
Adaptive Mesh Refinement

for Self-Force Calculations

Jonathan Thornburg

in collaboration with

Leor Barack, Norichika Sago, and Darren Golbourn

General Relativity Group

School of Mathematics

University of Southampton

1

Self-Force Calculations

As discussed by Leor Barack & Norichika Sago in their talks,

we (the Southampton group) do self-force calculations by

finding the metric perturbation in the Lorenz gauge:

[[details in Barack & Sago, Phys. Rev. D 75, 064021 (2007)]]

2

Self-Force Calculations

As discussed by Leor Barack & Norichika Sago in their talks,

we (the Southampton group) do self-force calculations by

finding the metric perturbation in the Lorenz gauge:

[[details in Barack & Sago, Phys. Rev. D 75, 064021 (2007)]]

• decompose the metric perturbation into (ℓ,m) multipole modes

• for each (ℓ,m) multipole mode, numerically integrate the

metric-perturbation equations in the time domain

• compute the physical self-force from the metric-perturbation

multipoles via a regularized mode sum

2-a

Self-Force Calculations

As discussed by Leor Barack & Norichika Sago in their talks,

we (the Southampton group) do self-force calculations by

finding the metric perturbation in the Lorenz gauge:

[[details in Barack & Sago, Phys. Rev. D 75, 064021 (2007)]]

• decompose the metric perturbation into (ℓ,m) multipole modes

• for each (ℓ,m) multipole mode, numerically integrate the

metric-perturbation equations in the time domain

• compute the physical self-force from the metric-perturbation

multipoles via a regularized mode sum

Most of the material in this talk would be equally applicable to

other self-force calculation schemes, or indeed to other problems

involving the numerical solution of time-evolution PDEs.

2-b

Why Mesh Refinement

After the (ℓ,m) multipole decomposition, our typical metric

perturbation equation (to be numerically integrated) looks like

⊔⊓φ + Vℓ(r)φ = Sℓm(t) δ
(

~x −~xparticle(t)
)

⇒

where Vℓ(r), Sℓm(t), and ~xparticle(t) are known, and φ is a complex field

on a Schwarzschild or Kerr background (1 or 2 space dimensions × time)

3

Why Mesh Refinement

After the (ℓ,m) multipole decomposition, our typical metric

perturbation equation (to be numerically integrated) looks like

⊔⊓φ + Vℓ(r)φ = Sℓm(t) δ
(

~x −~xparticle(t)
)

⇒

where Vℓ(r), Sℓm(t), and ~xparticle(t) are known, and φ is a complex field

on a Schwarzschild or Kerr background (1 or 2 space dimensions × time)

We need to solve many of these equations (one for each (ℓ,m))

to very high accuracy, as efficiently as possible.

3-a

Why Mesh Refinement

After the (ℓ,m) multipole decomposition, our typical metric

perturbation equation (to be numerically integrated) looks like

⊔⊓φ + Vℓ(r)φ = Sℓm(t) δ
(

~x −~xparticle(t)
)

⇒

where Vℓ(r), Sℓm(t), and ~xparticle(t) are known, and φ is a complex field

on a Schwarzschild or Kerr background (1 or 2 space dimensions × time)

We need to solve many of these equations (one for each (ℓ,m))

to very high accuracy, as efficiently as possible.

Because of the δ
(

~x −~xparticle(t)
)

source,

φ varies rapidly near the particle,

but relatively slowly elsewhere

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 50 100 150 200 250 300

ph
i

relative u on slice

phi(u) on relative v=180.0 slice

real
imag

magnitude

3-b

Why Mesh Refinement

After the (ℓ,m) multipole decomposition, our typical metric

perturbation equation (to be numerically integrated) looks like

⊔⊓φ + Vℓ(r)φ = Sℓm(t) δ
(

~x −~xparticle(t)
)

⇒

where Vℓ(r), Sℓm(t), and ~xparticle(t) are known, and φ is a complex field

on a Schwarzschild or Kerr background (1 or 2 space dimensions × time)

We need to solve many of these equations (one for each (ℓ,m))

to very high accuracy, as efficiently as possible.

Because of the δ
(

~x −~xparticle(t)
)

source,

φ varies rapidly near the particle,

but relatively slowly elsewhere

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 50 100 150 200 250 300

ph
i

relative u on slice

phi(u) on relative v=180.0 slice

real
imag

magnitude

⇒ Want mesh refinement!

3-c

Typography of (Finite-Difference) Mesh Refinement

4

Typography of (Finite-Difference) Mesh Refinement

[Lagrangian] smoothly move grid points around to vary resolution

• relatively simple

4-a

Typography of (Finite-Difference) Mesh Refinement

[Lagrangian] smoothly move grid points around to vary resolution

• relatively simple

• nonuniform grid spacing ⇒ more complicated finite differencing

• rapidly changing resolution ⇒ local shortage/surplus of grid points

4-b

Typography of (Finite-Difference) Mesh Refinement

[Lagrangian] smoothly move grid points around to vary resolution

• relatively simple

• nonuniform grid spacing ⇒ more complicated finite differencing

• rapidly changing resolution ⇒ local shortage/surplus of grid points

• doesn’t generalize to > 1 spatial dimension (grid “tangles”)

4-c

Typography of (Finite-Difference) Mesh Refinement

[Lagrangian] smoothly move grid points around to vary resolution

• relatively simple

• nonuniform grid spacing ⇒ more complicated finite differencing

• rapidly changing resolution ⇒ local shortage/surplus of grid points

• doesn’t generalize to > 1 spatial dimension (grid “tangles”)

[Eulerian] add/delete grid points as necessary, but don’t move them

(at least not for mesh refinement)

4-d

Typography of (Finite-Difference) Mesh Refinement

[Lagrangian] smoothly move grid points around to vary resolution

• relatively simple

• nonuniform grid spacing ⇒ more complicated finite differencing

• rapidly changing resolution ⇒ local shortage/surplus of grid points

• doesn’t generalize to > 1 spatial dimension (grid “tangles”)

[Eulerian] add/delete grid points as necessary, but don’t move them

(at least not for mesh refinement)

• can arrange for finite differencing to see only uniform grid spacing

• can change resolution rapidly if necessary

4-f

Typography of (Finite-Difference) Mesh Refinement

[Lagrangian] smoothly move grid points around to vary resolution

• relatively simple

• nonuniform grid spacing ⇒ more complicated finite differencing

• rapidly changing resolution ⇒ local shortage/surplus of grid points

• doesn’t generalize to > 1 spatial dimension (grid “tangles”)

[Eulerian] add/delete grid points as necessary, but don’t move them

(at least not for mesh refinement)

• can arrange for finite differencing to see only uniform grid spacing

• can change resolution rapidly if necessary

• generalises cleanly to N spatial dimension

4-g

Typography of (Finite-Difference) Mesh Refinement

[Lagrangian] smoothly move grid points around to vary resolution

• relatively simple

• nonuniform grid spacing ⇒ more complicated finite differencing

• rapidly changing resolution ⇒ local shortage/surplus of grid points

• doesn’t generalize to > 1 spatial dimension (grid “tangles”)

[Eulerian] add/delete grid points as necessary, but don’t move them

(at least not for mesh refinement)

• can arrange for finite differencing to see only uniform grid spacing

• can change resolution rapidly if necessary

• generalises cleanly to N spatial dimension

• relatively hard to implement
4-h

Eulerian Mesh Refinement: Overview

Berger & Oliger [[J. Comp. Phys. 53, 484 (1984)]] defined what has

become the standard approach to Eulierian finite-difference mesh

refinement for “hyperbolic-like” time-evolution PDEs:

5

Eulerian Mesh Refinement: Overview

Berger & Oliger [[J. Comp. Phys. 53, 484 (1984)]] defined what has

become the standard approach to Eulierian finite-difference mesh

refinement for “hyperbolic-like” time-evolution PDEs:

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

5-a

Eulerian Mesh Refinement: Overview

Berger & Oliger [[J. Comp. Phys. 53, 484 (1984)]] defined what has

become the standard approach to Eulierian finite-difference mesh

refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

5-b

Eulerian Mesh Refinement: Overview

Berger & Oliger [[J. Comp. Phys. 53, 484 (1984)]] defined what has

become the standard approach to Eulierian finite-difference mesh

refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

5-c

Eulerian Mesh Refinement: Overview

Berger & Oliger [[J. Comp. Phys. 53, 484 (1984)]] defined what has

become the standard approach to Eulierian finite-difference mesh

refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

• fine-grid initial & boundary data

is interpolated from coarse grids

5-d

Eulerian Mesh Refinement: Overview

Berger & Oliger [[J. Comp. Phys. 53, 484 (1984)]] defined what has

become the standard approach to Eulierian finite-difference mesh

refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

• fine-grid initial & boundary data

is interpolated from coarse grids

• integrate each grid independently

• inject fine results back into coarse

grid when/where points coincide

(keeps coarse grid accurate)

5-e

Software Approaches to Berger-Oliger

Berger-Oliger is conceptually fairly simple,

but there are a lot of messy details in an implementation.

6

Software Approaches to Berger-Oliger

Berger-Oliger is conceptually fairly simple,

but there are a lot of messy details in an implementation.

Some people use generic toolkits:

• AMRD/PAMR (Choptuik/Pretorius)

• DAGH/GrACE (Parashar)

• ParaMesh (MacNeice et al., NASA/Goddard 2BH project)

• SAMRAI (Hornung et al., Livermore)

• Carpet (Schnetter) (works as part of Cactus)

⇒ relatively easy programming

but details may be undocumented, learning curves may be slow

6-a

Software Approaches to Berger-Oliger

Berger-Oliger is conceptually fairly simple,

but there are a lot of messy details in an implementation.

Some people use generic toolkits:

• AMRD/PAMR (Choptuik/Pretorius)

• DAGH/GrACE (Parashar)

• ParaMesh (MacNeice et al., NASA/Goddard 2BH project)

• SAMRAI (Hornung et al., Livermore)

• Carpet (Schnetter) (works as part of Cactus)

⇒ relatively easy programming

but details may be undocumented, learning curves may be slow

Another alternative is to write a Berger-Oliger code from scratch.

⇒ takes ∼ 5K–10K lines of code (including test drivers, comments, etc)
6-b

Berger-Oliger in Cauchy (Numerical) Relativity

Choptuik pioneered the use of Berger-Oliger mesh refinement in

numerical relativity in his discovery of self-similarity and critical

phenomena in gravitational collapse. [[Phys. Rev. Lett. 70, 9 (1993)]]

Berger-Oliger methods are now widely used in 3 + 1 numerical relativity.

Some good references include:

• Berger & Oliger, J. Comp. Phys. 53, 484 (1984)

• Berger, SIAM J. Sci. Stat. Comput. 7, 904 (1986)

• Choptuik, “Experiences with an Adaptive Mesh Refinement

Algorithm in Numerical Relativity”, pages 206–221 in Evans, Finn,

and Hobill, Frontiers in Numerical Relativity, Cambridge U.P., 1989

• Schnetter, Hawley, and Hawke, Class. Quant. Grav. 21, 1465 (2004)
[

Nicely explains the complications which arise when equations

contain 1st time derivatives but 2nd spatial derivatives.

]

7

Characteristic Coordinates

Motivation: null boundaries are much nicer than timelike boundaries

(both analytically and numerically)

Null coordinates: u = tSchw − r∗

v = tSchw + r∗
r∗

tSchw u v

8

Characteristic Coordinates

Motivation: null boundaries are much nicer than timelike boundaries

(both analytically and numerically)

Null coordinates: u = tSchw − r∗

v = tSchw + r∗
r∗

tSchw u v

Fundamental discretization uses

double-null “diamond” cells

north

south

west east

8-a

Characteristic Coordinates

Motivation: null boundaries are much nicer than timelike boundaries

(both analytically and numerically)

Null coordinates: u = tSchw − r∗

v = tSchw + r∗
r∗

tSchw u v

Fundamental discretization uses

double-null “diamond” cells

north

south

west east

Integrate metric-perturbation equations over cell ⇒

φnorth = φwest + φeast − φsouth − h2φE + φW

2
Vℓcenter

+ h sinc(1
2
mωorbith)Sℓm(tcenter) [only for particle in cell]

+ O(h−4) [vacuum] or O(h−3) [particle]

8-b

Self-Force Calculations (Characteristic Coordinates)

As discussed by Leor Barack & Norichika Sago in their talks,

for self-force calculations we integrate the (discretized) metric

perturbation equations for each (ℓ,m) multipole mode, in a square

“grid box” in (u, v) space, chosen

to be big enough for the initial-data

field perturbations to have decayed

below our numerical error levels

by the end of the integration.

The integration proceeds one

v = constant slice at a time;

each slice is integrated one

diamond cell at a time.

r∗

tSchw

u = tSchw − r∗

v = tSchw + r∗

u
=

um
in

u
=

um
ax

v
=

v
m

in

v
=

v
m

ax

p
a
r
ti

c
le

w
o
r
ld

li
n
e

u v

9

Berger-Oliger in Characteristic Coordinates

Basically, use standard Berger-Oliger mesh refinement,

treating u as a “spatial” coordinate on v = constant slices,

and v as a “time” coordinate

u

v
=

v
m

in

v
=

v
m

ax

v

u
=

um
in

u
=

um
ax

10

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

11

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

11-a

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

• if local truncation error estimate is too large, recurse:

– divide cell into 4 subcells

11-b

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

• if local truncation error estimate is too large, recurse:

– divide cell into 4 subcells

– recursively integrate south subcell

11-c

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

• if local truncation error estimate is too large, recurse:

– divide cell into 4 subcells

– recursively integrate south subcell

– recursively integrate west subcell

11-d

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

• if local truncation error estimate is too large, recurse:

– divide cell into 4 subcells

– recursively integrate south subcell

– recursively integrate west subcell

– recursively integrate east subcell

11-e

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

• if local truncation error estimate is too large, recurse:

– divide cell into 4 subcells

– recursively integrate south subcell

– recursively integrate west subcell

– recursively integrate east subcell

– recursively integrate north subcell

11-f

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

• if local truncation error estimate is too large, recurse:

– divide cell into 4 subcells

– recursively integrate south subcell

– recursively integrate west subcell

– recursively integrate east subcell

– recursively integrate north subcell

– inject north subcell result back into coarser cell

11-g

Berger-Oliger in Characteristic Coordinates (2)

Cell-recursive algorithm:

[[Hamadé & Stewart, Class. Quant. Grav. 13, 497 (1996)]]

[[Pretorius & Lehner, J. Comp. Phys. 198, 10 (2004) = gr-qc/0302003]]

• integrate a cell

• if local truncation error estimate is too large, recurse:

– divide cell into 4 subcells

– recursively integrate south subcell

– recursively integrate west subcell

– recursively integrate east subcell

– recursively integrate north subcell

– inject north subcell result back into coarser cell

Problem: fine-grained (per-cell) memory management
11-h

Slice-Recursive Berger-Oliger Mesh Refinement

Fundamental concept: recurse on entire v = constant slices

12

Slice-Recursive Berger-Oliger Mesh Refinement

Fundamental concept: recurse on entire v = constant slices

• integrate an entire v = constant slice, flagging points where

local truncation error estimate > threshold

12-a

Slice-Recursive Berger-Oliger Mesh Refinement

Fundamental concept: recurse on entire v = constant slices

• integrate an entire v = constant slice, flagging points where

local truncation error estimate > threshold

• if there are flagged points, recurse:

– divide slice into 2 subslices

– recursively integrate smaller-v (“lower”) subslice

– recursively integrate larger-v (“upper”) subslice

– inject upper-slice results back into matching points of original

(coarse) slice

– reintegrate the remainder of the original (coarse) slice starting

from the upper-most injected data

12-b

Slice-Recursive Berger-Oliger Mesh Refinement

Fundamental concept: recurse on entire v = constant slices

• integrate an entire v = constant slice, flagging points where

local truncation error estimate > threshold

• if there are flagged points, recurse:

– divide slice into 2 subslices

– recursively integrate smaller-v (“lower”) subslice

– recursively integrate larger-v (“upper”) subslice

– inject upper-slice results back into matching points of original

(coarse) slice

– reintegrate the remainder of the original (coarse) slice starting

from the upper-most injected data

⇒ Relatively simple bookkeeping & memory management
12-c

Error Estimation for Adaptive Mesh Refinement

For adaptive mesh refinement (AMR), we need to estimate (during the

integration) when the integration is accurate enough, and when it’s not.

To do this, we use an estimate of the local finite differencing error, also

known as the local truncation error (LTE): compare

(a) the result of integrating a standard diamond cell

13

Error Estimation for Adaptive Mesh Refinement

For adaptive mesh refinement (AMR), we need to estimate (during the

integration) when the integration is accurate enough, and when it’s not.

To do this, we use an estimate of the local finite differencing error, also

known as the local truncation error (LTE): compare

(a) the result of integrating a standard diamond cell

(b) the result of integrating a double-sized

diamond cell using data from the

2nd-to-last and current slices

The difference (b) − (a) is an estimate

of the LTE, up to some O(1) factor;

the AMR refinement criterion is simply

if (
∣

∣(b) − (a)
∣

∣ > threshold)

then this cell must be redone at higher resolution
13-a

Test Cases for Sample Results

Physics:

• Schwarzschild background, scalar particle in circular orbit

• zero initial data on v = vmin and u = umin grid-box faces

14

Test Cases for Sample Results

Physics:

• Schwarzschild background, scalar particle in circular orbit

• zero initial data on v = vmin and u = umin grid-box faces

Numerical Methods:

• 2nd order finite differencing (global accuracy)

• slice-recursive AMR algorithm

• AMR gradually turned starting at 100m (we don’t bother

resolving the junk radiation at the start of the evolution);

AMR fully active by ≈ 200m

14-a

Sample Results (Convergence Tests)

To test convergence, the code writes out a “script” describing the

mesh-refinement structure, which can then be “played back” at

successively higher resolutions.

15

Sample Results (Convergence Tests)

To test convergence, the code writes out a “script” describing the

mesh-refinement structure, which can then be “played back” at

successively higher resolutions.

Test case: (ℓ,m) = (10, 10), particle at r∗ = 10m (rSchw = 7.85m)

script “recorded” at: AMR error threshold 10−6 in |φ|

(coarsest grid resolution 0.5m)

-4×10-6

-2×10-6

0×10-6

2×10-6

4×10-6

6×10-6

8×10-6

1×10-6

 240 250 260 270 280 290

 0

 1

 2

 3

 4

 5

 6

 7

 8

|δφ
| o

r
(r

ea
l,i

m
ag

)
pa

rt
s

of
 φ

re
fin

em
en

t l
ev

el

u

2nd order convergence on v=constant slice near the particle

10-5 × (real,imag) parts of phi
4 |playback×2 - playback×4|

42 |playback×4 - playback×8|
43 |playback×8 - playback×16|

The code shows excellent 2nd

order convergence, even across

the mesh-refinement boundaries

and near the particle worldline,

(where ∂rφ has a

jump discontinuity)

15-a

Sample Results (φ movie)

Test case: same as before, but error threshold 10−7

(coarsest grid resolution 0.1m)

Sample frame from movie (see also poster outside)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0

 2

 4

 6

 8

 10

ph
i

re
fin

em
en

t l
ev

el

phi(u) on relative v=155.0 slice

real
imag

magnitude
refinement level

16

Sample Results (Self-Force)

Test case:

• particle at rSchw = 10m

• modes computed numerically for ℓ ≤ 20

(121 modes given even/odd symmetry)

• Fℓ for ℓ > 20 tail estimated via 3-term fit to {ℓ−2, ℓ−4, ℓ−6, . . . } series

[[Detweiler, Messaritaki, & Whiting, Phys. Rev. D 67, 104016 (2003)]]

• grid box 300m on a side (too small)

• AMR error threshold 10−6 in |φ|, Richardson extrap. playback×{6, 8}

• error estimate via |F r

inside − F r

outside|

17

Sample Results (Self-Force)

Test case:

• particle at rSchw = 10m

• modes computed numerically for ℓ ≤ 20

(121 modes given even/odd symmetry)

• Fℓ for ℓ > 20 tail estimated via 3-term fit to {ℓ−2, ℓ−4, ℓ−6, . . . } series

[[Detweiler, Messaritaki, & Whiting, Phys. Rev. D 67, 104016 (2003)]]

• grid box 300m on a side (too small)

• AMR error threshold 10−6 in |φ|, Richardson extrap. playback×{6, 8}

• error estimate via |F r

inside − F r

outside|

⇒ this work F r = 1.3808 × 10−5 (43% numerical, 57% tail)

Detweiler et al. F r = 1.3784 × 10−5

fractional error 0.17%
17-a

Conclusions

Adaptive Mesh Refinement (AMR):

• works well (big efficiency/accuracy gains)

• characteristic coordinates

⇒ only small changes to Cauchy Berger-Oliger techniques/codes

18

Conclusions

Adaptive Mesh Refinement (AMR):

• works well (big efficiency/accuracy gains)

• characteristic coordinates

⇒ only small changes to Cauchy Berger-Oliger techniques/codes

• programming is complicated

18-a

Conclusions

Adaptive Mesh Refinement (AMR):

• works well (big efficiency/accuracy gains)

• characteristic coordinates

⇒ only small changes to Cauchy Berger-Oliger techniques/codes

• programming is complicated

Self-Force:

• nice results for Schwarzschild background,

scalar particle in circular orbit

18-b

Conclusions

Adaptive Mesh Refinement (AMR):

• works well (big efficiency/accuracy gains)

• characteristic coordinates

⇒ only small changes to Cauchy Berger-Oliger techniques/codes

• programming is complicated

Self-Force:

• nice results for Schwarzschild background,

scalar particle in circular orbit

• next steps: 4th order, eccentric orbits, Kerr

18-c

Self-Force Results (Fℓ(ℓ))

10-8

10-7

10-6

10-5

10-4

 0 5 10 15 20

F
el

l

ell

Fell for particle at rSchw = 10m

|ell=0| (Fell < 0)
playback1 inside/outside
playback2 inside/outside
playback4 inside/outside
playback8 inside/outside
3-term large-ell fit

19

Self-Force Results (scaled Fℓ(ℓ))

-0.030

-0.020

-0.010

0.000

0.010

0.020

0.030

 10 12 14 16 18 20

lo
g(

F
_e

ll/
m

od
el

)

ell

playback4
playback6
playback8
RE(playback4,playback6)
RE(playback4,playback8)
RE(playback6,playback8)

20

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

• integrate entire coarse slice (A0)

21

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1

• integrate entire coarse slice (A0)

• flag points if error estimate > threshold; fine grid ≈ flagged region

21-a

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1

D0

C0

B0

A0A1

• integrate entire coarse slice (A0)

• flag points if error estimate > threshold; fine grid ≈ flagged region

• time-interpolate to get starting (umin) value for fine slice (A1)

(4 time levels ⇒ cubic interpolation)

21-b

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1

D0

C0

B0

A0A1

D0

C0

B0

A0

• integrate entire coarse slice (A0)

• flag points if error estimate > threshold; fine grid ≈ flagged region

• time-interpolate to get starting (umin) value for fine slice (A1)

(4 time levels ⇒ cubic interpolation)

• recursively integrate entire fine slice (A1)

21-c

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1

D0

C0

B0

A0A1

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1
A1

• integrate entire coarse slice (A0)

• flag points if error estimate > threshold; fine grid ≈ flagged region

• time-interpolate to get starting (umin) value for fine slice (A1)

(4 time levels ⇒ cubic interpolation)

• recursively integrate entire fine slice (A1)

• rotate fine slices

• copy coarse slice (A1) value to get

starting (umin) value for fine slice (A1)

21-d

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1

D0

C0

B0

A0A1

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1
A1

D0

C0

B0

A0

• integrate entire coarse slice (A0)

• flag points if error estimate > threshold; fine grid ≈ flagged region

• time-interpolate to get starting (umin) value for fine slice (A1)

(4 time levels ⇒ cubic interpolation)

• recursively integrate entire fine slice (A1)

• rotate fine slices

• copy coarse slice (A1) value to get

starting (umin) value for fine slice (A1)

• integrate entire fine slice (A1)

21-e

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1

D0

C0

B0

A0A1

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1
A1

D0

C0

B0

A0

D0

C0

B0

A0

• integrate entire coarse slice (A0)

• flag points if error estimate > threshold; fine grid ≈ flagged region

• time-interpolate to get starting (umin) value for fine slice (A1)

(4 time levels ⇒ cubic interpolation)

• recursively integrate entire fine slice (A1)

• rotate fine slices

• copy coarse slice (A1) value to get

starting (umin) value for fine slice (A1)

• integrate entire fine slice (A1)

• copy fine slice (A1) back to coarse grid

where grid points coincide

21-f

Slice-Recursive Berger-Oliger Mesh Refinement

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1

D0

C0

B0

A0A1

D0

C0

B0

A0

D0

C0

B0

A0

D1
C1

B1
A1

D0

C0

B0

A0

D0

C0

B0

A0

D0

C0

B0

A0

• integrate entire coarse slice (A0)

• flag points if error estimate > threshold; fine grid ≈ flagged region

• time-interpolate to get starting (umin) value for fine slice (A1)

(4 time levels ⇒ cubic interpolation)

• recursively integrate entire fine slice (A1)

• rotate fine slices

• copy coarse slice (A1) value to get

starting (umin) value for fine slice (A1)

• integrate entire fine slice (A1)

• copy fine slice (A1) back to coarse grid

where grid points coincide

• re-integrate remainder of coarse slice

with updated “starting” values
21-g

