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Vacuum fluctuations and inertia

Motion in vacuum
A fluctuating environment leads to dissipative effects on motion
A. Einstein, Ann. Physik 17 (1905) 549; Phys. Z. 18 (1917) 121
Relations between fluctuations and dissipation hold at the quantum level
R. Kubo, Rep. Prog. Phys., 29 (1966) 255
In quantum field theory, they result from the evolution of interacting fields

D(t) = S; " Pin(t)St, Sy = Texp%/ H*(t")dt', H=H,+ H;

In particular, output fields are determined by a scattering matrix:
Dout(t) = S~ Pin(t)S, S =5

A perturbation  Hr = —dA(t)B(t) induces a perturbation of observables:

SA(t) = [A(2), Si 0S4 = / dt'xan(t —)A(E)

The linear response to the perturbation is given by the generator B(t):
xan(t —t') = 26(t = )[A(t), B(t)]

Displacements in space dq are generated by the total momentum P

=[P, 10— 6Hr = [H, Plsq = —6qF



Motional susceptibility
Small motions induce Hamiltonian perturbations proportional to the force
0Hi(t) = —F(t)dq(t)

Quantum fluctuations of forces are characterized by their correlations in time

< F(1)F(0) >= Crp(t) = / - Z%e*“’fcm[w]

—o0

Linear response theory relates the mean motional force to force correlations
t
6F@) = [ dt'xer(t=t)salt)

The dissipative part gives the radiative reaction force induced by motion.
The (causal) response function is the retarded part of the force commutator

_ Crr(t) — Crr(—t)

xrr(t) = 2i0(0err(t),  Err(t) = — < [F(), F(0)] > —

The response function x rr being analytic in w, its dispersive part Re(xrr)
and its dissipative part Im(xrr) are related by Kramers-Konig relations.



Relativity of motion

P Pout
_ —_—
You Vi

Vaccum fields exert a fluctuating force on a scatterer.
Energy-momenta are quadratic forms in quantum fields.
Balance of energy-momentum between scatterer and fields is expressed in
terms of outcoming and incoming fields, hence in terms of the S-matrix and
input field correlations
Pou[w] = S[w]Pin[w]

< By [w]Pin[w'] >= Cin[w, w']
Classical motions can be seen either as perturbations of the scattering matrix
(in the laboratory frame) or as perturbations of input field correlations (in the
scatterer’s frame).
Both computations of the motional force lead to the same result

g — 6S or 0Chy
6S or 6Ch, —  xdq
< OF[w] >= x[w]dg[w]
M.-T. Jaekel, S. Reynaud, Quantum Opt. 4 (1992) 39



Space-time symmetries
Quantum field fluctuations in vacuum are invariant under Lorentz (or
conformal) transformations.
The dissipative part of the motional force, i.e. the radiation reaction force,
vanishes for uniform (uniformly accelerated) motions. In particular:

o for scattering of a scalar field in 2-dimensional space-time
Crrlw] ~ 0(w)w?
the radiation reaction force is proportional to the third time derivative
<OF >~ 7

S.A. Fulling, P.C.W. Davies, Proc. R. Soc.A348 (1976) 393
o for scattering of electromagnetic fields in 4-dimensional space-time

1
CAMAU (Z’,J)/) = ;nlw ¢ (Ll’, LE/) , € (m,xl) = (33 — m/)z i (t — t/)’ e—o'

the radiation reaction force is proportional to Abraham-Lorentz vector
<OF! >~ qM 4 (G)7¢"

M.-T. Jaekel, S. Reynaud, Quantum Semiclass. Opt. 7 (1995) 499



Cavity in vacuum
Outcoming fields (and intracavity fields) are expressed in terms of input fields

Poulw] = S[w]Pin[w]

Pin Peav Pout
_— E— _—
You Year Pin

For a cavity at rest, energy-momentum balance bewteen cavity and exterior
(input and output) fields leads to a mean (Casimir) force Fc.

The Casimir energy E¢ (and its derivative Fc) can be written in terms of time
delays affecting field fluctuations inside the cavity

detS[w] = det S, [w]det Sa[w]e )
Ec :/ g—wth[W], Tlw] = éaqu[wL Fe = 0,Ec
) s

The Casimir force shows fluctuations related to those of the forces F; and F»
acting upon the two mirrors

Ci;(t) = (Fi(t)Fy(0)) — (Fi) (Fy),  Fe=F —TI;



Cavity in motion
Motions of the two mirrors perturb the Hamiltonian

SH(t) = ZF ()8, (t)
The mean force on each mirror is perturbed by both motions
(0Fi(t)) Z/ dt’ Xii(t =t )5‘17(t )

Susceptibility functions x;; are the retarded parts of the mean values of the
force commutators &;;

xa®) = 20065(0), g0 = ODOL Gul) = Cnlz)

At the quasistatic limit, corrections to Casimir force and forces depending on
accelerations are obtained

Xijlw] = —kij +wpij + ...
J

M.-T. Jaekel, S. Reynaud, J. Phys. | France 2 (1992).149



Inertia of Casimir energy

The total force induced by a global motion of the cavity provides the inertial
force exerted by vacuum fields on the cavity

SF(t) = —udg(t) = Z Zuij

The corresponding mass correction may be expressed in terms of the
Casimir energy Ec and the mean Casimir force F¢

Ec — Foq
= ——"Z
c

M.-T. Jaekel, S. Reynaud, J. Phys. | France 3 (1993) 1093

This expression identifies with the inertial mass of a stressed rigid body
A. Einstein, Jahr. Radioakt. Elekiron., 4 (1907) 411, 5 (1908) 98

Inertial motion may generally be shown to express conservation of the
symmetry generator associated with Lorentz boost.



Mass as a quantum observable

Mass fluctuations
Time delays affecting vacuum fields modify the mean value of the mass

> dw
< p>= /O ;th[w]

The induced mass also depends on the energy-density of vacuum fields
inside the cavity.
The resulting mass fluctuations can be written in terms of time delays

5 “ dw'
Cyvumlw] = 2k 9((;.})/O or
A simple model for a partially transmitting mirror
2(2
Qz + w2
shows that mass can have important fluctuations on short time scales

W (w — W)W rw — W'

27[w] = 0, Alw] =

<M?>—<M>>=2< M >

while remaining practically constant in the low frequency domain:

for w2

Cyumlw] ~ *9( )92
M.-T. Jaekel, S. Reynaud, Phys. Lett. A 180 (1993) 9



Conformal algebra

Generators of spacetime symmetries correspond to quantities which are
preserved by field propagation and also describe changes of reference frame.
Relativistic transformations include translations P, and Lorentz
transformations J,..

[Pu,P.]=0

[JW” Pp] =ih (Wuppu - mpP»)
[JW> J/w] =ih (nVPJHU + NuoJvp — NMupdve — Uqu;w)
For Maxwell fields in 4-dimension, symmetries also include dilatations D
[D, P,] = ihP, [D,Ju] =0
and transformations C,, to uniformly accelerated frames
[D,C.] = —ihCy
[Juv, Cpl = ih (MpCp — 1upCu)
[Cu,Cl=0
[Pu, Cv] = =2ih (1 D — Jpuw)



Quantum positions

The relativistic definition of localization in space-time can be implemented
using quantum fields.
Positions in space-time are defined as quantum observables, built from the
generators of space-time symmetries

1

XIL: P2 .

(P*-JM+P,L-D)

Quantum observables and relativistic frame transformations are then
included in a unique algebra.
Positions include a time operator conjugate to energy

[Py, Xu] = —ihmu,
and tranform according to classical rules under rotations and dilatation
7 i
ﬁ[Jupr] = NupXv — Mwp Xy, ﬁ[DvXu] =Xy

Transformations of positions between accelerated frames are given by the
conformal generators C,,.



Equivalence principle
The mass observable built on energy-momentum is a Lorentz invariant
M= P'P 1P M) = 2 M7 =0
but cannot be considered as a parameter
%[D,MZ] — oM, %[C;L,M2] — 4M* X,

Mass transformations under uniform accelerations involve a position
dependent conformal factor.

Equivalently, positions can be defined from the shift of the mass observable
under transformations to accelerated frames.

The quantum red shift law takes the same form as the classical Einstein law,
but in terms of quantum positions

" .
A="q,, %[A,M]:—M-@, ®=a"X,
Using conformal symmetry, the classical covariance rules may be

implemented in the algebra of quantum observables.
M.-T. Jaekel, S. Reynaud, Europhys. Lett. 38 (1997) 1



Metric extensions of General Relativity

Quantum fluctuations of metric fields
Gravitation fields also have quantum fluctuations which may be represented
as perturbations of Minkowski metric

Juv = Nuw + P, N = diag(1, —1,—1,—1) , |hw|<<1

Metric fluctuations may equivalently be written as functions of position in
spacetime or of a wavevector in Fourier space

huelo) = [ (Z;§4e_ikzhw[k]

Gauge invariant fields are provided by Riemann, Ricci, scalar and Einstein
curvatures

1
Ropvp = ;{k)\kl,h#p — kakphyuw — kukuhap + kpkohaw

Ry = R)\/MV , R= R#M y By =Ry — "#”g
Classically, metric fields are determined from energy-momentum sources by
Einstein-Hilbert equations of General Relativity (GR)

8GN
c4

B, = T



Radlative corrections

Quantum fluctuations of metric fields and stress tensors modify the effective
coupling between gravitation and its sources.

Gravitation equations of GR are generalized as a linear response relation
between Einstein curvature and the energy-momentum tensor

87TGN

B[kl = X001k Tao k] = { = 6282 + Sxp [K1} T K]
M.-T. Jaekel, S. Reynaud, Ann. Physik (1995) 68

Radiative corrections differ in two sectors of different conformal weights,

corresponding to trace and traceless parts.

The two sectors correspond to two different running coupling constants.

In the linearized approximation and for a static pointlike source:

Ty = duo0bvoToo, Too = Mc?5(ko)
o kuky
E;u/—E )“I‘E WMVETIMU_

7m0 87 G .
Ty Too,  ER) =
3 c4 3 c4

E!(“, = {mm, —

G =ay +56°, M =ay+sG"



Anomalous curvatures

General solutions remain in the vicinity of GR metric (written in Scwartzschild
coordinates)

[EZL[ = 8”“52555(3)(17), K=

1
[g"‘r]st ’

Solutions to the generalized equations may be characterized by anomalous
Ricci curvatures (which do not vanish outside sources)

[gooly =1 — 2ku =

Efl =[EY], +0EY, SEL(z) = /d“x/ 5x’lf§(x,:c/)Tp’\(x/)

The two running coupling constants G(®) and G*) replacing Newton
gravitation constant G are equivalent to two anomalous Ricci curvatures.
The two sectors of anomalous curvatures are equivalent to anomalous parts
in the two metric components describing isotropic solutions

Joo = [gOO]st +0go0 5 grr = [gr'r]s‘ +0grr
5900 _ du - 6ED du, —+ ) - Tud
[900]51 [goo]st u4 u3 [900]51 [97‘?“]51 [gDD]St ut

OE; du OGrr u OE?S




Gravitation potentials

Solutions of Einstein-Hilbert equations lead to vanishing Ricci curvatures in
empty space and may be described in terms of Newton gravitation potential.

The two independent components of anomalous curvatures are themselves
equivalent to two gravitation potentials &x + 6®n and & p, replacing Newton
gravitation potential

SES = 2ut (0N — 60p)", OE; = 20360 () = 0.

The two gravitation potentials may be used to describe the two metric
components in the isotropic case (with their anomalous parts)

2U

5gr7~ = ((5@]\/ — 5@13)/

(1 — 2ku)?
w(6@Pn — 6Pp) — dPN
(1 — 2Ku)?

du

0goo = 20PN + 4k(1 — zmu)/

The two gravitational potentials provide metric extensions which remain close
to GR but account for non linearities in the metric.
M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 23 (2006) 777



Phenomenology in the solar system

Tests in the solar system are usually performed by comparing observations
with the predictions obtained from a family of parametrized post-Newtonian
(PPN) metrics.
In the approximation of a pointlike gravitational source (and ignoring effects
due to its rotation) PPN metrics may be written (using isotropic coordinates)
> GNM
Joo =1+20+200° +..., ¢=-——o—
cr
grr :71+2’}/¢+

Eddington parameters ~ and [ respectively describe effects on light
deflection and on perihelia of planets.

PPN metrics appear as particular cases of the more general metric
extensions of GR

doN = (B—1)¢" +0(¢%),  6®p =—(v—1)p+O(¢%)

1

0By = O0(¢"),  OE] = (2(y=1)¢+0(¢")  [PPN]



Classical tests of gravitation

The equivalence principle is tested at the 107 *3 level.

y
1.002 A

Tests in the solar system confirm GR

¢ Ranging on planets :
Astrometry and VLBI
Lunar laser ranging

0.999

0.998

Doppler velocimetry on probes s om 1 tm e
Light deflection

C.F. Will Living Reviews in Relativity, 9 (2006) 3

Tests are consistent with GR and provide bounds on potential deviations

o —1] < 3 x 102, [B—1]<1x10 %



Pioneer anomaly

Trajectories followed by the Pioneer 10/11 probes have shown anomalies

Comparison of navigation data (Doppler) "
with the modelized velocity (GR) i,
shows a discrepancy (residuals)
with linear time dependence

N ,: e
Vobs — Umodel = 7aP(t - tin), ap =~ 0.9 nm S

J. Anderson et al., Phys. Rev. D 65 (2002) 082004



Modified gravitation in the solar system

Using a metric extension of GR, modified solutions for light-like propagation
and massive probe geodesics are obtained.
One computes, in the extended framework, the time delay between emission
of the uplink and reception of the transponded downlink.
Comparing with GR, the second time derivative (or Doppler time derivative)
shows an anomalous acceleration da = —ap = — & for

¢ a metric anomaly linear in r in the first sector. 545N ~

c? r2

e a metric anomaly quadratic in r in the second sector: §@p ~ ETere vl
e or a superposition of these two anomalies.

While producing Pioneer-like anomalies, the extended framework allows to
preserve the agreement with classical tests.

Further related anomalies may also be looked for in:
e data analysis (annual, semi-annual, diurnal anomalies, ...),
o future more precise experiments (anomalous light deflection, GAIA, ...)
e future dedicated missions (metric character of the anomaly, ...).
M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 23 (2006) 7561



Conclusion

e Vacuum fluctuations do contribute to inertia.
Inertial mass fluctuates.

e Mass can be treated as a quantum observable consistently with the
equivalence principle.

¢ Quantum fluctuations modify the gravitational coupling and may produce
observable effects at large length scale.
Gravitation may already be modified at the solar system scale



