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Vacuum fluctuations and inertia
Motion in vacuum

A fluctuating environment leads to dissipative effects on motion
A. Einstein, Ann. Physik 17 (1905) 549; Phys. Z. 18 (1917) 121

Relations between fluctuations and dissipation hold at the quantum level
R. Kubo, Rep. Prog. Phys., 29 (1966) 255

In quantum field theory, they result from the evolution of interacting fields

Φ(t) = S−t Φin(t)St, St = Texp
−i
~

Z t

−∞
Hin
I (t′)dt′, H = H +HI

In particular, output fields are determined by a scattering matrix:

Φout(t) = S−Φin(t)S, S = S∞

A perturbation δHI = −δλ(t)B(t) induces a perturbation of observables:

δA(t) = [A(t), S−t δSt] =

Z ∞
−∞

dt′χAB(t− t′)δλ(t′)

The linear response to the perturbation is given by the generator B(t):

χAB(t− t′) =
i

~
θ(t− t′)[A(t), B(t′)]

Displacements in space δq are generated by the total momentum P

i

~
[P, ]δq → δHI =

i

~
[H,P ]δq = −δqF



Motional susceptibility

Small motions induce Hamiltonian perturbations proportional to the force

δHI(t) = −F (t)δq(t)

Quantum fluctuations of forces are characterized by their correlations in time

< F (t)F () >≡ CFF (t) ≡
Z ∞
−∞

dω

π
e−iωtCFF [ω]

Linear response theory relates the mean motional force to force correlations

〈δF (t)〉 =

Z t

−∞
dt′χFF (t− t′)δq(t′)

The dissipative part gives the radiative reaction force induced by motion.
The (causal) response function is the retarded part of the force commutator

χFF (t) = iθ(t)ξFF (t), ξFF (t) =


~
< [F (t), F ()] >=

CFF (t)− CFF (−t)
~

The response function χFF being analytic in ω, its dispersive part Re(χFF )
and its dissipative part Im(χFF ) are related by Kramers-König relations.



Relativity of motion

Vaccum fields exert a fluctuating force on a scatterer.
Energy-momenta are quadratic forms in quantum fields.
Balance of energy-momentum between scatterer and fields is expressed in
terms of outcoming and incoming fields, hence in terms of the S-matrix and
input field correlations

Φout[ω] = S[ω]Φin[ω]

< Φin[ω]Φin[ω
′] >≡ Cin[ω, ω

′]

Classical motions can be seen either as perturbations of the scattering matrix
(in the laboratory frame) or as perturbations of input field correlations (in the
scatterer’s frame).
Both computations of the motional force lead to the same result

δq → δS or δCin

δS or δCin → χδq

< δF [ω] >= χ[ω]δq[ω]

M.-T. Jaekel, S. Reynaud, Quantum Opt. 4 (1992) 39



Space-time symmetries
Quantum field fluctuations in vacuum are invariant under Lorentz (or
conformal) transformations.
The dissipative part of the motional force, i.e. the radiation reaction force,
vanishes for uniform (uniformly accelerated) motions. In particular:

• for scattering of a scalar field in 2-dimensional space-time

CFF [ω] ∼ θ(ω)ω

the radiation reaction force is proportional to the third time derivative

< δF >∼
...
q

S.A. Fulling, P.C.W. Davies, Proc. R. Soc.A348 (1976) 393
• for scattering of electromagnetic fields in 4-dimensional space-time

CAµAν
`
x, x′

´
=

~
π
ηµν c

`
x, x′

´
, c

`
x, x′

´
=



(x− x′) − iε (t− t′) , ε→ +

the radiation reaction force is proportional to Abraham-Lorentz vector

< δFµ >∼
...
q µ + (q̈)q̇µ

M.-T. Jaekel, S. Reynaud, Quantum Semiclass. Opt. 7 (1995) 499



Cavity in vacuum
Outcoming fields (and intracavity fields) are expressed in terms of input fields

Φout[ω] = S[ω]Φin[ω]

For a cavity at rest, energy-momentum balance bewteen cavity and exterior
(input and output) fields leads to a mean (Casimir) force FC .
The Casimir energy EC (and its derivative FC ) can be written in terms of time
delays affecting field fluctuations inside the cavity

detS[ω] = detS[ω]detS[ω]ei∆q [ω]

EC =

Z ∞


dω
π

~ωτ [ω], τ [ω] ≡ 


∂ω∆q[ω], FC = ∂qEC

The Casimir force shows fluctuations related to those of the forces F1 and F2

acting upon the two mirrors

Cij(t) = 〈Fi(t)Fj()〉 − 〈Fi〉 〈Fj〉 , FC = F − F



Cavity in motion
Motions of the two mirrors perturb the Hamiltonian

δHI(t) = −
X
j

Fj(t)δqj(t)

The mean force on each mirror is perturbed by both motions

〈δFi(t)〉 =
X
j

Z t

−∞
dt′ χij(t− t′)δqj(t′)

Susceptibility functions χij are the retarded parts of the mean values of the
force commutators ξij

χij(t) = iθ(t)ξij(t), ξij(t) =
[Fi(t), Fj()]

~
=
Cij(t)− Cji(−t)

~
At the quasistatic limit, corrections to Casimir force and forces depending on
accelerations are obtained

χij [ω] = −κij + ωµij + . . .

δFi(t) = −
X
j

`
κijδqj(t) + µijδq

′′
j (t) + . . .

´
M.-T. Jaekel, S. Reynaud, J. Phys. I France 2 (1992) 149



Inertia of Casimir energy

The total force induced by a global motion of the cavity provides the inertial
force exerted by vacuum fields on the cavity

δF (t) = −µδq̈(t) µ =
X
i

X
j

µij

The corresponding mass correction may be expressed in terms of the
Casimir energy EC and the mean Casimir force FC

µ =
EC − FCq

c

M.-T. Jaekel, S. Reynaud, J. Phys. I France 3 (1993) 1093

This expression identifies with the inertial mass of a stressed rigid body
A. Einstein, Jahr. Radioakt. Elektron., 4 (1907) 411, 5 (1908) 98

Inertial motion may generally be shown to express conservation of the
symmetry generator associated with Lorentz boost.



Mass as a quantum observable
Mass fluctuations

Time delays affecting vacuum fields modify the mean value of the mass

< µ >=

Z ∞


dω

π
~ωτ [ω]

The induced mass also depends on the energy-density of vacuum fields
inside the cavity.
The resulting mass fluctuations can be written in terms of time delays

CMM [ω] = ~θ(ω)

Z ω



dω′

π
ω′(ω − ω′)τ [ω′]τ [ω − ω′]

A simple model for a partially transmitting mirror

τ [ω] = ∂ω∆[ω] =
Ω

Ω + ω

shows that mass can have important fluctuations on short time scales

< M > − < M >=  < M >

while remaining practically constant in the low frequency domain:

CMM [ω] ∼ ~

π
θ(ω)

ω

Ω
for ω � Ω

M.-T. Jaekel, S. Reynaud, Phys. Lett. A 180 (1993) 9



Conformal algebra

Generators of spacetime symmetries correspond to quantities which are
preserved by field propagation and also describe changes of reference frame.
Relativistic transformations include translations Pµ and Lorentz
transformations Jµν

[Pµ, Pν ] = 

[Jµν , Pρ] = i~ (ηνρPµ − ηµρPν)

[Jµν , Jρσ] = i~ (ηνρJµσ + ηµσJνρ − ηµρJνσ − ηνσJµρ)

For Maxwell fields in 4-dimension, symmetries also include dilatations D

[D,Pµ] = i~Pµ [D, Jµν ] = 

and transformations Cµ to uniformly accelerated frames

[D,Cµ] = −i~Cµ

[Jµν , Cρ] = i~ (ηνρCµ − ηµρCν)

[Cµ, Cν ] = 

[Pµ, Cν ] = −i~ (ηµνD − Jµν)



Quantum positions

The relativistic definition of localization in space-time can be implemented
using quantum fields.
Positions in space-time are defined as quantum observables, built from the
generators of space-time symmetries

Xµ =


P 
·
“
Pλ · Jλµ + Pµ ·D

”
Quantum observables and relativistic frame transformations are then
included in a unique algebra.
Positions include a time operator conjugate to energy

[Pµ, Xν ] = −i~ηµν

and tranform according to classical rules under rotations and dilatation

i

~
[Jµν , Xρ] = ηµρXν − ηνρXµ,

i

~
[D,Xµ] = Xµ

Transformations of positions between accelerated frames are given by the
conformal generators Cµ.



Equivalence principle

The mass observable built on energy-momentum is a Lorentz invariant

M = PµPµ,
i

~
[Pµ,M

] =
i

~
[Jµν ,M

] = 

but cannot be considered as a parameter

i

~
[D,M] = −M,

i

~
[Cµ,M

] = −M ·Xµ

Mass transformations under uniform accelerations involve a position
dependent conformal factor.
Equivalently, positions can be defined from the shift of the mass observable
under transformations to accelerated frames.
The quantum red shift law takes the same form as the classical Einstein law,
but in terms of quantum positions

∆ =
aµ


Cµ,

i

~
[∆,M ] = −M · Φ, Φ = aµXµ

Using conformal symmetry, the classical covariance rules may be
implemented in the algebra of quantum observables.

M.-T. Jaekel, S. Reynaud, Europhys. Lett. 38 (1997) 1



Metric extensions of General Relativity
Quantum fluctuations of metric fields

Gravitation fields also have quantum fluctuations which may be represented
as perturbations of Minkowski metric

gµν = ηµν + hµν , ηµν = diag(,−,−,−) , |hµν | << 

Metric fluctuations may equivalently be written as functions of position in
spacetime or of a wavevector in Fourier space

hµν(x) ≡
Z

dk

(π)
e−ikxhµν [k]

Gauge invariant fields are provided by Riemann, Ricci, scalar and Einstein
curvatures

Rλµνρ =



{kλkνhµρ − kλkρhµν − kµkνhλρ + kµkρhλν}

Rµν = Rλµλν , R = Rµµ , Eµν = Rµν − ηµν
R



Classically, metric fields are determined from energy-momentum sources by
Einstein-Hilbert equations of General Relativity (GR)

Eµν =
πGN
c

Tµν



Radiative corrections
Quantum fluctuations of metric fields and stress tensors modify the effective
coupling between gravitation and its sources.
Gravitation equations of GR are generalized as a linear response relation
between Einstein curvature and the energy-momentum tensor

Eµν [k] = χλρµν [k] Tλρ[k] = {πGN
c

δλµδ
ρ
ν + δχλρµν [k]}Tλρ[k]

M.-T. Jaekel, S. Reynaud, Ann. Physik (1995) 68
Radiative corrections differ in two sectors of different conformal weights,
corresponding to trace and traceless parts.
The two sectors correspond to two different running coupling constants.
In the linearized approximation and for a static pointlike source:

Tµν = δµδνT, T = Mcδ(k)

Eµν = E()
µν + E()

µν , πµν ≡ ηµν −
kµkν
k

E()
µν = {πµπν −

πµνπ



} πG

()

c
T, E()

µν =
πµνπ





πG()

c
T

G() = GN + δG(), G() = GN + δG()



Anomalous curvatures
General solutions remain in the vicinity of GR metric (written in Scwartzschild
coordinates) ˆ

Eνµ
˜

st
= πκδµδ

ν
δ

()(x), κ ≡ GNM

c

[g]st = − κu = − 

[grr]st
, u ≡ 

r

Solutions to the generalized equations may be characterized by anomalous
Ricci curvatures (which do not vanish outside sources)

Eµν ≡ [Eµν ]st + δEµν , δEµν (x) ≡
Z
dx′ δχµρνλ(x, x

′)Tλρ (x′)

The two running coupling constants G() and G() replacing Newton
gravitation constant GN are equivalent to two anomalous Ricci curvatures.
The two sectors of anomalous curvatures are equivalent to anomalous parts
in the two metric components describing isotropic solutions

g = [g]st + δg , grr = [grr]st + δgrr

δg
[g]st

=

Z
du

[g]

st

Z u δE
u

du′ +

Z
δErr
u

du

[g]st
,

δgrr
[grr]st

= − u

[g]st

Z
δE
u

du



Gravitation potentials

Solutions of Einstein-Hilbert equations lead to vanishing Ricci curvatures in
empty space and may be described in terms of Newton gravitation potential.

The two independent components of anomalous curvatures are themselves
equivalent to two gravitation potentials ΦN + δΦN and δΦP , replacing Newton
gravitation potential ΦN

δE ≡ u(δΦN − δΦP )′′, δErr ≡ uδΦ′P ()′ ≡ ∂u

The two gravitation potentials may be used to describe the two metric
components in the isotropic case (with their anomalous parts)

δgrr =
u

(− κu) (δΦN − δΦP )′

δg = δΦN + κ(− κu)
Z
u(δΦN − δΦP )′ − δΦN

(− κu) du

The two gravitational potentials provide metric extensions which remain close
to GR but account for non linearities in the metric.

M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 23 (2006) 777



Phenomenology in the solar system

Tests in the solar system are usually performed by comparing observations
with the predictions obtained from a family of parametrized post-Newtonian
(PPN) metrics.
In the approximation of a pointlike gravitational source (and ignoring effects
due to its rotation) PPN metrics may be written (using isotropic coordinates)

g = + φ+ βφ + . . . , φ = −GNM
cr

grr = −+ γφ+ . . .

Eddington parameters γ and β respectively describe effects on light
deflection and on perihelia of planets.
PPN metrics appear as particular cases of the more general metric
extensions of GR

δΦN = (β − )φ +O(φ), δΦP = −(γ − )φ+O(φ)

δE =


r
O(φ), δErr =



r
((γ − )φ+O(φ)) [PPN]



Classical tests of gravitation

   

 1

0.998  10.999 1.001 1.002

0.998

β

Cassini 

LLR 

γ
1.002

1.001

0.999

C.F. Will Living Reviews in Relativity, 9 (2006) 3

Tests are consistent with GR and provide bounds on potential deviations

|α− | < × −, |β − | < × −

The equivalence principle is tested at the − level.

Tests in the solar system confirm GR

• Ranging on planets
• Astrometry and VLBI
• Lunar laser ranging
• Doppler velocimetry on probes
• Light deflection



Pioneer anomaly

   

   vobs − vmodel ' −aP (t− tin), aP ' . nm s−2

J. Anderson et al., Phys. Rev. D 65 (2002) 082004

Trajectories followed by the Pioneer 10/11 probes have shown anomalies

Comparison of navigation data (Doppler)
with the modelized velocity (GR)
shows a discrepancy (residuals)
with linear time dependence



Modified gravitation in the solar system
Using a metric extension of GR, modified solutions for light-like propagation
and massive probe geodesics are obtained.
One computes, in the extended framework, the time delay between emission
of the uplink and reception of the transponded downlink.
Comparing with GR, the second time derivative (or Doppler time derivative)
shows an anomalous acceleration δa = −aP ≡ − c

lH
for

• a metric anomaly linear in r in the first sector: δΦN ' r
lH

• a metric anomaly quadratic in r in the second sector: δΦP ' − c

GNM
r

lH

• or a superposition of these two anomalies.

While producing Pioneer-like anomalies, the extended framework allows to
preserve the agreement with classical tests.

Further related anomalies may also be looked for in:
• data analysis (annual, semi-annual, diurnal anomalies, ...),
• future more precise experiments (anomalous light deflection, GAIA, ...)
• future dedicated missions (metric character of the anomaly, ...).

M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 23 (2006) 7561



Conclusion

• Vacuum fluctuations do contribute to inertia.
Inertial mass fluctuates.

• Mass can be treated as a quantum observable consistently with the
equivalence principle.

• Quantum fluctuations modify the gravitational coupling and may produce
observable effects at large length scale.
Gravitation may already be modified at the solar system scale


