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General setting
In classical fields theories one usually deals with point particles interacting via
massless fields. For linear theories in Minkowski space, such as classical
electrodynamics (CED), the set of equations of motion (EOM) consists of the
equations for particles moving in the collective field created by all of them (including
that of the selected particle), and the linear field equations sourced by the particles.

Generically, the particles motion results in radiation, which can then propagate freely
and leave the region where particles are located. From the conservation equations it is
expected that the momentum transferred to radiation is borrowed from the particles
kinetic energy, and consequently, a radiation reaction force must exist.

The overall conservation of the momentum implies that the action of the reaction force
must be balance by the momentum of radiation. However, the problem is a bit more
complicated since the field generated by the particle is partly bound to it, so we have to
consider three ingredients: kinetic particles momenta, the field bound momentum and
the radiation momentum.

The bound momentum is described by the so-called Schott term which is generically a
total higher derivative term. Special care is needed to understand the momentum
balance in some situation, like Born paradox, self-accelerating solutions etc.

For non-linear theories and/or theories in curved space and one can still maintain
basic treatment of flat-space linear theories provided spacetime has symmetries
ensuring the existence of conservation equations and asymptotically flat regions to
identify radiation.
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Schott term in Maxwell-Lorentz CED

The system of N point charges interacting via the Maxwell field is described by the coupled
system of equations

∂νF
µν = 4π

∫ N
∑

a=1

żµδ(x− za(τ))dτ

maz̈
µ
a = eaF

µ
ν ż

ν
a

It has 3N + ∞ degrees of freedom, where ∞ stands for the Maxwell field. The
corresponding energy-momentum conservation equation is

∂ν(
m
T

µν+
F
T

µν) = 0

where m
T

µν =

∫ N
∑

a=1

żµżνδ(x− za(τ))dτ

is particles stress-tensor and
F
T

µν =
1

4π

(

FµλF ν
λ +

1

4
ηµνFαβFαβ

)

For each given charge ea the field generated by the other N − 1 charges is an external field
Fµν

ext, which is regular at its location. But the whole field Fµν = Fµν
ext + Fµν

ret contains the
singular contribution of the chosen charge Fµν

ret , which has to be dealt with somehow. Note
that this decomposition holds only in the linear theory. In what follows we omit external filed
for brevity. The energy-momentum conservation is ensured by the EOM-s in spite of infinities.
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The retarded potential

zadv = z(τadv)

z(s)
x

zret = z(τret)

zadv = z(sadv) and zret = z(sret) are intersection points of the future/past light cone of the
point x with the world-line; z(s) is intersection point of the plane orthogonal to the world-line
and passing through x. The retarded potential at x depends on variables taken at sret(x)
defined as the solution to the equation RµRµ = 0, Rµ = xµ − zµ(sret), satisfying
x0 > z0. The advanced solution to the same equation with z0 > x0 refers to the advanced
proper time sadv(x). Introducing the invariant distance ρ = vµ(sret)Rµ, vµ = dzµ

ds
, which

is equal to the spatial distance |R| = |x − z(sret)| between the points of emission and
observation in the momentarily co-moving Lorenz frame at the time moment x0 = z0(sret),
one can present the retarded potential as

Aµ
ret(x) =

evµ

ρ

∣

∣

∣

sret(x)
.
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Field split versus stress tensor split

Introduce the null vector cµ = Rµ/ρ, whose scalar product with vµ is equal to unity,
and the unit space-like vector uµ = cµ − vµ. Thus we have (signature + - - -)

v2 = 1, c2 = 0, vc = 1, u2 = −1.

One has
cµ = ∂µsret(x), ∂µρ = vµ + λcµ, ∂µcν = 1

ρ

(

δν
µ − vµcν − cµvν − λcµcν ,

)

where

λ = ρ̇ = ρ(ac) − 1. Then the field tensor

Fµν =
e (ρ(ac) − 1)

ρ2
v[µcν] −

e

ρ
a[µcν]

The retarded potential in Minkowski space admits a natural decomposition with respect
to T-parity:

Aµ
ret = Aµ

self + Aµ
rad

with Aµ
rad = 1

2

(

Aµ
ret − Aµ

adv

)

satisfying an homogeneous equation, while
Aµ

self = 1
2

(

Aµ
ret + Aµ

adv

)

is sourced at x = z(s)

One could expect that T-symmetric Aµ
self corresponds to bound field, but in flat space it

is only a singular term, absorbed by the mass renormalization. In curved space-time
Aµ

self also contains a finite part (DeWitt-DeWitt-Smith-Will force)
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Bound momentum
To define bound part of the field we have to split the stress-tensor as function of the retarded
(physical) field, rather than the field itself (Rohrlich)

F
T

µν = Tµν
emit + Tµν

bound,

where the first term is proportional to ρ−2:

4π

e2
Tµν
emit = −

(ac)2 + a2

ρ2
cµcν ,

while the second contains higher powers of ρ−1:

4π

e2
Tµν
bound =

a(µcν) + 2(ac)cµcν − (ac)v(µcν)

ρ3
+
v(µcν) − cµcν − ηµν/2

ρ4
.

“Emitted” part Tµν
emit is distinguished by the following properties:

Its geometric structure is the tensor product of two null vectors cµ,

It is traceless: Tµ
ν emit = 0,

It falls down as |x|−2 as |x| → ∞,

It is independently conserved ∂νT
µν
emit = 0.

All these features indicate that Tµν
emit describes an outgoing radiation. An independent

conservation of this quantity means that the bound part satisfies

∂ν(Tµν
bound+

m
T

µν) = 0.
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Momentum balance and split of the reaction force
Conservation of the total four-momentum implies that the sum of the mechanical momentum

and the momentum of the electromagnetic field is constant
dp

µ
mech

ds
+

dpµ
em

ds
= 0. Here

pµ
mech = m0vµ, while the field part is given by pµ

em =
∫

TµνdΣν , where the retarded field
must be used. According to the split of the stress-tensor

dpµ
mech

ds
= −

dpµ
em

ds
= fµ

emit + fµ
bound,

where
fµ
emit = −

d

ds

∫

Tµν
emitdΣν , fµ

bound = −
d

ds

∫

Tµν
bounddΣν .

On the other hand, the derivative of the bare mechanical momentum can be expressed
using the equation of motion of the charge in which the electromagnetic field is decomposed
into the self part and the radiation parts

dpµ
mech

ds
= eFµν

ret vν =
(

Fµν
self + Fµν

rad

)

vν = fµ
self + fµ

rad.

Clearly, the following energy-momentum conservation identity should hold:

fµ
self + fµ

rad = fµ
bound + fµ

emit

Now, somewhat unexpectedly, fµ
rad 6= fµ

emit and fµ
self 6= fµ

bound, differing by the Schott term:

fµ
rad = fµ

emit + fµ
Schott, fµ

self = fµ
bound − fµ

Schott.

The identity is satisfied as expected.
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World-line calculation of the reaction force
The retarded and advanced potential taken on the world-line xµ = zµ(s) of a charge can
conveniently be written in terms of Green’s functions

Gself (Z) = δ(Z2), Grad(Z) =
Z0

|Z0|
δ(Z2),

where Zµ = Zµ(s, s′) = zµ(s) − zµ(s′). Substitution of the electromagnetic field of the
charge on its world-line leads to the following integrals

fµ(s) = 2e2
∫

Z[µ(s, s′)vν](s′)vν(s)
d

dZ2
G(Z)ds′,

Due to the presence of delta-functions in Gself and Grad, one may expand the integrands in
σ = s− s′. Taking into account that Z2 = σ2 +O(σ4), one can write

Gself (Z) = δ(σ2) +O(σ4), Grad(Z) =
σ

|σ|

(

δ(σ2) +O(σ4)
)

.

Expanding the rest of the integrands in σ, one encounters the following integrals:

Al =

∫

∞

−∞

σl d

dσ2
δ(σ2) dσ, Bl =

∫

∞

−∞

σl d

dσ2

(

σ

|σ|
δ(σ2)

)

dσ

with l ≥ 2. Regularizing by ’point-splitting’ δ(σ2) → δ(σ2 − ǫ2) we obtain

A2 = − 1
2ǫ
, B3 = −1, so one finds fµ

self = − e2

2ǫ
aµ, fµ

rad = 2e2

3
(vµa2 + ȧµ). After mass

renormalization, m0 − A2 = m, we get the Lorentz-Dirac equation

maµ =
2e2

3
(vµa2 + ȧµ)
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Self-force vs radiation reaction force

The Abraham reaction force contains the radiation recoil term

fµ
emit =

2

3
e2a2vµ,

and the Schott term
fµ
Schott =

2

3
e2ȧµ

This latter is a total derivative, so it does not correspond to an irreversible loss of
momentum by the particle, but plays an important role in the momentum balance
between the radiation and particle momentum loss. If fµ

rad = 0, this does not
necessarily mean that there is no radiation (recall the of a uniformly accelerated
charge), but if there is no radiation, the Abraham force is zero. Indeed, if one has
aµaµ = 0 at any time, then it is easy to show that the three-acceleration is zero, a = 0,
and therefore ȧµ = 0. Thus, no radiation reaction force is possible in absence of
radiation. It seems natural to have this property maintained in curved space too in
physically reasonable terminology.

The self-force, given by the T-even Green function, in flat is infinite and proportional to
acceleration, thus it can be absorbed by mass renormalization. This is no more so in
the theories with (flat) extra dimensions. Neither it is so in 4D curved space: apart from
the mass renormalization one obtains a finite part, which is known as
DeWitt-DeWitt-Smith-Will force.
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Physical interpretation of the Schott term

Correct interpretation and a constructive derivation of the Schott term was given by
Dirac. Still in the literature there were doubts because of use of the advanced
potential. Havas and Rohrlich clarified that actually only the physical retarded field was
involved in the calculation of the bound electromagnetic momentum, and the whole
expression for the Abraham vector can be obtained using only the retarded field. This
became especially transparent after a later investigation of the nature of the Schott
term by Teitelboim, who emphasized that this term originates from the bound
electromagnetic momentum, though didn’t provided a detailed calculation (later done
by Galtsov and Spirin 04’).

Note, that the Schott term does not show up if integration of the bound momentum is
performed using the retarded coordinates of Newman and Unti (Poisson) (since the
sequence of space-like hypersurfaces are not well defined in this case).

Schott term is sometimes included into the modified momentum of the “dressed”
particle. Such an interpretation immediately gives rise to the problem of
self-accelerating solutions, Born paradox, and even a conclusion about inconsistency
of CED (Landau and Lifshitz)

Rather we deal with a point particle with a variable coat whose momentum has still to
be regarded as the field momentum. Then the momentum conservation equation of
the Maxwell-Lorentz theory holds. Changing acceleration entails the momentum
exchange between the charge and the coat. This explains the Born paradox.
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Remarks on the “orthogonalization”

Confusion about the Schott term is partially related to the ’phenomenological’
derivation of the Lorentz-Dirac equation (Landau and Lifshitz) adding the Schott term
by hand from the requirement of orthogonality of the reaction force to the particle
four-velocity. The first term of the Abraham force is obtained by computing the rate of
radiation as a flux in the wave zone, fµ

emit = 2
3
e2a2vµ, and it is not orthogonal to the

4-velocity
fµ
emitvµ =

2

3
e2a2 6= 0.

Adding δfµ of the corresponding mass dimension so that (fµ
emit + δfµ)vν = 0 one

finds δfµ = fµ
Schott = 2

3
e2ȧµ

Formally, this procedure leads to the correct equation (though does not explain origin
of the Schott term), so per se it does not contradict to the correct interpretation it
should be viewed as finite part of the bound electromagnetic momentum. But if one
does not relate the Schott term to the bound momentum, the energy-momentum
balance equations become contradictory.

The difference between this ’phenomenological’ derivation of the Schott term and its
consistent treatment as the derivative of the bound electromagnetic momentum is very
clear in higher dimensions: generically the number of possible momentum
’counterterms’ in higher dimensions is larger than the number of equations arising
from the requirement of the orthogonality. So the Schott term(s) can not be obtained
by orthogonalization in even dimensions higher than six.
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Integration of the electromagnetic momentum

To calculate the four-momentum carried by the electromagnetic field of the charge for a given
moment of the proper time s on the particle world-line zµ(s) one has to choose a space-like
hypersurface Σ(s) intersecting the world-line at the point zµ(s) and to integrate the
electromagnetic energy-momentum flux as follows

pµ
em(s) =

∫

Σ(s)

TµνdΣν .

The most practical choice for Σ(s) is the hypersurface orthogonal to the world-line

vµ(s) (xµ − zµ(s)) = 0.

To control divergence near the world line introduce the small tube with the radius ǫ, of the
2-sphere ∂Yǫ(s) (Fig. 1), defined by the intersection of the hyperplane with the hyperboloid
(x− z(s))2 = −ε2. We also introduce the sphere ∂YR(s) of a large radius R defined by the
intersection of Σ(s) with the hyperboloid (x− z(s))2 = −R2. The electromagnetic
momentum can then be obtained by taking the limit ǫ→ 0, R → ∞ of the integral over the
domain Y (s) ⊂ Σ(s) between the boundaries ∂Yǫ(s) and ∂YR(s).
Let us evaluate the variation of this quantity between the moments s1 and s2 of the proper
time on the world-line

∆pµ
em =

∫

Y (s2)

TµνdΣν −

∫

Y (s1)

TµνdΣν .
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s1

s2

Sε

Σ(s1)

∂YR(s1)

Y (s2)

SR

zµ(s)

∂Yε(s1)

Integration of the bound electromagnetic momentum. Here Σ(s1) is the space-like
hyperplane transverse to the world-line zµ(s) intersecting it at the proper time s1 (similarly
Σ(s2)). The hypersurfaces Sε and SR are small and large tubes around the world-line
formed by sequences of the 2-spheres ∂Yε(s) and ∂YR(s) for s ∈ [s1, s2]. The domain
Y (s2) ⊂ Σ(s2) (similarly Y (s1)) is the 3-annulus between ∂YR(s2) and ∂Yε(s2).
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Bound momentum

For the bound momentum it is convenient to consider the tubes Sǫ and SR formed as
sequences of the spheres ∂Yǫ(s) and ∂YR(s) on the interval s ∈ [s1, s2] and to transform
this quantity to

∆pµ
bound =

∫

SR

Tµν
bounddSν −

∫

Sǫ

Tµν
bounddSν (1)

in view of the conservation equation for Tµν
bound. Here normal vectors in dSν are directed

outwards with respect to the world-line. The contribution from the infinitely distant surface SR

vanishes if one assumes that the charge acceleration is zero in the limit s→ −∞. This
assertion is somewhat non-trivial, since, in spite of the fact that the stress tensor (??) decays
as R−3, the corresponding flux does not vanish a priori, because the surface element
contains a term (proportional to the acceleration) which asymptotically grows as R3. As a
consequence, the surviving term will be proportional to the acceleration taken at the moment
sret of the proper time, where sret → −∞ in the limit R→ ∞. Finally we are left with the
integral over the inner boundary only

∆pµ
bound = −

∫

Sǫ

Tµν
bounddSν .
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Radiation

For integration of the emitted momentum it is convenient to take the light cone boundary
C(s′) instead of SR

s1

s2

s′
C(s′) Σ(s1)

C(s′, s1, s2)

Sε

zµ(s)

Zε(s
′, s2)

∂Z(s′, s2)

∂Yε(s2)

C(s′) is the future light cone of the point s′ on the world-line, Z(s′, s2) (similarly Z(s′, s1)) is
the annulus between the intersections of the light cone with the outer boundary Σ(s2) and
the inner boundary ∂Yε(s2). The change of the emitted momentum in the whole three-space
corresponds to the limits s′ → −∞, ǫ→ 0. Since the normal to the light cone lies on it, the
flux of the energy-momentum through the null boundary C(s′, s1, s2) is zero for any s′,
therefore

∆pµ
emit = −

∫

Sǫ

Tµν
emitdSν

with ǫ→ 0, s′ → −∞. An integration gives

fµ
emit =

2

3
e2a2vµ
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To compute bound momentum all quantities depending on retarded time must be expanded
in ǫ-series

Rµ = xµ − zµ(sret) = εnµ + vµσ −
1

2
aµσ2 +

1

6
ȧµσ3 + O(σ4)

where σ = s− sret > 0 and all the vectors in the last line are taken at s. This is an
expansion in powers of σ, but we need an expansion in powers of ε. The relation between
the two can be found from the condition R2 = 0:

Rµ = (nµ + vµ)ε+ ((an)vµ − aµ)
ε2

2
+

[(

9(an)2 + a2 − 4ȧn
)

vµ − 12(an)aµ + 4ȧµ
] ǫ3

24
.

Similar expansions can be obtained for the velocity and the acceleration at sret Using them
we obtain

∆pµ
bound =

e2

4π

s2
∫

s1

ds
{−nµ

2ε2
+
aµ

2ε
+[

(

(an)2 + a2/3
)

vµ+
(

(an)2 + a2/2
)

nµ−2ȧµ/3+3(an)aµ/4]
}

Integrating over the angles, one can see that the leading divergent term proportional to 1/ǫ2

vanishes and the result reads

∆pµ
bound = e2

s2
∫

s1

ds

(

1

2ε
aµ −

2

3
ȧµ

)

.

Therefore the bound part of the self-force is

−
dpµ

bound

ds
= −

e2aµ

2ǫ
+

2e2

3
ȧµ = fµ

div + fµ
Schott.
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Integration of the bound flux in the Newman-Unti coordinates

s

ŝ
H(s, ρ)

C(s) Σ(s, ρ)

zµ(s) Sρ

C(s) is a future light cone with an apex at z(s), H(s, ρ) - hyperplane transverse to v(s)
intersecting the world-line at ŝ, ρ as an affine length parameter on a null geodesic. The
two-dimensional surface Σ(s, ρ) is an intersection Σ(s, ρ) = C(s)

⋂

H(s, ρ), and Sρ is a
lateral hypersurface of constant ρ, formed by all Σ(s′, ρ). The orbit of the constant ρ(s, x) on
the cone forms a two-dimensional manifold Σ(s, ρ). The open tube is defined as the
sequence Σ(u, ρ) of hypersurfaces ρ = const for u ∈ (−∞, s]. Integration of the flux over
the tube for fixed ρ with the subsequent limit ρ→ 0 has a problem when applied to the bound
momentum because of the singular nature of the integrand at ρ = 0. This means to consider
the sequence of tubes of variable radius ρ, which do not give the field momentum associated
with any given moment of the proper time. With changing ρ, the spheres Σ(s, ρ) move
across the light cone and do not lie on a definite space-like hypersurface. Such a (wrong)

calculation gives for the bound momentum only the leading divergent term
dp

µ

bound

ds
= e2aµ

2ǫ
,

but fails to produce the second finite Schott term. For the emitted momentum the procedure
works well, since the answer in this case is given entirely by the leading term.
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Energy balance for accelerated charge

Consider a charged moving under action of an external force. The total momentum
consists of the particle kinetic momentum pmech = mvµ, the bound momentum of the
field pµ

bound and the momentum stored in the radiated field pµ
emit. All the three can be

associated with the given moment of the proper time s on the particle world-line

If acceleration is not constant (in the laboratory frame) the charge kinetic momentum
can be transfered to the bound momentum and back. The derivative of the bound

momentum is given by
dp

µ

bound

ds
= −fµ

Schott = − 2
3
e2ȧµ

When the acceleration increases from zero to some value ȧµ > 0, this means that the
bound field momentum is decreased according to

dpµ
bound

ds
= −

2

3
e2ȧµ.

At the same time,the momentum stored in the radiation changes according to

dpµ
emit

ds
= −

2

3
e2a2vµ

If acceleration becomes constant in the charge proper frame, one has
dp

µ

bound

ds
= −

dp
µ
emit

ds
, so the kinetic particle momentum remains constant. If

consequently acceleration decreases to zero, the kinetic momentum is transferred to
bound momentum, so finally the kinetic momentum is lost on the amount equal to the
radiated momentum
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Field split vs momentum split
Two type of splits are different in the following:

The split on the half-sum and the half-difference of the retarded and advanced
potentials is decomposition of the field. It can be proved generally (in flat space) that
the flux of the momentum of radiation in the wave zone coincides with the work
produced by the radiative component of the self-force on a charge:

∫

fµ
raddt =

∫

S2
∞

F
T

µνdΣνdt

(where Tµν may contain or not the bound part: it does not contribute)

In curved space-time with asymptotically flat regions (and/or black hole horizons) one
can prove similar relation in presence of the Killing vectors Ki

µ, replacing

fµ
rad → fµ

radK
i
µ, and

F
Tµν →

F
TµνKi

µ and the integration must be taken over the
two-surfaces which radiation eventually crosses.

The split of the stress-tensor on the emitted and bound parts is the split of stresses of
the retarded field. It is decomposition of the momentum of essentially the same field.
Evolution of the retarded field causes evolution of its bound and emitted momentum in
a certain proportion, that is why the “transmission” of the kinetic energy of the the
particle to its electromagnetic coat (bound momentum) is accompanied by
transmission of momentum to radiation. Both are described by the unique retarded
field, but the relative momentum stored in these two components can change.
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Non-relativistic limit

In the rest frame of a charge the recoil force has no spatial component. Hence the total
radiative self-force is presented by the Schott term, namely

fSchott =
2

3
e2ȧ

The work done by this force

∫

fSchott · vdt =

∫

2

3
e2ȧ · vdt = −

∫

2

3
e2a2dt+ boundary terms

correctly reproduces the radiative losses (Boundary terms should vanish by
appropriate asymptotic switching on/off conditions, or their absence be ensured by
periodicity condition in which case the normalization to a period must be done).

This does not contradict to our previous discussion about transmission of the energy to
the coat which is described by the Schott term: it automatically ensures transmission
of energy to radiation according to an overall energy balance.

Vanishing of the recoil force in the rest frame v = 0 of the particle simply means that
radiation in two opposite directions is the same so that the spatial momentum is not
lost by radiation, though the energy is.
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Gravitational Schott term

It can be argued that the Schott term (bound momentum) must also exist in the system
of gravitating bodies. We have to distinguish several cases

1. non-gravitational radiation under geodesic motion

2. gravitational radiation under geodesic motion

3. gravitational radiation under non-geodesic motion

In the relativistic regime these processes are qualitatively different. The first case is
described by DeWitt-Brehme pure tail equation. Splitting the retarded field into self and
rad parts allows to separate radiative effects and the tidal effects such as the
DeWitt-DeWitt-Smith-Will force.

Two latter cases are qualitatively different in the relativistic case, but should reduce to
the quadrupole approximation is the slow-motion weak-field limit. It is expected, that
gravitational radiation in the quadrupole approximation must result from the
gravitational Schott term (Landau-Lifshitz, Field theory)

f i
Gshott = −

Gµ

15

d5Dij

dt5
xj

so that
∫

f i
Gshottẋidt = −

∫

G

45

...
D

ij ...
Dijdt+ boundary terms

I will show that the gravitational tail term gives the quadrupole fGshott indeed.
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Dimensions other than four

Before to address the gravitational case it is instructive to consider flat space of dimensions
other than four, which already introduce some features typical for four-dimensional curved
space.

Going to other dimensions is motivated by

1. cosmological models with extra dimensions (compact and non-compact)

2. string theory ten (eleven) dimensional settings

3. search for better understanding of the four-dimensional theory (in particular,
dimensional regularization)

It turns out that radiation picture is substantially different in even and odd dimensions
because of the different structure of the Green’s functions for massless fields in the
coordinate representation (they still look similarly in all dimensions in the momentum
representation)

In even dimensions Huygens principle holds so the situation is similar to 4D case,
while in odd dimensions Huygens principle does not hold which results, in particular, in
non-local radiation reaction equationa already in flat space

Generically, quantum field theories are non-renormalizable in higher dimensions, while
classical theories require introduction of (higher-derivative) counterterms to eliminate
divergences
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Green’s functions with tails

The retarded Green’s functions for massless fields in even-dimensional Minkowski
space-times are localized on the future light cone. In odd-dimensional Minkowski
space-times and in curved space of arbitrary dimensions the retarded Green’s functions
have support on the future light cone and inside the future light cone. This may be thought of
as violation of the Huygens principle. As a result, the retarded fields substituted to the
equations of motion generate the integral tail terms over the all the past history of the particle
motion. In 3D, for instance, the scalar Green’s function reads

G3D
ret (X) = ϑ(X0)ϑ(X2)(X2)(−1/2), Xµ = xµ − x′µ,

It does not-contain the “direct” part singular on the light cone. Green’s functions in higher
odd dimensions D = 2n+ 1 can be obtained by the recurrent relation (see e.g. Gal’tsov 01’)

G2n+1
ret (X) ∼

dG2n−1
ret

dX2

In particular, in 5D

G5D
ret (X) ∼ ϑ(X0)

(

δ(X2)

(X2)1/2
−

1

2

ϑ(X2)

(X2)3/2

)

both the direct and the tail parts are present. It turns out that the direct part regularizes the

tail contribution to the field stress (the derivative of G) which otherwise would be singular

outside the world line! To eliminate divergences on the world-line one needs (local)

counterterms the number of which increases with dimension.
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More counterterms in higher dimensions

In 6D one has two divergent terms (which in terms of the field split correspond to fself :

fµ
div = −

1

6ε3
aµ +

1

2ε

(

3

4
vµ(ȧa) +

3

8
a2aµ +

1

4
äµ

)

the leading being eliminated by the mass renormalization and the subleading requires the
counterterm (Kosyakov 99’)

S1 = −κ
(1)
0

∫

(z̈)2ds

which leads to the Frenet-Serre dynamics unless the renormalized value of κ(1) = 0. Each
two space-time dimensions add one new higher-derivative counterterm needed to absorb
divergencies. Thus, the CED in higher dimensions is classically renormalizable at the
expence of introducing new counterterms in the action.
The radiation recoil force is

fµ
emit =

4

45
e2

(

ȧ2vµ +
2

21
(aȧ)aµ −

2

9
a4vµ −

2

105
a2ȧµ

)

and the Schott terms is

fµ
Schott = −

4e2

45

(

...
aµ +

16

7
a2ȧµ +

60

7
(aȧ)aµ + 4ȧ2vµ + 4(aä)vµ

)

,

the sum of two being orthogonal to the 6-velocity. Note that in 8D and higher one can not
obtain the Schott term by renormalization.
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Lessons from other dimensions: even

In even dimensional space-times (no tails) two alternative splits are possible:

Split of the retarded field into T-even (self) part and T-odd (rad) part. Then one
performs a local calculation substituting fields directly into the equations of motion.
One always obtain

fµ
self = fµ

div, fµ
rad = finite.

Divergent terms are Lagrangian type and can be absorbed by introducing suitable
counterterms.

Split the field stress-tensor built with retarded field only into the sum of the emitted and
bound terms. Then by a world-tube calculation one gets a different representation of
the total self-force:

fµ
self + fµ

rad = fµ
bound + fµ

emit,

where fµ
emit is the radiation recoil force, and fµ

bound is the non-radiated bound field
contribution due to exchange of the momentum between the particle and its coat. One
always has

fµ
rad = fµ

emit + fµ
Schott, fµ

Schott = fµ
bound − fµ

self ,

where the Schott term has to be identified via integration of the bound momentum.

Acting self-force in entirely given by T-odd “rad” Green’s function within the local
calculation

Radiation reaction and energy-momentum conservation – p. 25/37



Lessons from higher dimensions: odd

In odd dimensions one always have tail terms. Split of the retarded field into self and
rad parts is always possible, and the substitution into the equations of motion leads to
divergent and finite terms. Divergent ones can again be absorbed introducing (still
local!) counterterms.

However to split the stress tensor built on the retarded field into radiation (the emitted
part) and the bound part is difficult already in 3D (though with some additional
assumptions, it is still possible to define the emitted part Gal’tsov and Spirin 08’).

Therefore, the local calculation appealing to the fields on the world-line only is
preferable, though the problem of physical interpretation of the tail term and
identification of the emitted part has no general solution so far.

No general formula for radiation like in odd dimensions is available in terms of the
particle world-line local parameters (derivative of the velocity). For particular types of
motion this is still possible.

Tail term in odd dimensions has different origin from v-term is the Hadamard
expansion in curved space: it is expanded in odd powers of σ contrary to even powers
for even D and does not contain a logarithmic v-term (though there is still a w-term)
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Radiation in the curved space
Passing to general relativity we face to various new problems basically related to

1. non-linearity

2. absence of the conservation laws

3. absence of “good” asymptotics
Non-linearity makes problems in extracting radiation and self-field from the background
and even in non-contradictory definition of the background itself suitable for further
linearization. In some cases the radiation reaction problem can not be solved as a
one-body problem at all

Assuming stationarity (or even larger isometries ensuring the possibility of mode-sum
representation for Green’s functions) and existence of flat or black hole horizon
asymptotics one can avoid some of the problems, and to prove balance identities for
conserved quantities like in the Kerr case (Galtsov 82’)

One novel feature is that the T-symmetric (half sum of the retarded and advanced
potentials) part of the reaction force is no more pure fdiv, but contains some finite
contribution originating from tidal deformation of the self-field by the background

Another one is presence of tail terms in the EOM accounting for the reaction force.
Their radiative part contains emitted and Schott terms, generically non-local, but
extractable in the quadrupole approximation and in the mode-separable cases

It is worth to consider separately 1) non-gravitational radiation under geodesic motion,
2) gravitational radiation under geodesic motion 3) gravitational radiation under
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Local derivation of the self-force

DeWitt-Brehme have initiated calculations of the reaction force based on integration of
the stress-tensor of the field created by the particle(“world-tube” calculation). This is a
curved space generalization of the computation of the bound and emitted momenta
shown previously. The difference, however, is that in the curved space it is impossible
to split the stress-tensor into the emitted and bound parts. So it does not make much
sense to perform (quite tedious) calculations using the world-tube technique to get the
result in which bound and emitted part can not be separated. In addition, this
approach has problems which are partly technical, partly conceptual (cups,
mass-renormalization etc) (see e.g. Poisson, 05’).

Meanwhile, the calculation based on the substitution of the retarded field directly into
the equations of motion given above for the flat-space CED perfectly works in the
curved space too (Gal’tsov, Spirin and Staub 06’) for all spins 0,1,2. Technically it is
much simpler (the complete derivation of the scalar force is a one-page calculation).
Other advantages are:

1. In the gravitational case no mass renormalization is involved: mass does not enter
the geodesic equation. What is renormalized is the affine parameter along the
world line (one-bein)

2. split into the half-sum and the half-difference of the retarded and advanced
potentials is possible, separating the WWSW type force from the radiative force

3. split of the Detweiler-Whiting type is also possible opening a way to its further
physical analysis
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Geodesic motion, non-gravitational radiation: DeWitt-Brehme tail
Consider DeWitt-Brehme (WB) equation for a charge moving in a vacuum space-time
(signature - + + +)

µz̈α =
2

3
e2(

...
zα − z̈2żα) + e2 żβ

∫ τ

−∞

fα
retβγ ż

γ(τ ′)dτ ′.

In the case of geodetic motion local radiation reaction force (including the Schott term)
vanishes, so radiative effects has to be contained in the tail term. Let us split the retarded
potential

fα
retβγ ż

γ = fα
selfβγ ż

γ + fα
radβγ ż

γ

according T-parity. Then repeating calculations of DeWitt-DeWitt (WW) in the weak-field
slow-motion approximation one finds for the corresponding parts of the self-force in terms of
the flat space theory (spatial part)

fself = fdiv + fWWSM, frad = fSchott

where the divergent term is the same as in the flat space, and two finite terms

fWWSM =
GMe2

r4
r, fSchott =

2

3
e2ȧ

are the DeWitt-DeWitt-Smith-Will (WWSW) force and the Schott force. Therefore, the
WWSW force is a finite part of the T-even (self) contribution to the WB tail, while the
gravitational Schott term originates in the T-odd (rad) part and has the same form as in the
flat space CED.Similar result holds for the scalar radiation.
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Radiation reaction in Kerr

Kerr is the unique stationary asymptotically flat solution of the vacuum Einstein
equations possessing a regular event horizon, so it is likely to be the most general
tractable case to check conservation equations for radiation reaction. This was done in
Gal’tsov, JPA 82’ using modified Chrzanowski Green’s functions. The result was that
the radiative part of the self-force (for the spins s = 0, 1, 2) exactly balances the sum of
the fluxes of the energy and the angular momentum

∫

fµ
radK

i
µdt = Pi

∞
+ Pi

Hor, Pi =

∫

TµνKi
µ

going to infinity and absorbed at the horizon, Ki
µ, i = t, ϕ being the Killing vectors.

It is crucial that only the radiative part of the self-force is relevant in full analogy with
the flat space linear theories (including other dimensions than four). Meanwhile, during
more that ten years (1995-2006) in the literature there was a consensus that my paper
have been wrong because no WWSW force was present! This criticism was incorrect:
the WWSW force tidal force has nothing to do with radiation being the finite part of the
T-even half-sum of the retarded and advanced contributions.

Apparently this misunderstanding was overcome since 2006 when Mino and Tanaka et
al. started using my proposal to calculate the evolution of the Carter’s constant. Thus,
because of the “errors conservation equation”

(−) · (−) = +,

we now have a couple of dozens of incorrect papers!.
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Gravitational Schott term

The above calculation can be used to extract the quadrupole radiation reaction force in the
weak-field slow-motion approximation. Using the expression for fϕ

rad and substituting the
radial functions in the approximation Mω ≪ 1 (hypergeometric functions) one can perform a
series computation in terms of M/r. Then using the non-relativistic EOM-s (in flat space)
one can show that the result is equivalent (up to total derivatives) to the quadrupole Schott
term

f i
Gshott = −

Gµ

15

d5Dij

dt5
xj

projected on azimuthal direction. In the Hadamard expansion notation deal here with pure

v−tail contribution. Therefore the tail term is shown to contain indeed the quadrupole

radiation reaction force. Note again, that this force originates from the half difference of the

retarded and advanced potentials! There is no trace of presence of the WWSW force in the

balance equation for gravitational radiation.
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Tidal friction

Let us also mention the existence of another “static” force of the type different from
WWSW which results from the radiative potentials (half-difference of the retarded and
advanced fields). It turns out that in the static limit the azimuthal component of the
reaction force remains non-zero (Gal’tsov 82’). In this case both the energy and
angular momenta fluxes to infinity are zero (no radiation), the energy flux through the
horizon is also zero, but the angular momentum flux through the horizon is finite and it
is balances by the azimuthal component of the reaction force

fϕ
rad =

8

5

GµM

r2
a

M

(

M

r

)5 (

1 + 3
a2

M2

)

This is not surprising since in the physical frame rotating on the horizon one still have
radiation falling to the black hole. This force is a counterpart to Hawking’s tidal friction
acting on the hole.

Contrary to the WWSW force, this force is non-lagrangian type (it is a dissipative force)
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Non-geodesic motion, gravitational radiation

In this case one has no one-body equation to describe a reaction force. Naively, for a
non-geodesic motion one obtains a putative “11/3” antidamping term as a local part of the
rad contribution to the self-force

fµ
rad = −

11

3
8πG(gµν + żµżν)

...
zν + tail.

But the reason is simply that the source of gravitational radiation is incomplete: if the force is
non-gravitational, one has to take into account the contribution of stresses of the field
causing the body to accelerate. For instance, to describe gravitational radiation of an
electron in the atom, it is insufficient to consider the motion of the electron only, but one has
to construct as the source term in the linearized equation for gravitational field the sum of the
contributions of masses and the Maxwell field stresses (spatial components, non-relativistic
motion)

�ψij = 16πGT ij , T ij = T ij
mass + T ij

stress
where

T ij
mass =

∑

a=1,2

µaż
i
aż

j
aδ

3(Xa), Xi
a = xi − zi

a(t), T ij
stress = −

e1e2

4π

Xi
1X

j
2

(X2
1X

2
2 )3/2

Using this source one can calculate the gravitational force (Galtsov 84’) and find again the
gravitational Schott term

f i
Gshott = −

Gµ

15

d5Dij

dt5
xj , µ =

µ1µ2

µ1 + µ2

but this time, the derivation does not result form the tail term, the two-body treatment being

necessary.
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Discussion and conclusions

In the balance equations for radiation reaction force actually three and not just two
ingredients are involved:

1. Mechanical momentum of a particle

2. Momentum carried by radiation

3. Bound moment

This is explicit in CED and other linear theories in flat space, and implicit in the curved
space. Still, the gravitational Schott term can be extracted in some limiting cases.

For this reason, the concept of “dressed particle” in CED as a composite object
incorporating the “mechanical” point particle and the coat (bound momentum)
obscures the conservation equations. The coat (described by the Schott term) has
variable momentum and it is intrinsically related both to particle and radiation. To
maintain unambiguous conservation equations one has still to think of the usual kinetic
momentum and the electromagnetic momenta split into the bound and radiated parts.
Similar argument can be applied in General Relativity.

Radiation reaction force is given solely by the retarded minus advanced potentials.
This can be expected from the T-parity argument, and also confirmed by the balance
equations relating radiative loss through asymptotic regions and local friction. In the
curved space such balance equations are only possible in the case of isometries (at
least stationarity)
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Derivation of the equations with the self-force in curved space can be performed
substituting the self field directly into EOM-s. This not only greatly simplifies the
derivation, but clarify the nature of renormalization and opens the way to avoid
problems associated with the DeWitt type world-tube method. Moreover., in this
approach one can use field decomposition into self/rad parts or Detweiler-Whiting R/S
parts providing additional insights into the physical nature of different contributions to
the self-force.

The WWSW tidal force is entirely given by the retarded plus advanced potential (after
elimination of divergency). Contrary to the dissipative radiation reaction force, it can be
incorporated into some Lagrangian

Gravitational Schott term is hidden in the radiative part of the tail term and it can be
extracted explicitly in some limiting cases, in particular, in the weak field slow motion
approximation. In the non-relativistic limit the Schott term is the only contribution to the
spatial part of the radiation reaction force

For gravitational radiation under non-geodesic motion the non-relativistic gravitational
Schott term can not be extracted from any one-body equation. Thus, the gravitational
self force generally does not follow from a one-body equation being essentially a
collective phenomenon
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Necessity for time integration or some averaging procedure is related to physical
nature of the Schott term describing the effect of momentum exchange between the
bound and radiated momenta.

In general curved space-time no conserved quantities exist already at the level of
primary (non-iterated) equations, clearly the situation is not better for equations with
the self-force. On the other hand, once Killing symmetries are present, the
corresponding balance equations for the radiation reaction force also hold.
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Thanks!
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