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Context
✦ Extreme mass ratio inspirals (EMRIs)

✦ Small parameter for perturbative treatment

✦ Test mass in orbit: Geodesic motion of SMBH geometry

✦ Small, finite mass: Accelerated motion from MST-QW self-force

✦ Entails interactions with back-scattered waves emitted in the past

✦ Intrinsically non-local and history-dependent force

✦ Gauge-dependent

✦ However, may need corrections to MST-QW self-force... 
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Why higher order self-force?

✦ Waveforms computed using first-order self-force:

✦ 1 cycle of error in about 100,000 during year-long waveform

✦ Sufficient for detection purposes, not measurement -- need "Capra" waveforms

✦ Match-filtered search over year-long waveform:

✦ A coherent search is not computationally possible -- need         templates

✦ Alternatively, search over 3-week intervals and "stitch" together waveforms

✦ Could use "kludge" and/or "Teukolsky" waveforms for detection

✦ Use to restrict parameter space of templates

✦ Perform refined searches with increasingly longer and more accurate templates

✦ To reach LISA's desired precision, may need 2nd order self-force
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Why higher order radiation?
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Compact Object
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Include 3rd order gravitational perturbations in "measurement" templates



Effective field theory

✦ Systematically include effects from CO's multipole moments

✦ Tidally induced moments from companion SMBH, spin, intrinsic moments, etc.

✦ Effacement Principle for EMRIs --

✦ Use to compute higher order self-force and gravitational radiation

✦ Calculate systematically using Feynman diagrams

✦ Generate sufficiently accurate waveforms for LISA's measurement phase

✦ Efficiently handles divergences: Dimensional regularization + Fp

✦ Covariant and gauge invariant

✦ Power divergences vanish & log divergences renormalize couplings

✦ Extend to curved spacetime using Bunch & Parker's approach

O(ε4)



✦ Partition degrees of freedom as either "heavy" 
or "light" (fast/slow, small/large,...)

✦ Integrate out heavy fields to find influence on 
light fields at low energies

✦ Effective Action:

✦ Real (full theory is unitary) and local (Uncertainty Principle)

✦ Integrate out heavy fields if path integral can be performed

✦ Include all possible terms that are consistent with symmetries 

✦ Physical observables at low energies

Brief overview of EFT
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=
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EFT of a compact object

Integrate out short distance 
gravitational perturbations 

Resulting theory describes a particle interacting 
with long wavelength perturbations

RG flow of effective particle 
couplings (induced moments)

R−4 = RµανβRµανβ
RG flow

match
Compact object + GR

Point particle + GR
r ∼ rm

r ∼ R

ε ≡ rm

R



Effective point particle

Integrate out 
short wavelength 

gravitational perturbations

Include all terms consistent 
with symmetries:

General coordinate transformations
Reparameterizations
SO(3) rotations (e.g., spherical CO)

Ricci tensor terms can be removed by:
Using leading order classical equations of motion
Field redefinition of metric

Spp[z] = −m

∫
dτ + cE

∫
dτ EαβEαβ + cB

∫
dτ BαβBαβ + · · ·

Spp[z] = −m

∫
dτ + cR

∫
dτ R + cV

∫
dτ Rαβ żαżβ + cE

∫
dτ EαβEαβ + cB

∫
dτ BαβBαβ + · · ·



Non-minimal couplings
✦ To make predictions: 

✦ Treat non-minimal couplings as free parameters to be fit by data

✦ Match observables in effective theory to those of the long wavelength limit of 
the full theory (explicit example later)

✦ Example: Neutron star

✦ External, adiabatic quadrupole tidal field 
induces a quadrupole moment on NS

✦ Let NS be in weak-field 
region of a SMBH

Eij

Qij

Flanagan & Hinderer,  PRD 77, 021502(R)  (2008)

Thorne, PRD 58, 124031 (1998)
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Closed-Time-Path formalism
✦ Start with quantum theory for worldline and metric perturbations

✦ CTP (or in-in) generating functional

✦ Doubling of degrees of freedom

✦ Initial-value formulation of QFT, valid even in curved spacetime

✦ Generates expectation values and correlations 
of quantum operators

✦ Guarantees real and causal equations of motion 
for expectation values of quantum operators

✦ Compare with in-out construction

✦ Useful for scattering processes between asymptotic in and out states

✦ In curved spacetime, in-out fails to give real and causal dynamics

Schwinger (1961), Keldysh (1964)

Z
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✦ Effective point particle & full spacetime geometry

✦ Long wavelength gravitational perturbations on a vacuum background 
spacetime

✦ "Integrate out" the gravitational perturbations at scale of background 
curvature

CTP generating functional

Stot[z, h] = S(2) + S(3) + · · · + S(0)
pp + S(1)

pp + S(2)
pp + · · ·

Z[jµ
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∫
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Gravitational waves

✦ Generating functional for connected correlation functions:

✦ Derivatives yield (true) expectation values of quantum operators

✦ Example: One-point functions of metric perturbations and worldline coordinates

✦ Waveform of gravitational waves given by 

✦ Possesses a perturbative expansion expressable as Feynman diagrams

✦ Needed for computing templates for matched filter searches in LISA
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CTP effective action & self-force
✦ Why effective action?

✦ Real & causal equations of motion

✦ Self-consistent description of particle and field dynamics

✦ Effective action is Legendre transform of generating functional

✦ "1PI" -- one-particle irreducible diagrams

✦ "connected" diagrams are those that are contiguous

✦ For small quantum corrections only need tree-level diagrams

✦

0 =
δΓ

δ〈ẑµ
a (λ)〉

∣∣∣∣
z1=z2
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∫
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)
+

(
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Review

✦ Generating functional

✦ Gravitational waves from log of generating functional 

✦ Self-force from effective action

Z

W = −i lnZ

Γ = Legendre transform of W



Power counting rules
✦ Interaction terms can be interpreted diagrammatically

✦ Streamlines perturbative calculations

✦ How does one know what diagrams appear at a given order?

✦ Power counting rules:

✦ Power counting the interactions: Sint[z, h] = S(3) + · · · + S(1)
pp + S(2)

pp + · · ·

n gravitons
. . . . ∼ ε

(
L

ε

)1−n
2

a1 an

b
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a2 an

∼
(
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2

. . . .
n gravitons

xµ ∼ R m

mpl
∼
√

εL

hµν ∼
1
R L ∼ mR

S(n) =
∫

d4x g1/2 V (n)

n!
hn S(n)

pp =
∫

dτ
V (n)

pp

n!
hn



Feynman rules

✦ Translate diagrams into mathematics using Feynman rules:

✦ Include a factor of           for a particle-field vertex and           for a field self-
interaction vertex

✦ Include a factor of                for each vertex with CTP label a

✦ Insert a factor of                         for each graviton line starting (ending) at a 
vertex labelled by the CTP index   (  ) at spacetime event    (   )

✦ Sum over all CTP indices, integrate over proper time for each particle-field 
vertex and integrate over all spacetime for each graviton self-interaction vertex

✦ Divide by the appropriate symmetry factor

✦ For each external graviton, insert a factor of        and sum over its CTP index 

(−1)a+1

Dαβγ′δ′

ab (x, x′)
x x′a b

1/2

iV (n)
pp iV (n)



Example: MSTQW self-force
✦ MSTQW self-force -- first order correction to LO geodesic

✦ Worldline fluctuations are small (decoherence) so expand to first 
order in coordinate difference 

✦ Integral of retarded propagator diverges at coincidence...

iΓ[〈ẑµ
a 〉] = −im

∫
dτ zµ

−a+µ +
im2

2m2
pl

∫
dτ+

∫
dτ ′+ zµ
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+
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żγ′

+ żδ′
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∫
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=
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1
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)2 2∑
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(−1)a+b

∫
dτ

∫
dτ ′ żα

a żβ
a Dab

αβγ′δ′
(
zµ
a , zµ′

b

)
żγ′

b żδ′

b

ba

zµ
− = zµ

1 − zµ
2



Dimensional regularization
✦ Many techniques developed to regularize UV divergences in QFT

✦ Pauli-Villars, cut-off, point-splitting, dimensional regularization,...

✦ Dimensional regularization is particularly attractive

✦ Covariant

✦ Preserves gauge symmetry

✦ Mass-independent scheme

✦ Mass-independent scheme

✦ Beta functions involve only logarithms of renormalization scale

✦ Power divergences vanish in 4d for massless fields

✦ Logarithmic divergences renormalize non-minimal couplings -- RG flow 

✦ Fewer Feynman diagrams to compute vs mass-dependent schemes

µ



Regularizing the effective action
✦ UV divergences are quasi-local but effective action is non-local

✦ Use Hadamard's partie finie method:

✦ Renormalized propagator as pseudo-function

✦ Integral of pseudo-function gives the finite part (by definition)

✦ Divergent part is evaluated using momentum space techniques

✦ Familiar techniques and manipulations from flat spacetime QFT

✦ Originally developed for scalar field by Bunch & Parker

✦ Valid in any dimension & for massive, non-minimally coupled field, etc.

Dren ≡ Dret −Ddiv = Pf(Dret)

Fp

∫ ∞

−∞
dτ ′Dret(zα, zα′

)j(τ ′)

= lim
ε→0

(∫ τ−ε

−∞
+

∫ ∞

τ+ε

)
dτ ′Dret(zα, zα′

)j(τ ′)−
∫ ∞

−∞
dτ ′Ddiv(zα, zα′

)j(τ ′)



(Finite) MSTQW self-force

✦ Finite & non-local remainder of effective action yields self-force 
equations of MSTQW

✦ Real, causal and history-dependent -- guaranteed with CTP

✦ Does not provide sufficiently accurate waveforms to precisely measure 
parameters of GW sources of LISA mission

Divergence in 
first order 

effective action

Power
divergence

Vanishes

maµ(τ) =
m2

2m2
pl

wµαβν [zα] lim
ε→0

∫ τ−ε

−∞
dτ ′∇νDret

αβγ′δ′
(
zµ, zµ′)

żγ′
żδ′

Mino, Sasaki & Tanaka, PRD 55, 3457 (1997)
Quinn & Wald, PRD 56, 3381 (1997)
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)
∝ wmi

∫

k
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k2
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0 Raj0k

∫

k

kikjkk

k6
= 0Divergent part

(



Recipe for self-force

✦ Follow recipe for calculating self-force at desired order:

✦ Use power counting rules to draw all connected tree-level Feynman diagrams 
at desired order

✦ Use Feynman rules to translate diagrams into mathematical expressions

✦ Expand the effective action to linear order in the worldline difference 
coordinate (assume astrophysical bodies are strongly decohered)

✦ Isolate the quasi-local divergent part from the non-local finite part using 
Hadamard's partie finie

✦ Use dimensional regularization to renormalize the mass and non-minimal 
couplings in the effective point particle action

✦ Vary the resulting (finite) effective action with respect to the difference 
coordinate to find the self-force equation



Example: GWs from a geodesic

✦ Use Feynman rules to translate diagram

✦ Sum over CTP indices and take limit that 

2∑

m,a=1

(−1)a+1Dma αβγ′δ′(x, x′) = −2iDret
αβγ′δ′(x, x′)

zµ
2 → zµ

1 = zµ

=
(

1
1!

) (
im

2mpl

) 2∑

m,a=1

(−1)a+1

∫
dτ ′

a Dma αβγ′δ′(x, zµ′

a )uγ′

a uδ′

a

=
m

2mpl

∫
dτ ′ Dret

αβγ′δ′(x, zµ′
)uγ′

uδ′



Effacement Principle for EMRIs
✦ Action for effective point particle

✦ Non-minimal couplings determined through matching calculation

✦ Need to know the low-energy expansion of observables for full theory

✦ To demonstrate matching procedure, an order of magnitude estimate suffices

✦ Perturb geometry about a given vacuum background

✦ Compute amplitude for graviton Compton scattering

∼ · · ·& cE,B

m2
pl

(
1
R2

)2

& · · ·

Eαβ = E(0)
αβ + E(1)

αβ + E(2)
αβ + · · ·

Spp[z] = −m

∫
dτ + cE

∫
dτ EαβEαβ + cB

∫
dτ BαβBαβ + · · ·



Effacement Principle for EMRIs

✦ Scattering cross-section in effective point particle theory

✦ Scattering cross-section in full theory

✦ Match the cross-sections:

✦ Leading order diagram due to finite size effects

∼ cE,B

∫
dτ

(
1
R2

)2

∼ ε4L

σpp ∼ · · ·&
c2
E,B

m4
pl

1
R8

& · · ·

cE,B ∼ m2
plr

5
m ∼ m5

m8
pl

σfull = r2
mf

(rm

R

)
∼ · · ·& r10

m

R8
& · · ·



Effacement Principle for EMRIs
✦ For a white dwarf (WD) finite size effects are enhanced due to 

stronger tidal interactions with companion SMBH

Diagram with leading order induced tidal moments:

∼ fcoε
4L ∼ εsLrm = fcoGm

For a Schwarzschild SMBH: ε ≡ rm

R = 23/431/4fco
m

M

(
M

r

)3/2

f w
d
ε4



Second order self-force (in progress)

✦ Previous work on second order self-force

✦ First formal expression given by Rosenthal Rosenthal, PRD 74, 084018 (2006)

✦ Expressed in a non-standard gauge

✦ Potentially difficult to implement in practical calculations

✦ Second order self-force calculations with EFT:

✦ All orders computed in same gauge throughout (Lorenz here)

✦ Feynman diagrams:

✦ First diagram represents first non-linear particle-field contribution

✦ Second diagram represents first contribution from nonlinearities of GR



 
✦ Contribution to second order effective action 

✦ Regularize: 

✦ All divergences vanish leaving a regular remainder (finite part)

O(ε2L)

Dren = Dret −Ddiv

I(1)
µ = w αβν

µ

∫
dτ ′∇νDren

αβγ′δ′uγ′δ′ε′ζ′

+

∫
dτ ′′

+ Ddiv
ε′ζ′η′′θ′′uη′′θ′′

+ = 0

I(2)
µ = w αβν

µ

∫
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+

∫
dτ ′′
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µ
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+

∫
dτ ′′
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+ = 0

= − im3

8m4
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∫
dτ+zµ

−(τ)w αβν
µ

∫
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+, zµ′

+ )uγ′

+ uδ′

+uε′

+uζ′

+

∫
dτ ′′+ Dret

ε′ζ′η′′θ′′(zµ′

+ , zµ′′

+ )uη′′

+ uθ′′

+

− im3

4m4
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∫
dτ zµ

−w αβγδν
µ

∫
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+

∫
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✦ This diagram is built upon the 3-graviton vertex

✦ Calculation in progress but easily doable...

V µ1ν1µ2ν2µ3ν3(g) =

+
1
4

Iµ1ν1µ2ν2 Iµ3ν3
αβ ∇α

1 ∇
β
3 +

1
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Iµ1ν1µ3ν3 Iµ2ν2
αβ ∇α

1 ∇
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1
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−1
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1
2

Iαγ
µ2ν2 Iβδ

µ1ν1 Iγδµ3ν3 ∇α
1 ∇

β
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1
2
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β
3

−1
4
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2 ∇
β
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1
2
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1
2
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1∇3ρ

−1
8
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1
2
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β
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1
4

gµ1ν1Iα
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β
3

+
1
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1
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1
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β
3

+
1
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β
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1
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1
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β
3

+
1
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1
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1
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2 ∇
β
3

+
1
8
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(
permutations of {1, 2, 3}

)

1

2 3



 
✦ Second order contribution from effective action at 

✦ Can interpret as a correction to CO's mass

✦ Can interpret as contribution to 2nd order self-force with constant 
mass

O(εL)

=
im2

2m2
pl

∫
dτ zµ

−(τ)a αβ
µ

∫
dτ ′ Dren

αβγ′δ′(zµ
+, zµ′
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+ uδ′

+

a αβ
µ = −1

2
uαuβaµ + w (α
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2m2
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1
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ν
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dτ ′ Dren

αβγ′δ′uγ′
uδ′

= − im3

8m4
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∫
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−
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w αβν

µ uγδ
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] ∫
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αβε′ζ′uε′ζ′

+

∫
dτ ′′ Dren

γδη′′θ′′uη′′θ′′

+



Second order self-force equations

✦ Second order self-force so far...

aµ = MSTQW − m3

8m4
pl

w αβν
µ

∫
dτ ′∇νDren

αβγ′δ′(zµ, zµ′
)uγ′δ′ε′ζ′

∫
dτ ′′ Dren

ε′ζ′η′′θ′′(zµ′
, zµ′′

)uη′′θ′′

− m3

4m4
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[
w αβγδν

µ +
1
2
w αβν

µ uγδ + w (γ
µ wδ)αβν

]

×
∫

dτ ′∇νDren
αβγ′δ′(zµ, zµ′

)uε′ζ′
∫

dτ ′′ Dren
γδη′′θ′′(zµ′

, zµ′′
)uη′′θ′′

+
(
diagram with 3−graviton vertex

)



Necessity of CTP formalism
✦ Other approaches to potentially study EMRIs

✦ Goldberger and Rothstein's approach extended to curved spacetime 
(PN-EFT, in-out)

✦ Kol and Smolkin's Classical EFT (ClEFT)

✦ What is the problem with using these other formalisms?

✦ Non-causal self-force equations of motion

✦ For example, one diagram of second order self-force in PN-EFT and ClEFT 

✦ Real part of variation gives equations of motion, which are not causal

✦ Or, replace Feynman propagator with                            but self-force then 
involves advanced propagator... 

DF = − i

2
(
Dret + Dadv

)
+

1
2
DH

∝
∫

dτdτ ′dτ ′′ uαuβDF
αβγ′δ′uγ′

uδ′
uε′uζ′

DF
ε′ζ′η′′θ′′uη′′

uθ′′

DH
αβγ′δ′ =

〈
{ĥαβ(x), ĥγ′δ′(x′)}

〉

(Dret + Dadv)/2



Nonlinear scalar gravity

✦ May be useful as a toy model:

✦ Study practical methods for computing higher order self-force and radiation

✦ Can check computations with known results at first order (more to say 
later...)

✦ May help to resolve issues regarding relevance/importance of higher order 
perturbations (e.g., 2nd order self-force)

✦ Derive higher order self-force and radiation as a model for IMRIs

✦ Include finite size effects, which might be relevant for IMRIs



Nonlinear scalar gravity
✦ A class of non-linear scalar models on a vacuum background:

✦ Equations of motion:

✦ Leading order motion is geodesic

✦ Expand A and B functions for small field

✦ Same power counting, same diagrammatic structure, same 
Effacement Principle
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∫
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First order waves & self-force
✦ Feynman diagram for leading order scalar perturbations

✦ Sum over CTP indices and set difference coordinate to zero

✦ First order self-force

= −mb1

mpl
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Second order waves
✦ Corrections to geodesic motion from first order self-force create 

second order perturbations of scalar waves

✦ Feynman diagrams

✦ First term is proportional to square of first order field

✦ Second term is regulated because of UV power divergence on worldline

+
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Second order self-force

✦ Second order self-force caused by CO's interaction with first & 
second order field perturbations 

✦ Feynman diagrams (use recipe to evaluate)

✦ Second term proportional to square of first order self-force
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Third order waves
✦ Third order scalar perturbations created by second order 

corrections to CO's leading order geodesic motion

✦ Feynman diagrams
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Rosenthal's scalar model
✦ "Monopole" source:

✦ Second order scalar perturbations agrees with Rosenthal

✦ A model where: 

✦ Only first order self-force (linear in propagator) is non-zero 

✦ nth order radiation is proportional to nth power of first order waves

A = e−φ/mpl B =
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2
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Choosing "nice" variables
✦ The number of diagrams can be reduced by considering a field 

redefinition

✦ No field self-interactions

✦ For example, third order radiation diagrams number from 6 to 2

✦ Does a similar thing happen in the gravitational case?

✦ Equivalent to a different gauge choice -- could ease self-force computations

✦ Full metric is gauge dependent and probably does not help ease waveforms

φ,α(x)A = σ,α(x)

+

C(σ/mpl) = B(φ/mpl)

S[z, σ] = −1
2

∫
d4x g1/2σ,ασ,α −m

∫
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Relevance of 2nd order self-force?
✦ Choose A and B such that 

✦ Nonlinear scalar theory:

✦ Field redefinition gives a linear scalar theory

✦ Can easily calculate self-force and radiation in linear theory, transform back 
to nonlinear field and determine if second order self-force is actually 
relevant

A = eφ/mpl B = 2− eφ/mpl = 1− φ

mpl
+ · · ·
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✦ Introduce a tetrad on worldline that rotates with the CO

✦ Angular velocity

✦ Spin angular momentum -- conjugate to angular velocity

✦ Effective point particle with spin

✦ Power counting

✦ Maximally rotating CO:

✦ Corotating CO:

✦ Spin Supplementary Condition (SSC) fixes center of center of mass

Self-force on spinning CO's
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r
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✦ First order describes spin precession & MSTQW

✦ Second order contains leading order (LO) spin-orbit interaction

✦ Third order contains LO spin-spin and NLO spin-orbit interactions

Maximally rotating compact object

DSµν

dτ
= pµuν − pνuµ m aµ = −1

2
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αβγ żαSβγ + MSTQW

b

a
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b cSIJ

a
b

c
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✦ First order describes MSTQW self-force alone

✦ Second order describes spin precession

✦ Third order contains LO spin-orbit interaction

Co-rotating compact object

m aµ = MSTQW

b

a

SIJ

DSµν

dτ
= pµuν − pνuµ m aµ = −1

2
Rµ

αβγ żαSβγ + MSTQW



Conclusions
✦ Compact object as an effective point particle

✦ Describes tidally induced moments, spin and intrinsic moments

✦ EFT provides a systematic & efficient method for higher order self-force and radiation 
calculations

✦ Divergences are efficiently and unambiguously regularized

✦ Power divergences vanish & log divergences renormalize non-minimal couplings

✦ An Effacement Principle for EMRIs

✦ Internal structure of COs affect motion at fourth order

✦ WD tidal disruption a second order process?

✦ Computed 2/3 of second order self-force

✦ Nonlinear scalar gravity model -- resolve relevance of 2nd order self-force?

✦ Leading order spin-spin and spin-orbit diagrams for rotating COs 



Future directions
✦ Gravitational perturbations

✦ GWs resulting from second order self-force corrections

✦ Better choice of field variables via a gauge transformation/field redefinition?

✦ Use nonlinear scalar gravity model to:

✦ Determine if higher order effects are really relevant for LISA

✦ Study and implement practical computations at higher orders

✦ Spinning compact objects

✦ Precisely, how much does the spin of a CO affect the waveforms?

✦ Can QFT techniques provide new methods for practical computations?

✦ P. Anderson, Hu & Eftekharzadeh; W. Anderson, Flannagan, Ottewill, Wardell

✦ Continue to higher orders for LISA (and LIGO?) IMRIs?

✦ Include dissipative degrees of freedom to describe GW absorption



Extra slides



Sources of gravitational waves

✦ Galactic binaries composed of ordinary stars, WDs, NSs, BHs

✦ Confusion noise at lower frequencies -- significant data analysis challenge

✦ Massive BH mergers from colliding galaxies

✦ Possibly detectable at cosmological distances

✦ Extreme mass ratio inspirals (EMRIs) 

✦ Most promising sources for detection and parameter estimation

✦ Clean tests of GR ("No Hair" theorem, direct proof of BH's existence,...)

✦ Formation of supermassive black holes (SMBHs)

✦ Cosmic gravitational wave backgrounds

✦ Certain dark matter candidates
www.cco.caltech.edu/~esp/lisa/lisatab.html

http://www.cco.caltech.edu/~esp/lisa/lisatab.html
http://www.cco.caltech.edu/~esp/lisa/lisatab.html


EMRIs and self-force
✦ Rich diversity of orbits

✦ Circular inspiral

✦ Periastron precession

✦ Zoom-whirl orbits

✦ Spin-orbit coupling

✦ Evolving inclination angle

✦ Self-force drives the inspiral due to emission of GWs

✦ Entails interactions with back-scattered waves emitted in the past

✦ Intrinsically non-local and history-dependent force

✦ Gauge-dependent



Gravitational self-force with EFT
✦ Self-force is computed from the effective action

✦ First order -- MST-QW self-force equation (in Lorenz gauge)

✦ Second order -- Two diagrams  -- Preliminary results!

✦ First order diagram also gives a contribution at second order

= MSTQW +
m

2m2
pl

(
− wµαβνaν + wµ(αaβ)

)
Fp

∫
dτ ′ Dret

αβγ′δ′uγ′
uδ′

=
m

2m2
pl

wµαβνFp

∫
dτ ′∇νDret

αβγ′δ′uγ′
uδ′

+
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A nonlinear scalar model
✦ A class of non-linear scalar models on a vacuum background:

✦ Self-force through second order

✦ Scalar radiation through third order (from log of partition fn)

✦ Field redefinition simplifies the calculation greatly

✦ No field self-interactions -- Does a similar thing occur with gravity?

S[z, φ] = −1
2

∫
d4x g1/2φ,αφ,αA2

(
φ/mpl

)
−m

∫
dτ B

(
φ/mpl

)

+ +

++

++ + + ++

φ,α(x)A = σ,α(x)



Extra slides

✦ Is Kol's ClEFT more efficient than using CSEFT (w/ CTP)?

✦ Potentially yes, but it is not clear what propagator should be associated with 
graviton line. 

✦ Using a ret propagator gives an advanced part in the EOM, which if dropped gives MSTQW 
but with an extra factor of 1/2

✦ Using a Feynman propagator gives same problem as with retarded propagator

✦


