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Some Difficulties with Usual Derivations

of Gravitational Self-Force

It is of considerable interest to determine the motion of a

body in general relativity in the “extreme mass ratio”

limit, taking into account the deviations from geodesic

motion arising from gravitational self-force (“radiation

reaction”) effects. There is a general consensus that the

gravitational self-force is given by the “MiSaTaQuWa

equations”: In the absence of “incoming radiation”, the

deviation from geodesic motion is given by
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where G+ is the retarded Green’s function for the wave

operator ∇α∇αh̃µν − 2Rα
µν

βh̃αβ. (Note that only the

part of G+ interior to the light cone contributes to htail

µν .)

However, all derivations contain some unsatisfactory

features. This is not surprising in view of the fact that

“point particles” do not make sense in nonlinear theories

like general relativity!

• Derivations that treat the body as a point particle

require unjustified “regularizations”.



• Derivations using matched asymptotic expansions

involve make a number of ad hoc and/or unjustified

assumptions.

• The axioms of the Quinn-Wald axiomatic approach

have not been shown to follow from Einstein’s

equation.

• All of the above derivations employ at some stage a

“phoney” version of the linearized Einstein equation

with a point particle source, wherein the Lorenz

gauge version of the linearized Einstein equation is

written down, but the Lorenz gauge condition is not

imposed.



How Should Gravitational Self-Force Be Derived?

A precise formula for gravitational self-force can hold

only in a limit where the size, R, of the body goes to

zero. Since “point-particles” (of non-zero mass) do not

make sense in general relativity—collapse to a black hole

would occur before a point-particle limit could be

taken—the mass, M , of the body must also go to zero as

R → 0. In the limit as R,M → 0, the worldtube of the

body should approach a curve, γ, which should be a

geodesic of the “background metric”. The self-force

should arise as the lowest order in M correction to γ.

This suggests that we consider a one-parameter family of

solutions to Einstein’s equation, (gab(λ), Tab(λ)), with



R(λ) → 0 and M(λ) → 0 as λ → 0.

But, what conditions should be imposed on

(gab(λ), Tab(λ)) to ensure that it corresponds to a body

that is shrinking down to zero size, but is not undergoing

wild oscillations, drastically changing its shape, or doing

other crazy things as it does so?



Limits of Spacetimes

As a very simple, explicit example, consider a

one-parameter family of Schwarzschild-deSitter metrics

with M = λ

ds2(λ) = − (1 −
2λ

r
− Cr2)dt2

+ (1 −
2λ

r
− Cr2)−1dr2 + r2dΩ2

If we take the limit as λ → 0 at fixed coordinates

(t, r, θ, φ) with r > 0, it is easily seen that we obtain the

deSitter metric—with the deSitter spacetime worldline γ

defined by r = 0 corresponding to the location of the

black hole “before it disappeared”.



However, there is also another limit that can be taken.

At each time t0, can “blow up” the metric gab(λ) by

multiplying it by λ−2, i.e., define ḡab(λ) = λ−2gab(λ).

Correspondingly rescale the coordinates by defining

r̄ = r/λ, t̄ = (t − t0)/λ. Then

ds̄2(λ) = − (1 − 2/r̄ − λ2Cr̄2)dt̄2

+ (1 − 2/r̄ − λ2Cr̄2)−1dr̄2 + r̄2dΩ2

In the limit as λ → 0 (at fixed (t̄, r̄, θ, φ)) the “deSitter

background” becomes irrelevant. The limiting metric is

simply the Schwarzschild metric of unit mass. The fact

that the limit as λ → 0 exists can be attributed to the

fact that the Schwarzschild black hole is shrinking to zero



in a manner where, in essence, nothing changes except

the overall scale.

The simultaneous existence of both types of limits

contains a great deal of information about the

one-parameter family of spacetimes gµν(λ).



Illustration of the Two Types of Limits

gamma

lambda 0



Our Basic Assumptions

We consider a one parameter family of solutions gab(λ)

satisfying the following properties:

• (i) Existence of the “ordinary limit”: gab(λ) is such

that there exists coordinates xα such that gµν(λ, xα)

is jointly smooth in (λ, xα), at least for r > R̄λ for

some constant R̄, where r ≡
√

∑

(xi)2 (i = 1, 2, 3).

For all λ and for r > R̄λ, gab(λ) is a vacuum solution

of Einstein’s equation. Furthermore, gµν(λ = 0, xα) is

smooth in xα, including at r = 0, and, for λ = 0, the

curve γ defined by r = 0 is timelike.

• (ii) Existence of the “scaled limit”: For each t0, we



define t̄ ≡ (t − t0)/λ, x̄i ≡ xi/λ. Then the metric

ḡµ̄ν̄(λ; t0; x̄
α) ≡ λ−2gµ̄ν̄(λ; t0; x̄

α) is jointly smooth in

(λ, t0; x̄
α) for r̄ ≡ r/λ > R̄.



An Additional Uniformity Requirement

We have

ḡµ̄ν̄(λ; t0; t̄, x̄
i) = gµν(λ; t0 + λt̄, λx̄i) .

Introduce new variables α ≡ r and β ≡ λ/r = 1/r̄. Let f

denote a component of gab(λ) in the coordinates xα.

However, instead of viewing f as a function of (λ, xα), we

view f as a function of (α, β, t, θ, φ), where θ and φ are

defined in terms of xi by the usual formula for spherical

polar angles, i.e.,

f(α, β) = gµν(αβ, t0;α, θ, φ) = ḡµ̄ν̄(αβ, t0; t̄ = 0, 1/β, θ, φ) .

Then, by assumption (ii) we see that for 0 < β < 1/R̄, f



is smooth in (α, β) for all α including α = 0. By

assumption (i), we see that for all α > 0, f is smooth in

(α, β) for β < 1/R̄, including β = 0. Furthermore, for

β = 0, f is smooth in α, including α = 0.

We now impose the additional uniformity requirement on

our one-parameter family of spacetimes: f is jointly

smooth in (α, β) at (0, 0). We already know from our

previous assumptions that gµν(λ; t0, r, θ, φ) and its

derivatives with respect to xα approach a limit if we let

λ → 0 at fixed r and then let r → 0. The uniformity

requirement implies that the same limits are attained

whenever λ and r both go to zero in any way such that

λ/r goes to zero.



The uniformity requirement implies that in a

neighborhood of (α, β) = (0, 0) (with α, β ≥ 0), we can

uniformly approximate f by a series in α and β. This

means that we can approximate gµν by a series in r and

λ/r, i.e., we have

gµν(λ; t, r, θ, φ) =
N

∑

n=0

M
∑

m=0

rn

(

λ

r

)m

(aµν)nm(t, θ, φ)

This yields a far zone expansion. Equivalently, we have

ḡµ̄ν̄(λ; t0; t̄, r̄, θ, φ) =
N

∑

n=0

M
∑

m=0

(λr̄)n

(

1

r̄

)m

(aµν)nm(t0+λt̄, θ, φ)

Taylor expanding this formula with respect to the time

variable yields a near zone expansion.



Since we can express ḡµ̄ν̄ at λ = 0 as a series in 1/r̄ as

r̄ → ∞ and since ḡµ̄ν̄ at λ = 0 does not depend on t̄, we

see that ḡµ̄ν̄(λ = 0) is an asymptotically flat spacetime.



Geodesic Motion

The far zone expansion tells us that

gµν(λ; t, r, θ, φ) =
∑

n,m

(aµν)nm(t, θ, φ)rn

(

λ

r

)m

We choose the coordinates xα so that at λ = 0 they

correspond to Fermi normal coordinates about the

worldline γ. It follows that near γ (i.e., for small r) the

metric gµν must take the form

gµν = ηµν + O(r) + λ

(

Cµν(t, θ, φ)

r
+ O(1)

)

+ O(λ2)



Now, for r > 0, the coefficient of λ, namely

γµν =
Cµν

r
+ O(1)

must satisfy the vacuum linearized Einstein equation off

of the background spacetime gµν(λ = 0). However, since

each component of γµν is a locally L1 function, it follows

immediately that γµν is well defined as a distribution. It

is not difficult to show that, as a distribution, γµν satisfies

the linearized Einstein equation with source of the form

Nµν(t)δ
(3)(xi), where Nµν is given by a formula involving

the limit as r → 0 of the angular average of Cµν and its

first derivative. The linearized Bianchi identity then

immediately implies that (i) Nµν is of the form M(t)uµuν ,



where uµ is the unit tangent to γ; (ii) if M 6= 0, then γ is

a geodesic; and (iii) M is independent of t.


