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Perturbed Motion: two preliminary remarks

1. The definition of a world line for an extended body at finite λ is an extremely 
hard problem.  We will only define the world line perturbatively.  To see what we 
mean by this, suppose we had succeeded in defining an actual world line finite λ.  
We could then expand in λ,

The perturbed motion is then most naturally described as the spatial components of 
a vector field Za defined on the background world line at xi=0.  This deviation vector
gives the “infinitesimal displacement to the perturbed motion”. 

2. The deviation vector will depend on the choice of gauge for the metric 
perturbations.  Changing by the metric smoothly at first-order,

it is clear that the finite motion will also change to first order,

so that the deviation vector changes by

Physical observables are constructed from knowledge of both Z and h.



As already noted, the scaled metric at λ=0 (the “body metric”) is 
always stationary and asymptotically flat.  Stationary, asymptotically 
flat metrics have well-defined sets of multipole moments.  This gives 
a natural definition of the mass/spin/quadrupole/etc. of the body at 
time t0, as the mass/spin/quadrupole/etc. of the body metric computed 
at time t0.

The mass dipole moment of a stationary, asymptotically flat 
spacetime is pure gauge and represents the extent to which the 
coordinates are “off center”.  In particular, if the dipole vanishes one 
says that the coordinates are mass-centered.  To define the 
perturbed motion we seek coordinates for which scaling yields 
mass-centered body metrics.

Multipole Moments



Our assumptions imply that (independent of gauge choice) the time-time 
component of the body metric (scaled metric at λ=0) takes the form,

M is the mass of the particle.  Consider a (far-zone) smooth gauge transformation,

This affects the scaled metric by

which, according to the simple formula,

Definition of Pertubed Motion

this changes the mass dipole by          . Thus, it is always possible to remove 
the mass dipole for all time by a far-zone gauge transformation. This 
“displacement to mass-centered coordinates” defines the perturbed motion,



Calculation of Perturbed Motion

We now use our assumptions to calculate the perturbed motion via Einstein’s 
equation.  We will use Einstein’s equation at 0th, 1st, and 2nd orders.  We will 
compute exclusively in the far-zone for 0th and 1st orders, and use a mixture of 
far-zone and near-zone at 2nd order.  This choice of which “zone” to use is 
purely for conveneince.

For the background and first-order perturbations, make the convenient 
coordinate choices of Fermi normal coordinates (about the background 
geodesic    ) and the Lorenz gauge condition.   Following DB,MST,QW, one 
finds,

where B and R are background curvature quantities and htail is the Lorenz 
gauge “tail term” of the background geodesic.  Now supplement this 
expression by using the Einstein equation at second-order, but just for the 
leading behavior in 1/r.  One finds…



H and K are arbitrary—we have not used the Einstein equation for these orders.  
The parameters P and S will turn out to be the mass and current dipoles of the 
body metric(s).  Now introduce the smooth gauge transformation,

and compute

The effects of A have been
“absorbed” in to H,K



Compute the scaled metric, applying the “no mass dipole” condition to get,

Now “plug in” this form to the near-zone Einstein equation.  Because the far-zone 
Einstein equation was already used extensively, the near-zone Einstein equation is 
satisfied trivially for most terms.  However, the l=1, electric parity, even under time 
reversal, 1/r^2 and t/r^3 part of the second-order Einstein equation gives…



(BIG MATRIX)

The labels A-F correspond to 
decomposition in to l=1 tensor 
spherical harmonics:

linearized Ricci tensor
terms appearing in 
the perturbations



There are two relations independent of H and K.  They are

The first tells things unrelated to the motion.  The second gives (plugging in),

Using equality of mixed partials, we then have

Our notation has A with no argument evaluated on the world-line.  Therefore 
we have found a second-order differential equation for the deviation vector,



Interpretation of Results

The tail integral in this perturbative result is taken over the background geodesic.

spin force geodesic deviation self-force

The spin and self-forces appear at the same order because our scaling assumptions 
force the body multipole moments to scale according to their physical dimension.  

Why the geodesic deviation equation?  Suppose our family consists of a body 
whose “initial position” smoothly varies with λ.  For very small mass and spin, the 
world lines of the body are just (neighboring) geodesics, and the perturbative
description is of course just the geodesic deviation equation.

This equation gives the description of motion in the Lorenz gauge.  The change 
in description under change of gauge may be expressed in terms of the 
(possibly non-regular) vector relating the gauges—we derive the transformation 
law (not shown in this talk).



The perturbative result is mathematically guaranteed to approximate the motion in the 
λ → 0 limit.  However, this guarantee is only useful—i.e., the approximation is only 
accurate—if the true motion is “close” to the background motion at small but finite λ.  It 
is clear that this can only happen for a short time, since particles lose energy and 
“spiral in”.  That is, we expect the convergence of our perturbation series to be highly 
non-uniform in time.

Of course, when a particle has deviated from a particular geodesic and the solution off 
of that geodesic is no longer accurate, it should then be close to a new geodesic, 
perturbing off of which should give a better approximation to the motion for that period 
of time.  One could then attempt to “patch together” the two solutions.  In the limit of 
many patches with small times between them, one would expect the motion to be 
described by a single “self-consistently perturbed” equation.  We will argue that the 
original MiSaTaQuWa equation is (a good candidate for) such an equation.

Self-consistent Equation

geodesic deviation 
equation gone

tail taken over self-
consistent motion

gauge-relaxed equations



A simple, familiar example helps to illustrate these ideas.  Consider the cooling of a 
“black body”—specifically, a hot lump of coal enclosed in perfectly reflecting walls, 
but with a hole of area A cut out.

A more common self-consistent equation

At finite A, this is a very difficult problem!

However, let us consider a family of cavities A(λ), where A(λ) → 0 as λ → 0.  In the 
limit, no energy escapes and the body remains at a constant temperature T(0) for all 
time.  As a first perturbative correction, one should find

Only T(0) may appear on the RHS because A(1) is already first order.  Thus 
perturbation theory in fact gives linear decrease,

This perturbative result is clearly only accurate for a short time.  One might think one 
should go to second-order, but better is to pass to the self-consistent equation,

This (correct) equation 
includes some higher-order 
terms and not others!



About self-consistent equations

Self-consistent equations are ubiquitous—any dissipative process (I can think of) will 
be described by such an equation.  Examples from relativity are black hole 
evaporation and energy balance (“70’s style” or higher PN) calculations.

Self-consistent equations do not come (directly) from perturbation theory.  Rather, 
they come from attempting to incorporate perturbative effects off of different
backgrounds in to a single equation.  Viewed off of a single background, these effects 
are effectively higher-order than linear.  Self-consistent equations include some 
higher-order terms but not others.

This is not a bug but a feature—these are precisely the higher-order terms expected 
to accumulate secularly and dominate.  For example, blackbody radiation energy loss 
will dominate over non-equilibrium effects. 



Is the MiSaTaQuWa equation really the right 
self-consistent equation?

We don’t know.  Our perturbative result is rigorous.  Beyond 
perturbation theory into the domain of self-consistent equations, we 
only have some initial feelings on the matter.  As a rough outline of the 
criteria a self-consistent equation ought to satisfy,

1. It should have a well-posed initial value formulation

2. It should have the same number of degrees of freedom as the first-
order perturbative system, so that a correspondence can be made 
between initial data for the self-consistent perturbative equation and 
the first-order perturbative system.

3. For corresponding initial data, the solutions to the self-consistent 
perturbative equation should be close to the corresponding solutions 
of the first order perturbative system over the time interval for which 
the first order perturbative system should be accurate.

It appears plausible that the MiSaTaQuWa equation satisfies 1,2,3.



Electromagnetic Case

A perturbatively valid derivation of electromagnetic self-force should give,

The perturbed motion is perfectly well-behaved.  However, as usual it is only 
accurate for short times.  So, pass to self-consistent equation,

The Abraham-Lorentz equation is not an allowed choice—according to 
criteria 1,2,3, it is wrong.  The “reduced order” version, on the other hand, 
appears to satisfy 1,2,3.

Conclusion (of such a derivation): runaway solutions are an 
artifact of the improper use of perturbation theory.



“Practical” implications

The MiSaTaQuWa equation will never be derived from perturbation theory, at any order.

There is no more reason to distrust the waveforms from the MiSaTaQuWa
equations than there is to distrust the energy flux predicted by the blackbody law.

It can be dangerous to attempt “skip” the rigorous perturbative result and proceed 
straight to the self-consistent equation—see the 100 year history of the Abraham-
Lorentz force. 

My truly practical conclusion: For waveforms incorporating gravitational 
self-force, there is no need to “break our backs” with second-order 
perturbation theory.  This is good news!


