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Self-Force Calculations

As discussed by Leor Barack & Norichika Sago in their talks,
we (the Southampton group) do self-force calculations by
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As discussed by Leor Barack & Norichika Sago in their talks,
we (the Southampton group) do self-force calculations by

finding the metric perturbation in the Lorenz gauge:
[details in Barack & Sago, Phys. Rev. D 75, 064021 (2007)]

e decompose the metric perturbation into (¢, m) multipole modes

e for each (¢, m) multipole mode, numerically integrate the

metric-perturbation equations in the time domain

e compute the physical self-force from the metric-perturbation

multipoles via a regularized mode sum

 Most of the material in this talk would be equally applicable to
other self-force calculation schemes, or indeed to other problems

involving the numerical solution of time-evolution PDFEs.
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Typography of (Finite-Difference) Mesh Refinement

[Lagrangian| smoothly move grid points around to vary resolution

e relatively simple

e nonuniform grid spacing = more complicated finite differencing

e rapidly changing resolution = local shortage/surplus of grid points

e doesn’t generalize to > 1 spatial dimension (grid “tangles”)

[Eulerian] add/delete grid points as necessary, but don’t move them

(at least not for mesh refinement)

e can arrange for finite differencing to see only uniform grid spacing
e can change resolution rapidly if necessary
e generalises cleanly to NV spatial dimension

e relatively hard to implement
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FEulerian Mesh Refinement: Overview

Berger & Oliger |J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

e use locally uniform grids (possibly in curvlinear coordinates)

e coarsest grid covers entire problem domain

e refine in both space and time !

e fine grids overlay coarser grids

e fine-grid initial & boundary data

is interpolated from coarse grids

e integrate each grid independently

e inject fine results back into coarse

grid when/where points coincide

(keeps coarse grid accurate) -~
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Berger-Oliger is conceptually fairly simple,

but there are a lot of messy details in an implementation.

Some people use generic toolkits:

e AMRD/PAMR (Choptuik/Pretorius)

e DAGH/GRACE (Parashar)

e PARAMESH (MacNeice et al., NASA /Goddard 2BH project)
e SAMRAI (Hornung et al., Livermore)

e CARPET (Schnetter) (works as part of CACTUS)

= relatively easy programming

but details may be undocumented, learning curves may be slow

Another alternative is to write a Berger-Oliger code from scratch.

= takes ~ 5K-10K lines of code (including test drivers, comments, e%ﬂ)



Berger-Oliger in Cauchy (Numerical) Relativity

Choptuik pioneered the use of Berger-Oliger mesh refinement in
numerical relativity in his discovery of self-similarity and critical

phenomena in gravitational collapse. |Phys. Rev. Lett. 70,9 (1993)]

Berger-Oliger methods are now widely used in 3 + 1 numerical relativity.

Some good references include:
e Berger & Oliger, J. Comp. Phys. 53, 484 (1984)

e Berger, SIAM J. Sci. Stat. Comput. 7, 904 (1986)

e Choptuik, “Experiences with an Adaptive Mesh Refinement
Algorithm in Numerical Relativity”, pages 206221 in Evans, Finn,
and Hobill, Frontiers in Numerical Relativity, Cambridge U.P., 1989

e Schnetter, Hawley, and Hawke, Class. Quant. Grav. 21, 1465 (2004)
Nicely explains the complications which arise when equations
contain 1st time derivatives but 2nd spatial derivatives. .
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Characteristic Coordinates

Motivation: null boundaries are much nicer than timelike boundaries

(both analytically and numerically) A

tSChW

Null coordinates: u = tgehw — T \V

U = tSChW + Ty

north r.

Fundamental discretization uses
west t
double-null “diamond” cells

south
Integrate metric-perturbation equations over cell =-

OE + Oow
¢n0rth — ¢W€St + ¢east _ ¢South — h2 9 wcenter

+ hSinc(%mworbith)ng(tcemer) lonly for particle in cell]

+ O(h™*) [vacuum] or O(h™?) [particle]
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Self-Force Calculations (Characteristic Coordinates)

As discussed by Leor Barack & Norichika Sago in their talks,

for self-force calculations we integrate the (discretized) metric
perturbation equations for each (¢, m) multipole mode, in a square
“grid box” in (u,v) space, chosen oo A
to be big enough for the initial-data

field perturbations to have decayed
below our numerical error levels

by the end of the integration.

The integration proceeds one
v = constant slice at a time;
each slice is integrated one

diamond cell at a time.




Berger-Oliger in Characteristic Coordinates

Basically, use standard Berger-Oliger mesh refinement,

treating u as a “spatial” coordinate on v = constant slices,

and v as a “time” coordinate

&5

QOGRS
NOREX
“ ’
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Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]
[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]
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Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:
[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]
[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]

e integrate a cell

e if local truncation error estimate is too large, recurse:
— divide cell into 4 subcells
— recursively integrate south subcell
— recursively integrate west subcell
— recursively integrate east subcell
— recursively integrate north subcell

— inject north subcell result back into coarser cell

Problem: fine-grained (per-cell) memory management
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e integrate an entire v = constant slice, flagging points where

local truncation error estimate > threshold
e if there are flagged points, recurse:
— divide slice into 2 subslices
— recursively integrate smaller-v (“lower”) subslice
— recursively integrate larger-v (“upper”) subslice

— inject upper-slice results back into matching points of original
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from the upper-most injected data
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Slice-Recursive Berger-Oliger Mesh Refinement

Fundamental concept: recurse on entire v = constant slices

e integrate an entire v = constant slice, flagging points where

local truncation error estimate > threshold

e if there are flagged points, recurse:
— divide slice into 2 subslices
— recursively integrate smaller-v (“lower”) subslice
— recursively integrate larger-v (“upper”) subslice

— inject upper-slice results back into matching points of original
(coarse) slice

— reintegrate the remainder of the original (coarse) slice starting

from the upper-most injected data

= Relatively simple bookkeeping & memory management
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Error Estimation for Adaptive Mesh Refinement

For adaptive mesh refinement (AMR), we need to estimate (during the
integration) when the integration is accurate enough, and when it’s not.
To do this, we use an estimate of the local finite differencing error, also

known as the local truncation error (LTE): compare
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Error Estimation for Adaptive Mesh Refinement

For adaptive mesh refinement (AMR), we need to estimate (during the
integration) when the integration is accurate enough, and when it’s not.
To do this, we use an estimate of the local finite differencing error, also
known as the local truncation error (LTE): compare
(a) the result of integrating a standard diamond cell
(b) the result of integrating a double-sized
diamond cell using data from the

2nd-to-last and current slices

The difference (b) — (a) is an estimate
of the LTE, up to some O(1) factor;

the AMR refinement criterion is simply

if (|(b) — (a)| > threshold)

then this cell must be redone at higher resolution g



Test Cases for Sample Results
Physics:
e Schwarzschild background, scalar particle in circular orbit

e zero initial data on v = vy, and u = uy;, grid-box faces
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Test Cases for Sample Results
Physics:
e Schwarzschild background, scalar particle in circular orbit

e zero initial data on v = vy, and u = uy;, grid-box faces

Numerical Methods:
e 2nd order finite differencing (global accuracy)

e slice-recursive AMR algorithm

e AMR gradually turned starting at 100m (we don’t bother
resolving the junk radiation at the start of the evolution);
AMR fully active by ~200m
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Sample Results (Convergence Tests)

To test convergence, the code writes out a “script” describing the

mesh-refinement structure, which can then be “played back” at

successively higher resolutions.
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Sample Results (Convergence Tests)

To test convergence, the code writes out a “script” describing the

mesh-refinement structure, which can then be “played back” at

successively higher resolutions.

Test case: (¢, m) = (10, 10), particle at r, = 10m (rschw = 7.85m)
script “recorded” at: AMR error threshold 107° in |¢|

The code shows excellent 2nd
order convergence, even across
the mesh-refinement boundaries
and near the particle worldline,
(where 0,¢ has a

jump discontinuity)

|6(p| or (real,imag) parts of ¢

(coarsest grid resolution 0.5m)

2nd order convergence on v=constant slice near the particle

1x10°® T o " T "
107 x (real,|mag) parts of phi =
8x10 | 421|playbac x2 - playbackx4|
4 |p|aybac x4 - playback><8|
43 |playbackx®8 - playbackx16| -
6x107° | — 18
3 . 7
4x10° 16
]
-6 \ A ] 15 3
leo B \ f“ —
) 143
0x10°® 3 2
=
. J 2 —_
6 |
X0 e e 1
P R R B O
-4x107°
240 250 260 270 280 290



Sample Results (¢ movie)

Test case: same as before, but error threshold 10~7

Sample frame from movie (see also poster outside)

phi

0.4

03t

0.2

0.1 r

-0.1 ¢

-0.2

-03 ¢

-0.4

(coarsest grid resolution 0.1m)

phi(u) on relative v=155.0 slice

real
imag

magnitude - |

refinement level

Tt

refinement level
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Sample Results (Self-Force)

Test case:
e particle at rqupw = 10m

e modes computed numerically for £ < 20

(121 modes given even/odd symmetry)

o [, for £ > 20 tail estimated via 3-term fit to {£72,¢7*,¢75, ...} series
[Detweiler, Messaritaki, & Whiting, Phys. Rev. D 67, 104016 (2003)]

e ¢rid box 300m on a side (too small)
e AMR error threshold 1079 in |¢|, Richardson extrap. playbackx {6, 8}

. . r r
® crror estimate via \Finside — Foutside\
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Sample Results (Self-Force)

Test case:
e particle at rqupw = 10m

e modes computed numerically for £ < 20

(121 modes given even/odd symmetry)

o [, for £ > 20 tail estimated via 3-term fit to {£72,¢7*,¢75, ...} series
[Detweiler, Messaritaki, & Whiting, Phys. Rev. D 67, 104016 (2003)]

e ¢rid box 300m on a side (too small)
e AMR error threshold 1079 in |¢|, Richardson extrap. playbackx {6, 8}

. . r r
® crror estimate via \Finside — Foutside\

= this work F" =1.3808 x 107 (43% numerical, 57% tail)
Detweiler et al. F" = 1.3784 x 107
fractional error 0.17%
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Conclusions

Adaptive Mesh Refinement (AMR):

e works well (big efficiency/accuracy gains)

e characteristic coordinates

= only small changes to Cauchy Berger-Oliger techniques/codes
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Conclusions

Adaptive Mesh Refinement (AMR):

e works well (big efficiency/accuracy gains)

e characteristic coordinates

= only small changes to Cauchy Berger-Oliger techniques/codes

e programming is complicated

Self-Force:

e nice results for Schwarzschild background,

scalar particle in circular orbit

e next steps: 4th order, eccentric orbits, Kerr

18-c



Self-Force Results (Fy(£))

F for particle at rgp,,, = 10m

-4
1 s ! ! ! ! 1 1 ! ! i ! |
0 i O |e”:O| (Fe” < O)
v playbackl inside/outside
* playback?2 inside/outside
* v playback4 inside/outside
5 * v playback8 inside/outside
107 F 3-term large-ell fit E
*
E’ 10° 3
107 F E
: ¥
10-8 . . . . ! ! !
0 5 10 15 20

ell
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Self-Force Results

log(F_ell/model)
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Slice-Recursive Berger-Oliger Mesh Refinement

N

e integrate entire coarse slice (A0)
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e integrate entire coarse slice (A0)

e flag points if error estimate > threshold; fine grid ~ flagged region

A

Bl
C1 BO

D1
CO

DO
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Slice-Recursive Berger-Oliger Mesh Refinement

e integrate entire coarse slice (A0)
e flag points if error estimate > threshold; fine grid ~ flagged region
e time-interpolate to get starting (um;,) value for fine slice (A1)

(4 time levels = cubic interpolation)
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Slice-Recursive Berger-Oliger Mesh Refinement

e integrate entire coarse slice (A0)
e flag points if error estimate > threshold; fine grid ~ flagged region
e time-interpolate to get starting (um;,) value for fine slice (A1)

(4 time levels = cubic interpolation)

e recursively integrate entire fine slice (A1)
e rotate fine slices
e copy coarse slice (A1) value to get

starting (umiy) value for fine slice (A1)

DO
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e integrate entire coarse slice (A0)
e flag points if error estimate > threshold; fine grid ~ flagged region
e time-interpolate to get starting (um;,) value for fine slice (A1)

(4 time levels = cubic interpolation)

e recursively integrate entire fine slice (A1)

e rotate fine slices

e copy coarse slice (A1) value to get
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e integrate entire fine slice (A1)
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e integrate entire coarse slice (A0)
e flag points if error estimate > threshold; fine grid ~ flagged region
e time-interpolate to get starting (um;,) value for fine slice (A1)

(4 time levels = cubic interpolation)

e recursively integrate entire fine slice (A1)

e rotate fine slices

e copy coarse slice (A1) value to get
starting (umin) value for fine slice (A1)

e integrate entire fine slice (A1)

e copy fine slice (A1) back to coarse grid

where grid points coincide

DO
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Slice-Recursive Berger-Oliger Mesh Refinement

e integrate entire coarse slice (A0)
e flag points if error estimate > threshold; fine grid ~ flagged region
e time-interpolate to get starting (um;,) value for fine slice (A1)

(4 time levels = cubic interpolation)

e recursively integrate entire fine slice (A1)

e rotate fine slices

e copy coarse slice (A1) value to get
starting (umin) value for fine slice (A1)

e integrate entire fine slice (A1)

e copy fine slice (A1) back to coarse grid
where grid points coincide

e re-integrate remainder of coarse slice

with updated “starting” values DO



