FINDING FIELDS AND SELF-FORCE IN A GAUGE APPROPRIATE TO SEPARABLE WAVE EQUATIONS: A PROGRESS REPORT

Larry Price

Tobias Keidl, Dong Hoon Kim, John Friedman

Overview

Motivation

- Metric Perturbations from Weyl Scalars
- The UWM Method
- (A Couple of) Results

MOTIVATION I

- EMRIs are an important source for LISA.
- Need self-force to compute accurate waveforms for data analysis.
- Mass ratio of ~10^-6 means point particle approximation is good.

http://lisa.jpl.nasa.gov/gallery/stellar-mass-black-hole.html

MOTIVATION II Want to exploit what we've already got (Teukolsky):

- Decoupling
- Separability
- Applicability to Kerr

http://lisa.jpl.nasa.gov/gallery/stellar-mass-black-hole.html

Hertz Potentials

Metric perturbations from Teukolsky:

Cohen & Kegeles (1975), Chrzanowski (1975), Wald (1978), Stewart (1979)

$h_{ab} = D_{ab}\Psi + D_{ab}\Psi$

Where:

 Ψ is a solution to Teukolsky. Each component of D_{ab} is a 2nd order diff. op.

Hertz Potentials

Metric exists in a Radiation Gauge:

$$d^{a}h_{ab} = 0$$
 or $n^{a}h_{ab} = 0$
and
 $g^{ab}h_{ab} = 0$

Hertz Potentials

Metric exists in a Radiation Gauge:

$$l^{a}h_{ab} = 0$$
 or $n^{a}h_{ab} = 0$
and
 $q^{ab}h_{ab} = 0$

Only exists in the absence of sources! LP, K. Shankar & B. Whiting (2007)

The Solution

The Detweiler-Whiting decomposition (adapted to Teukolsky):

- $\Psi^{\text{ret}} = \Psi^{\text{S}} + \Psi^{\text{R}}$
- Regular field is a vacuum solution to
 Teukolsky and contains all the information about the self-force.
- Singular field is the inhomogeneous solution and contains no information about self-force.

FINDING $\psi^{S}_{(0,4)}$

Following Detweiler-Whiting, construct locally inertial coordinates around the particle.

=> To subleading order, we can work in flatspace.

$$\psi_0^{\rm S} = \frac{6\mu}{\rho^3} (l_t m_\rho - l_\rho m_t)^2$$

$$\psi_4^{\rm S} = \frac{6\mu}{\rho^3} (n_t \bar{m}_\rho - n_\rho \bar{m}_t)^2$$

THE RETARDED FIELD

Constructed numerically using a Green's function expanded in solutions of Teukolsky*. (Toby Keidl)

Actual Teukolsky eqn, not Sasaki-Nakamura!

THE RETARDED FIELD

Constructed numericallyusing a Green's function expanded in solutions of Teukolsky*. (Toby Keidl) Actual Teukolsky eqn, not Sasaki-Nakamura!

Teukolsky source looks like

 $(D_{\text{ang}}D_{\text{ang}} + D_{\text{ang}}D_{\text{radial}} + D_{\text{radial}}D_{\text{radial}})\delta^3(x - z(t))$ leading sub-leading higher order

THE INVERSION PROBLEM

A choice about how to construct the Hertz potential:

$$\psi_0^{\rm R} = D_{\rm radial}^4 \Psi$$

$$\psi_4^{\rm R} = D_{\rm angular}^4 \Psi$$

THE INVERSION PROBLEM

A choice about how to construct the Hertz potential:

$$\psi_0^{\mathrm{R}} = D_{\mathrm{radial}}^4 \Psi$$

(other gauge)
 $\psi_4^{\mathrm{R}} = D_{\mathrm{angular}}^4 \Psi$

THE INVERSION PROBLEM

A choice about how to construct the Hertz potential:

$$\psi_0^{\mathrm{R}} = D_{\mathrm{radial}}^4 \Psi$$

(other gauge)
 $\psi_4^{\mathrm{R}} = D_{\mathrm{angular}}^4 \Psi$

The angular inversion can be done algebraically! (in the frequency domain)

METRIC RECONSTRUCTION

The Hertz Potential construction gives each component of the metric perturbation in terms of two derivatives of the potential.

METRIC RECONSTRUCTION

The Hertz Potential construction gives each component of the metric perturbation in terms of two derivatives of the potential.

The construction does not account for the non-radiated part of the perturbation. (in progress)

SOME RESULTS

- Proof of concept: T. Kiedl, J. Friedman, A.
 Wiseman(2007)
- Circular orbits in Schwarzschild (almost)

SOME RESULTS

WHAT'S NEXT?

- Fix the falloff?
- Construct the metric.
- Get a self force.
- Evaluating the accuracy of adiabatic waveforms.