
Equations of motion: : ,
/
(¢ = —mlpl i b ad™ + m%l = (g””l/; = fz
Tl Y (i 5

Leading order motion is geodesic

ExpandA and B functions fOI‘ small ﬁeld

Pom) =143 % (L) Blom =143 % (2

Same power counting, same diagrammatic structure, same
Effacement Principle

:



First order waves & self-force

Feynman diagram for leading order scalar perturbations

First order self-force
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Second order waves

Corrections to geodesic motion from first order self-force create
second order perturbations of scalar waves

Feynman diagrams

b 2
O (—E/dTDret(x,Z“O
4 4mpl mpl
m2 b2 aq /
_b2 g et i d Dre 9 5 d /Dren ,u’ =
+m§’;l1<b1 2>/ 7 Drae,#) [ dr' Do (24,2

First term 1s proportional to square of first order field

Second term is regulated because of UV power divergence on worldline



Second order selt-torce

Second order self-force caused by CO's interaction with first &
second order field perturbations

Feynman diagrams (use recipe to evaluate)
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Second term proportional to square of first order self-force



Third order waves

Third order scalar perturbations created by second order
corrections to CO's leading order geodesic motion

Feynman diagrams
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Rosenthal's scalar model

| B |

"Monopole" source: A R e = §€—¢/mpz
4
B =
TR 2m 1/2
pl pl L

Second order scalar perturbations agrees with Rosenthal

1 2 9 /
¢7("§l)d($) o ( 3 /dTDret(CU,Z'u)) = m_3 dTD’l“et(xvz’u)/dT,Dren(zlu7Z,u)

20T =\ ] my

A model where: A =B = ¢ ¢/m»
Only first order self-force (linear in propagator) is non-zero

nth order radiation 1s proportional to nth power of first order waves



Choosing "nice" variables

The number of diagrams can be reduced by considering a field
redefinition ¢ ()4 =0 () C(o/my) = B(d/my)

v

1
SO —§/d4a?gl/2c7,a0’o‘ —m/dTC(J/mpl)

No field self-interactions

For example, third order radiation diagrams number from 6 to 2

A

Does a similar thing happen in the gravitational case?

Equivalent to a different gauge choice -- could ease self-force computations

Full metric 1s gauge dependent and probably does not help ease waveforms



Relevance of 2nd order selt-torce?

Choose A and B such that

A — e®/mpi B:2_€¢/mpl:1_i_|_...
Myl

Nonlinear scalar theory:

1
Slz, @] = 5 /d45’391/2¢,a¢’a62¢/mp‘ — m/dT (2 = e¢/mpl>

Field redefinition gives a linear scalar theory

0o = b o A(D/Mp) = —— = /Mot — 1
mpl

Can easily calculate self-force and radiation in linear theory, transform back
to nonlinear field and determine if second order self-force 1s actually
relevant
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Self-force on spinning CO's

Introduce a tetrad on worldline that rotates with the CO

De I
Angular velocity 275 = e = ;\L
| _ ==, 05
Spin angular momentum -- conjugate to angular velocity 97 = — ST

Effective point particle with spin

ik
S 250 :—m/d7—|—§/dTSIJQ]J—|—"'

)

Maxamally rotating CO: vpor ~'1, s =1

Power counting

S~ I~
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Corotating CO:

Spin Supplementary Condition (SSC) fixes center of center of mass

S/,u/py =0



Maximally rotating compact object

First order describes spin precession & MSTQW

DR 1
=== B ey R e —§R“amz'o‘557 + MSTQW
=

Second order contains leading order (ILO) spin-orbit interaction

iy

S ;

Third order contains L.O spin-spin and NLO spin-orbit interactions
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Co-rotating compact object

First order describes MSTQW self-force alone
O e A o A

Second order describes spin precession

Sy 1
e e T TR == —§R”aﬁ,y,éo‘5m + MSTQW
=

Third order contains O spin-orbit interaction




Conclusions

Compact object as an effective point particle
Describes tidally induced moments, spin and intrinsic moments

EFT provides a systematic & efficient method for higher order self-force and radiation
calculations

Divergences are efficiently and unambiguously regularized
Power divergences vanish & log divergences renormalize non-minimal couplings
An Effacement Principle for EMRIs
Internal structure of COs affect motion at fourth order
WD tidal disruption a second order process?
Computed 2/3 of second order self-force
Nonlinear scalar gravity model -- resolve relevance of 2nd order self-force?

Leading order spin-spin and spin-orbit diagrams for rotating COs



Future directions

Gravitational perturbations
GWs resulting from second order self-force corrections

Better choice of field variables via a gauge transformation/field redefinition?

Use nonlinear scalar gravity model to:
Determine if higher order effects are really relevant for LISA
Study and implement practical computations at higher orders
Spinning compact objects
Precisely, how much does the spin of a CO affect the waveforms?

Can QFT techniques provide new methods for practical computations?

P. Anderson, Hu & Eftekharzadeh; W. Anderson, Flannagan, Ottewill, Wardell

Continue to higher orders for LISA (and LIGO?) IMRIs?

Include dissipative degrees of freedom to describe GW absorption



Extra shides




Sources of gravitational waves

Galactic binaries composed of ordinary stars, WDs, NSs, BHs

Confusion noise at lower frequencies -- significant data analysis challenge
Massive BH mergers from colliding galaxies
Possibly detectable at cosmological distances

Extreme mass ratio inspirals (EMRIs)

Most promising sources for detection and parameter estimation

Clean tests of GR ("No Hair" theorem, direct proof of BH's existence,...)
Formation of supermassive black holes (SMBHs)
Cosmic gravitational wave backgrounds

Certain dark matter candidates

www.cco.caltech.edu/~esp/lisa/lisatab.html


http://www.cco.caltech.edu/~esp/lisa/lisatab.html
http://www.cco.caltech.edu/~esp/lisa/lisatab.html

EMRIs and self-force

Rich diversity of orbits
Circular inspiral
Periastron precession
Zoom-whirl orbits
Spin-orbit coupling
Evolving inclination angle
Self-force drives the inspiral due to emission of GWs
Entails interactions with back-scattered waves emitted in the past
Intrinsically non-local and history-dependent force

Gauge-dependent



Gravitational selt-torce with EFT

Self-force 1s computed from the effective action

Rt s <iALW>] — —m/dT e ( Sum of all tree level > =

connected diagrams

First order -- MST-OQW self-force equation (in Lorenz gauge)
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(666666%55) = w“O‘B”Fp/ dr’ V,,Dgé‘ﬂgv,(;,u7 u’

12

Second order -- Two diagrams = Preliminary results!
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First order diagram also gives a contribution at second order
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A nonlinear scalar model

A class of non-linear scalar models on a vacuum background:

1

Slok= —§/d4xgl/2q§,aqb’o‘A2 (¢/mpi) —m/dTB(¢/mpl)

Self-force through second order

S+ ST 1 ST

Scalar radiation through third order (from log of partition fn)

T -

L

Field redefinition simplifies the calculation greatly ¢ ,(

No field selt-interactions -- Does a similar thing occur with gravity?



Extra shides

Is Kol's CIEFT more efhicient than using CSEFT (w/ CTP)?

Potentially yes, but it is not clear what propagator should be associated with
graviton line.

Using a ret propagator gives an advanced part in the EOM, which if dropped gives MSTQW
but with an extra factor of 1/2

Using a Feynman propagator gives same problem as with retarded propagator



