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Introduce the problem: detect Gravitational Waves

A network of ground-based interferometric 
gravitational wave (GW) detectors 
(LIGO/VIRGO/GEO) is now taking data near 
its planned sensitivity.

Coalescing (stellar-mass, M~30Msun.) 
binary black hole systems (BBHs) are 
among the most promising GW sources for 
these detectors.

Most useful part of the waveform is emitted 
in the last 5 orbits of the inspiral and during 
the plunge that takes place after the crossing 
of the Last Stable Orbit (LSO).

To successfully detect GWs fromBBHs 
coalescence one needs to know in advance 
the shape of the signal

Detection and data analysis is made by 
means of templates that accurately represent 
the gravitational waveforms emitted  by the 
source.

State-of-the-art Numerical Relativity (NR) 
simulations can now merge black-holes, but 
are not sufficiently efficient to densely sample 
the parameter space. One needs analytical 
methods to produce thousands of templates 
(possibly in real time).

Merger: highly nonlinear dynamics. 
(Numerical Relativity)

Ringdown 
(Perturbation 
theory)

Inspiral (PN methods)

(Brady, Craighton, Thorne 1998)

Before 2005



The binary black hole (BBH) coalescence process

The BBH coalescence problem (for  
comparable masses) has been studied 
numerically until the mid 90s.

Numerical Relativity (NR) solves 
Einstein's equations numerically on 
supercomputers. 

In 2005, Frans Pretorius made the 
breakthrough, being the first to compute 
the merger of two (non-spinning) BHs

All the others NR groups followed: many 
important results (kicks, spin, different 
mass ratios, three-BHs evolutions…) 

Nowadays, computation of inspiralling
and merging (spinning) BHs has become 
almost everyday routine.

The computational cost is still huge
for template banks-building purposes!

F. Pretorius (Princeton, Phys.Rev.Lett. 95 (2005) 121101 )
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Aim of EOB formalism

.

.

To provide an accurate analytical description of the motion and radiation 
of binary black holes, which covers inspiral, plunge, merger and ringdown

Idea: to extend the domain of validity of perturbation theory (PN, BH-
pert) so as to approximately cover non-perturbative features

(Expected) Utility of EOB formalism:

provide accurate GW templates for the multi-parameter space 
(m1, m2, S1, S2,…) which is difficult to densely cover with NR

gives us a physical understanding of dynamics and radiation 

can be extended to BH-NS or NS-NS systems up to tidal disruption.
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Structure of EOB formalism

.

.

PN dynamics
DD81, D82, DJS01,IF03, BDIF04

PN rad losses
BDIWW95, BDEFI05

PN waveform
BD89, B95,05,ABIQ04, BCGSHHB07,

DN07, K07

BH perturbation
RW57, Z70,T72

Resummed Resummed

EOB Hamiltonian HEOB
EOB Rad reac Force F

Resummed

EOB Dynamics

QNM spectrum
N = N + iN

EOB Waveform

Matching
around tm
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Historical roots of EOB

HEOB : Quantum Hamiltonian H(Ia) [Sommerfeld 1916, Damour-Schäfer 1988]

QED positronium states [Brezin, Itzykson, Zinn-Justin 1970]

FPadé resummation [DIS 1998]

h(t) :   [Davis, Ruffini, Tiomno 1972]
CLAP [Price-Pullin 1994] Burst: the particle crosses

the “light ring”, r=3M

Precursor: Quadrupole 
formula (Ruffini-Wheeler 
approximation)

Ringdown, quasi-normal
mode (QNMs) tail. 
Spacetime oscillations

Discovery of the structure:
Precursor (plunge)-Burst (merger)-Ringdown
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Successful predictions from EOB

Damour, Nagar, PRD 76, 044003 (2007)

BD00

i. Importance of nonadiabatic effects at 
the end of inspiral

ii. Blurred transition from inspiral to a 
“plunge” that is just a smooth 
continuation of the inspiral

iii. First estimate of a complete GW 
waveform [BD00]

iv. Estimates of the radiated energy and 
of the spin of the final black hole, e.g. 
J/M2 ~ 0.795 [2PN, LSO, BD00]; 0.77 
[3PN, >LSO, BCD06]

v. Parallel spins imply larger radiated 
energy (tighter orbits), and J/M2 <1 
[D01,BCD06]

vi. Qualitative recoil versus time [DG06]
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Flexibility of EOB

.

.

(Damour 2001)
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EOB flexibility parameters

a5 [a.k.a. a5(), b5, , a5
1](D01, DGG02)

vpole, aRR,… (DIJS03)

a,b: non-quasi-circular corrections to waveform (DN07a, DN07b)

p,: matching “comb” (DN07a)

Numerical RelativityEffective One Body Synergy

Select sample of NR resultsCalibrating EOB 
flexibility parameters

NR-improved EOB 

Accurate “analytical”
waveform templates

“Analytical” predictions
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Defining HEOB by thinking quantum-mechanically (Wheeler)

Real 2-body system (m1, m2) 
(in the c.o.m. frame)

an effective particle of
mass  in some effective
metric g

eff(M)

Sommerfeld “Old Quantum Mechanics”:

Hclassical(q,p) Hquantum(Ia=nah)Hclassical(Ia)

Damour,Schäfer ’88
Damour, Jaranowski, Schäfer,’00
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2-body Taylor-expanded 3PN Hamiltonian [JS98, DJS00,01]

3PN

2PN

1PN



The 2-body Hamiltonian [at 2PN for clarity]

The 2-body Hamiltonian in the c.o.m frame at 2PN:

The Newtonian limit :

“Delaunay Hamiltonian”
“Balmer” formula

Dependence on

PN correction: open orbits

Degeneracy removed

Rewrite the c.o.m. energy using action variables (à la Sommerfeld): 
obtain the “quantum” energy levels [from Damour&Schaefer 1988]

4 additional terms at 1PN

7 additional terms at 2PN

11 additional terms at 3PN
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Dictionary between real and effective dynamics

Unknowns: , M, f(E), g
eff(M) + Finslerian corrections

 Dictionary: 

Iareal = Iaeffective
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Explicit form of the effective metric

where the coefficients are a -dependent “deformation” of the Schwarzschild ones:

The effective metric at 3PN + a 4PN correction

Extremely compact representation of PN dynamics

Bad behaviour at 3PN. Padé resummation of A(r) is
needed to ensure that an effective horizon exists.

Impose, by continuity with the Schwarzschild
case, that A(r) has a simple zero at r~2.

The a5 constant parametrizes (yet) uncalculated 
4PN corrections
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The EOB Hamiltonian

The Hamiltonian (and the related dynamics) depends, 
through the “potential” A(u), on the 4PN parameter a5. 
a5 is a  “free”parameter that needs to be fixed 
via comparisons with NR simulations.

The effective Hamiltonian (+quartic-in-momenta non-geodesic contribution at 3PN)

The real EOB Hamiltonian of the binary system (from the energy map)
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Hamilton's equation + radiation reaction

Angular momentum loss due to GW emission: start from the PN expression for radiation reaction
that is explicitly known during the quasi-circular adiabatic inspiral (3.5PN + 4PN correction)
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Needs resummation of energy flux!
The PN expansions are non-uniformly and non-monotonically convergent in the strong-field regime. 
One needs to “resum” them in some form in order to extend their validity during the late-inspiral and plunge

Poisson (1995)
DIS (1998)

Factorize a simple pole in the GW energy flux

Resum using near-diagonal Padé approximants (DIS98)
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Resumming radiation reaction

Padé resummation of

factorize a pole parametrized by vpole

consider logarithms as coefficients

use comparable-mass 3.5PN+test-mass 4PN flux

choose P4
4 which has no spurious poles

add non-quasi-circular correction parametrized by aRR [ with =0.12]

choose argument v=rψ1/3

3.5PN + test-mass 4PN contribution

vpole ,aRR are (in addition to a5 in HEOB) 
“free” parameters that need to be fixed 
via comparisons with NR simulations.

Note prefactor
à la DG06
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Comparing Taylor and (tuned) Padé in test-mass case

vpole-tuned Padé
(DN07)

Henri Padé, 1863-1953

Taylor

Maximum difference on interval v<0.4:

Taylor(2PN): 0.039               Padé(2PN): 0.0069
Taylor(3PN): 0.130               Padé(3PN): 0.0033
Taylor(4PN): 0.189               Padé(4PN): 0.0035
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Resummed EOB metric gravitational waveform: 
inspiral+plunge

b=0; a is fixed by requiring that the maximum of the modulus of the waveform coincides
with the maximum of the orbital frequency

Non-quasi-circular corrections to 
waveform amplitude and phase:

Zerilli-Moncrief normalized (even-parity) waveform (Real part gives h+ & imaginary part gives hx).

Multipolar decomposition (expansion on spin-weighted spherical harmonics) here, l=m=2.

New PN-resummed (3+2PN) correction factor (DN07a, 07b): 3PN comparable mass + up to 5PN test-mass 

Heff : resums an infinite number of binding energy contributions

 resums an infinite number of leading logarithms in tail effects
(both amplitude and phase) obtained from exact solution 
of Coulomb wave problem

 Padé-resummed remaining PN-corrected amplitude 
[flexibility in choice of argument x(t)]

22: computed at 3.5PN
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EOB metric gravitational waveform: merger and ringdown

Total EOB waveform covering inspiral-merger and ringdown

EOB approximate representation of the merger (DRT1972 inspired) : 

sudden change of description around the “EOB light-ring” t=tm (maximum of orbital frequency)

“match” the insplunge waveform to a superposition of QNMs of the final Kerr black hole

matching on a 5-teeth comb (found efficient in the test-mass limit, DN07a)

comb of width 7M centered on the “EOB light-ring”

use 5 positive frequency QNMs (found to be near-optimal in the test-mass limit)

Final BH mass and angular momentum are computed from a fit to NR ringdown
(5 eqs for 5 unknowns)
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Accurate EOB-NR comparisons (and calibration)

NR, reduced eccentricity data used (non-spinning black holes only):

very accurate inspiral only data (m1=m2), 30 GW-cycles 
rψ4 curvature waveform Caltech-Cornell [Boyle et al. 07] 
used up to GW frequency 0.1

Albert-Einstein-Institute, 12 GW-cycles metric (Zerilli) 
waveform, inspiral+merger data (m1=m2) [DNDPR,08]

Jena, about 20 GW-cycles rψ4 curvature waveform, 
inspiral+merger data (m1=m2; m1=2m2; m1=4m2) [DNHHB,08]

Getting the metric waveform by twice integrating the curvature 
waveform and subtracting linear floors.  

Jena metric waveform
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Need to calibrate 3 EOB-flexibility parameters (a5,vpole,aRR)

Use two phase differences [curvature waveforms] from 
published Caltech-Cornell data to have two equations 
to determine vpole(a5) and aRR(a5)

Methodology for fitting EOB to NR data

Residual phase difference EOB-NR
[curvature waveforms] 

Then constrain a5 by comparing the phases of EOB and Jena (+AEI) data.

Impose that the phase 
Differences T4-EOB and 
T4-CC agree at these two 
points
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Use the CC data to express the two free 
parameters as functions of a5.

Done here with points measured from a 
published figure. Checked to be consistent 
with actual Caltech-Cornell NR data 
(courtesy of Boyle et al.)

Correlating EOB flexibility parameters
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Use late-plunge Jena data to constrain the a5 parameter

Presence of a clear minimum (0.01) for 
the 1:1 mass ratio case

Consistency with 2:1 mass ratio   
(where the minimum is more shallow)

Range of allowed values of a5 
depending on error level in NR data
(? 14<a5<37 ?)

Use “plunge and merger” data that are more 
sensitive to the effect of a5

Accurate simulations from Jena group for 
several mass ratios. For 1:1, D=12 and 20 
GW-cycles waveform. [Double time-integration
to get metric waveform]

Diagnostics: L∞ norm of the [metric waveform] 
phase difference in the late plunge: from -10.5 
to -1.2 GW-cycles before merger, i.e., frequency 
0.059<ω<0.19)

current best-bet value: a5 ~ 25 



26

Curvature-waveform phase difference EOB-CC (actual data) for a5=25

Close up (black): maximum phase 
difference 0.002 radians up to GW 
frequency 0.1 (OK with DN07b, 
which used published data)

Full range (blue, inset): maximum 
phase difference 0.015 radians 
accumulated between frequency 0.1 
and 0.156

Two “pinching-times” indicated
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Most “intrinsic” curve (OK with 
DN07b, which used published 
data)

Evident presence of 
nonadiabatic effects [DN07b]

T4: strongly deviates from NR 
after GW frequency 0.1

Comparing curvature phase acceleration curves: 
CC (actual data), TaylorT4, adiabatic, untuned and tuned EOB
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(Fractional) curvature amplitude difference EOB-CC 
(actual data) for a5=25

Nonresummed: fractional differences 
start at the 1% level and build up to more 
than 10%

New resummed EOB amplitude: 
fractional differences start at the 0.04% 
level and build up to only 2%

Resummation: factor ~20 improvement!
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Comparing EOB-NR metric waveforms 1:1 case: Jena data

Metric waveforms from double time-integration of NR curvature waveforms

-0.025<Δϕ22<+0.025 radians (=0.004 GW cycles) over 730 M [1200M-1930M]

At merger, phase jump of only 0.15 radians [=0.02 GW cycles].

We use the same values of flexibility parameters for CC and Jena data: consistency achieved!
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Larger accumulated dephasing

The accuracy of the simulation
can be further improved
(truncation error is still dominant
during the early-inspiral phase)

Good agreement between the amplitudes:

Best fractional agreement [equal-mass]: 0.005 during
late inspiral

The NR waves are extracted at finite radius (r=90M)

The agreement improves for smaller 

Maximum difference of 20% due to the rather coarse 
(but still accurate in phasing) matching procedure.

Comparing EOB-NR metric waveforms 4:1 case: Jena data

Comparing EOB-NR metric amplitudes: Jena data

4:1 mass ratio
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Comparing EOB-NR metric waveforms 2:1 case: Jena data

Metric waveforms from double time-integration of NR curvature waveforms

-0.05<Δϕ22<+0.05 radians (=0.008 GW cycles) over 957M [143M-1100M]

At merger, phase jump of only 0.06 radians [ = 0.009 GW cycles].

We use the same values of flexibility parameters for CC and Jena data: consistency achieved!
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Consistency with AEI metric waveform 1:1 data

NR metric waveforms [no need of double time-integration from curvature waveforms]

-0.015<Δϕ22<0.05 radians (=0.008 GW cycles) over 600M [900M-1500M]

At merger, phase jumps by 0.18 radians [ = 0.028 GW cycles].

We use the same values of flexibility parameters for CC and AEI data: consistency achieved!
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Conclusions
The EOB formalism made several (qualitative and semi-quantitative) predictions that have 
been broadly confirmed by NR

The natural flexibility of the EOB parameters leads to a constructive synergy with NR results

The EOB formalism can provide high-accuracy parameter free templates h(m1,m2) for GWs
from BBH coalescence, with unprecedented agreement with NR data, and for any mass ratio.

Even without using the full flexibility, and without using the resummed 3PN waveform, EOB 
provides faithful templates [Buonanno et al. 2007]

It is predictive and can give us a physical understanding of dynamics and radiation: energy 
loss, final spin, recoil,…

EOB dynamics can help to reduce eccentricity in numerical simulations (as originally 
suggested BD99,00)


