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Physical context: 
The 2-body problem in GR
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The MiSaTaQuWa+GrWa equation of motion: 

Alternative interpretation (Detweiler

 

& Whiting):

The gravitational self force 
Summary of theory (I)
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The gravitational self force 
Summary of theory (II)
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is the "force" operator (same 
as for the force exerted by an external perturbation) 

Imporatnt

 

notes:

hR is only an effective field; the physical field is hret

MiSaTaQuWa

 

formula applies for a geodesic source

MiSaTaQuWa

 

formulated in the Lorenz gauge 

The gravitational self-force is gauge dependent:
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Gravitational SF defined through mapping:

Ambiguity in identifying physical points in the two spacetimes

 

brings about 
ambiguity in the gravitational self force 

 

gauge freedom

 hg g

The gravitational self force 
Summary of theory (III)
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 hg g

The gravitational self force 
Summary of theory (IV)

To obtain the gauge transformation law of the self force:
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Practical computation schemes
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Analytic approximations                                       
approximate evaluations of the MiSaTaQuWa

 

formula
Weak-field, post-Newtonian [Le Tiec, Mon]

Quasi-local/Matched expansions [Wardell, Dolan, Casals, Tue]

Mode-sum method ("l-mode regularization")

 
scheme for performing the subtraction 'R-S' mode by mode    
[Sago, Warburton, Thu]

Radiation-gauge regularization                                  
perform the subtraction 'R-S' at the level of the curvature scalar, 
then reconstruct the R field in the radiation gauge

 

[Friedman, Wed]

Direct subtraction in 3+1D or 2+1D ("m-mode regularization")

 
solve the field eqs. numerically for the regularized variable 'R-S' 
[Burko, Thu;

 

Detweiler, Wed; Vega, Thu; Diener, Thu]

Survey of strategies

"regularize the 
solutions"

"regularize the 
equations"
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l-mode contribution to field of scalar charge in flat space:

These features are universal:

Mode-sum method elementary example
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Mode-sum method formulated 

Regularization parameters

 

A, B, D derived analytically by analyzing 
the direct force for x  x0 and l  
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Mode-sum method 
derivation of the reg. parameters (scalar field) 

parameter values known for generic orbits in Kerr
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For a given geodesic source, solve the perturbation equations (mode by mode), 

and obtain the retarded Metric Perturbation (MP);

 Construct the “full force”

 

modes (“grad MP”) at the particle;

 Apply the mode-sum formula:  

Mode-sum method summarized

expected O(L-2) behaviour provides important check of numerics
large-L tail can be extrapolated analytically to improve accuracy
higher-order terms in 1/L expansion can be calculated to accelerate convergence 
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Results for Schwarzschild:              
scalar-field SF (Haas 2007)
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Results for Schwarzschild:              
scalar-field SF (Haas 2007)
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Results for Schwarzschild:   
electromagnetic SF (Haas 2008, Capra 11)
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Results for Schwarzschild: gravitational 
SF in Lorenz gauge (LB & Sago, 2009)

Details of numerical method: Sago, Thursday
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The Kerr case:                           
m-mode regularization

Metric perturbation equations in Kerr separable only in 2+1D:

In principle, can use 2+1D numerical evolution in conjunction with 
standard mode-sum regularization ― but this is awkward! 

Desired: formulation of the subtraction in 2+1D ― "m-mode scheme"

Difficulty: each mode diverges (logarithmically) at worldline
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m-mode regularization 
logarithmic divergence (scalar field example)

Decompose

Near particle

Pick a worldline point x0 . Look at field near x0 on surface t = t0 :

(distance in r -

 

 plane)
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Split integral as

1st

 

integral bounded by a constant:

2nd

 

integral is m-independent and integrates explicitly:

m-mode regularization 
logarithmic divergence (scalar field example) - cont'd
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m-mode regularization formulated

Don't solve for ret

 

; solve for

The "punctured" variable 

 

is C0 and its m-modes m are C1.

The field equation for 

 

(schematically): 

Can show (somewhat surprisingly):

Note:

 

The above puncture does not

 

guarantee                           .   
[To achieve this requires a higher-order puncture, with                                           ]
The m-decomposition spares us the need to go to higher order 
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m-mode regularization explained

[Fourier series converges 
uniformly everywhere 
since FR is smooth] 

Fourier integral automatically averages

 

over discontinuity
(LB, Golbourn

 

and Sago, PRD 2007)

[not C0 but piecewise continuous]
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r*/M  

m=0

m=1

m=2

sample results from puncture 
evolution in 2+1 (scalar field)

LB & Golbourn, PRD 2007



Numerical implementation strategies

How to deal with a point-particle singularity in a                
numerical treatment of the perturbation equations?
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Physical effects of the gravitational SF
some results for Schwarzschild
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How to split the SF into "cons" and "diss" in practice?

In f-domain:

 

get          by flipping boundary conditions. 

In t-domain:

 

get           by evolving "backward" in time. 

Dissipative & Conservative pieces

So (e.g.) for Schwarzschild :

Better so:

 

exploit symmetry of Kerr geodesics (a la Mino):
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Dissipation of energy and angular 
momentum

Infinity fluxes

 

obtained from the asymptotic perturbation using Isaacson's 
effective energy-momentum. 

For horizon absorption

 

cannot use Isaacson's high-freq. approximation; instead:

f-domain:

 

Press-Teukolsky

 

(1974) based on Hawking-Hartle

 

formalism 

t-domain:

 

formalism by Poisson (2004)

Balance equations demonstrated for eccentric orbits (LB & Sago 2009)

No new physics but good test of self-force code

(average taken over a 
radial period, for a 
particle on a bound 
geodesic)
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conservative effects for          
circular orbits

ISCO

R(M/2)1/3 (in units of M)

Detweiler

 

2008 
& 

LB & Sago 2007
frequency

and "time function"

are both invariant under gauge 
transformations that respect the 
helical symmetry of the orbit. 

ut
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the conservative ISCO shift (I)

Near stable equilibrium radial  
motion is a linear oscillator:

ISCO where r =0

At O(0) [no SF]:  risco

 

=6M
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the conservative ISCO shift (II)

ISCO shift due to scalar SF calculated by Diaz-Rivera et al (2004).

Conservative ISCO frequency shift can be used for comparison with/ 
calibration of PN calculations

O() dissipative effect
"smears" the ISCO 

 

transition regime of width r  2/5 (Ori

 

& Thorne 2000)

O() conservative effect (dissipation ignored)
"shifts" the ISCO by a well-defined amount r  , determined from analysis 
of slightly eccentric geodesics near r = 6M (details in N. Sago's talk):

(LB & Sago 2009)
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Schwarzschild: 
extract all physics (precession effects, importance of conservative self force, 
gauge invariants and comparison with PN theory) 
test-bed for advanced numerical methods (mesh refinement; finite element)

Kerr, scalar self-force:
extend existing f-domain code (Warburton) to eccentric & inclined orbits 
test-bed for m-mode regularization in t-domain
study forced resonances.

Kerr, gravitational self-force:
implement regularization in 2+1D or 3+1D, radiation-gauge regularization  
try 1+1D or 1D with coupled spherical harmonics
"spheroidal

 

tensor harmonics"?

Orbital evolution:

 

osculating geodesics, multiple-scale analysis, and all that.  

Prospects
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