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Motivations and goals

• Understand the effect of 2nd order self-force corrections on the 
gravitational waveform/orbital dynamics

To what extent are 2nd order self-force effects needed for precise parameter 
estimation with LISA?

What if the small body has spin angular momentum?

• Use (black hole) perturbation theory techniques to describe 
binaries having not-so-small mass ratios

e.g., For what mass ratios is 2nd order perturbation theory an adequate description? 

Can perturbation theory be useful for comparable mass binaries (e.g. LIGO sources)?

• Describe compact binary systems within a single, comprehensive 
framework for arbitrary masses and velocities

Is it possible to do so? If so, can it be used for practical computations?



Outline

• Higher order corrections

Overview of the EFT approach

Second order waves, second order self-force, and spin

• A nonlinear scalar model 

Some exact results for conservative self-force on circular orbits in Schwarzschild

• Another numerical approach (in progress with Manuel Tiglio)

Computing the retarded propagator 

Solving the self-force equations

• Conclusions 



Introduction
EMRIs have two very different length scales: 

Size of the body

Background curvature scale

Small compact object is an extended body that is often treated with a 
point particle description, which leads to problems (e.g., divergences)

Divergences arise, as in any field theory coupled to point sources, 
implying that the theory needs to be supplemented by a more 
complete model.

The effective field theory framework cleanly and systematically 
separates the two length scales in the problem and borrows 
techniques from quantum field theory to streamline the perturbation 
theory calculations.



Effective field theory approach
EFT philosophy: 

"Rather than trying to resolve the point particle singularities by using a 
specific model of the short distance physics [black hole, neutron star with 
a given equation of state, etc.], in an EFT framework we systematically 
parameterize our ignorance of this structure..."

Add to the point particle Lagrangian all terms consistent with the 
symmetries of the large distance theory (ie., general relativity)

General coordinate transformations

Reparameterization of worldline parameter

[SO(3) rotations]

Provides a model-independent description for the motion of any small 
extended body in a background (supermassive black hole) spacetime

Goldberger & Rothstein, PRD 73, 104029 (2006)



Effective point particle action:

Sepp[zν ] = −m

∫
dτ + cR

∫
dτ R + cV

∫
dτ Rαβuαuβ + cE

∫
dτ EαβEαβ + cB

∫
dτ BαβBαβ + · · ·

"Wilson coefficients" or "non-minimal coupling constants"

Coefficients of these extra terms are related to the properties of the 
structure of the extended body.

Example:  Non-spinning neutron star

External, adiabatic quadrupole tidal field induces a quadrupole moment

In weak-field region of a black hole spacetime

If the properties of the extended body are known then these coefficients 
can be calculated from a matching procedure.

Q(n)
ij = −λnEij

S[Qij ] = −1
2

∑

n

∫
dt Q(n)

ij Eij +
∑

n

∫
dt

Q̇(n)
ij Q̇(n) − ω2

nQ(n)
ij Q(n)

ij

4λ2
nω2

n

Thorne, PRD 58, 124031 (1998)

Flanagan & Hinderer,  PRD 77, 021502(R) (2008)
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Effective point particle action:

Sepp[zν ] = −m

∫
dτ + cR

∫
dτ R + cV

∫
dτ Rαβuαuβ + cE

∫
dτ EαβEαβ + cB

∫
dτ BαβBαβ + · · ·

In addition, the Wilson coefficients can exhibit classical renormalization 
group running.

Example:  

At 3PN in metric of a single particle at rest there is a log divergence that renormalizes cR,V

These coefficients can be gauged away as would be expected by Birkhoff's theorem.

µ
dcR

dµ
= −1

6
G2

Nm3 µ
dcV

dµ
=

2
3
G2

Nm3 Goldberger & Rothstein, PRD 73, 104029 (2006)

Notice that there are an infinite number of terms that can be added. 
Therefore, all divergences that may appear in the perturbation theory can 
be absorbed by renormalizing the Wilson coefficients: 

The theory is renormalizable.
The theory has predictive power.



And a couple more things...
• Power counting rules allow one:

To find the order at which some relevant quantity first contributes

To determine which terms enter a given order before any calculation is done

• In the EFT approach, perturbation theory is done at the level of the 
action instead of the equations of motion. This suggests using "Feynman 
diagrams" to systematically aid in calculations, particularly at high orders.

Self-forces, gravitational waveforms, spin precession, power loss,...

How does one incorporate retarded boundary conditions on the gravitational 
perturbations within an action principle?



A scalar field example
Naive way:

φret(x) =
∫

d4y Dret(x, y)
(
S(y) + J(y)

)

Seff [J ] = S[φret, J ] =
1
2

∫
d4x g1/2(x)

∫
d4y g1/2(y)

(
S(x) + J(x)

)
Dret(x, y)

(
S(y) + J(y)

)

Physical
source

Auxiliary
source

S[φ, J ] =
1
2

∫
d4x g1/2φ,αφ,α +

∫
d4x g1/2(S + J)φ

!φ = J + S

This isn't consistent with the retarded solution!

φ(x) =
δSeff [J ]
δJ(x)

∣∣∣∣∣
J=0

=
1
2

∫
d4y g1/2

(
Dret(x, y) + Dadv(x, y)

)
S(y)



A scalar field example
Better way:  Double the degrees of freedom  Galley & Hu (2009), Galley & Tiglio (2009)

X1,2 = X+ ±
1
2
X−

!φ± = J± + S±

Set J1=J2=0 and S1=S2=S at end of calculations

φret
+ (x) =

∫
d4y g1/2Dret(x, y)

(
J+(y) + S+(y)

)

φ?
−(x) =

∫
d4y g1/2D?(x, y)

(
J−(y) + S−(y)

)

Seff [J±] ≡ S[φret
+ , φ?

−, J±]

δSeff [J±]
δJ(x)

∣∣∣∣∣
J1=J2=0,S1=S2=0

=
∫

d4y g1/2Dret(x, y)S(y)D?(x, y) = Dadv(x, y) −→

S[φ1,2, J1,2] =
∫

d4x g1/2

[
1
2
φ1,αφ,α

1 + (S1 + J1)φ1

]
−

∫
d4x g1/2

[
1
2
φ2,αφ,α

2 + (S2 + J2)φ2

]

S[φ±, J±] =
∫

d4x g1/2
[
φ+,αφ,α

− + (S+ + J+)φ− + (S− + J−)φ+

]



*A classical mechanics for open systems?

• Build Lagrangian and Hamiltonian formalisms based on doubling the 
degrees of freedom

Classically describe dissipative systems with a Hamiltonian formalism, for example.

• Possibly useful for:

*Perturbation theories with time-asymmetric boundary conditions (e.g., radiating systems)

*More accurate EOB waveforms? (no grafting on of radiation reaction, less fitting & 
phenomenology)

Non-equilibrium statistical mechanics

Plasma physics

etc...



...and some more things...
• Systematize the expansion using "Feynman diagrams" and "Feynman 

rules" to construct the effective action order-by-order 

Example:  A (connected and tree) Feynman diagram

Example:  Two of the Feynman rules:

i) Associate a Green's function Dret/adv(x,y) for every curly line connecting two points x, y

ii) Associate the appropriate "vertex function" for each vertex in the diagram

Seff [zµ] = −m

∫
dτ +

(
Sum of all connected

tree diagrams

)

• Which diagrams do you construct? Those diagrams that are connected and 
with no loops of curly lines.

V µ1ν1µ2ν2µ3ν3
(3) (x1, x2, x3) =

δ

δhµ1ν1(x1)
δ

δhµ2ν2(x2)
δ

δhµ3ν3(x3)
[
SEH

(3)

]



...and finally divergences
Any theory of point sources and fields contains divergences. 
Dimensional regularization is particularly well-suited for EFT 
calculations:

Divergences that scale as a positive power of a high frequency cut-off 
vanish for a massless field   ['t Hooft and Veltman]

Example: (see also Birrell & Davies, p. 170)

Therefore, only log divergences can potentially renormalize the 
coupling constants of the theory (which are the "Wilson coefficients") 
and imply a possible renormalization group running of the non-minimal 
coupling constants of the effective point particle theory.

I(d) = µ3−d

∫

Sd−1
dΩ

∫ ∞

0
dk

kd−1

k2 + m2
=

md−2π1+d/2µ3−d csc(dπ/2)
Γ(d− 1/2)

I(d = 3− ε) = −4mπ2

3
+ O(ε)→ 0 as m→ 0

I(3) =
∫ ∞

−∞
ds

∫ ∞

−∞
d4k

eik0s

−(k0)2 + k2 =
∫ ∞

−∞

d3k

k2
Infrared regulator



Ultraviolet divergences come about from the well-known singular 
structure of the Green's function near coincidence. We use a momentum 
space representation for the Green's function near coincidence. [Bunch & 
Parker]

Quasi-local behavior of Green's function

Example: Compute the quasi-local expansion of the momentum space representation for the 
Feynman Green's function, say, for a massive scalar field in a curved spacetime.

S[φ, J ] =
∫

Vd

ddy g1/2

[
1
2

(
gαβφ,αφ,β + m2φ2 + ξRφ2

)
+ Jφ

]

φ = g−1/4φ̄, J = g−1/4J̄

S[φ̄, J̄ ] =
∫

N (P )
ddŷ

{
−1

2

[
ηabφ̄,aφ̄,b + m2φ̄2

]
− 1

2

[
Kab(ŷ, P )φ̄,aφ̄,b +M(ŷ, P )φ̄2

]
+ J̄ φ̄

}
+ · · ·

Kab(ŷ, P ) ≡ gab(ŷ, P )− ηab

S[φ̄, J̄ ] =
∫

Vd

ddy

[
−1

2
(
gαβφ̄,αφ̄,β + m2φ̄2 +M(x)φ̄2

)
+ J̄ φ̄

]

M(x) ≡ ξR + g−1/4
(
gαβg1/4

,α

)

,β



Now, the part of the action in the normal neighborhood of P is written as a background piece 
plus some small corrections that scale as powers of the interval from P divided by the 
background curvature scale.

S[φ̄, J̄ ] =
∫

N (P )
ddŷ

{
−1

2

[
ηabφ̄,aφ̄,b + m2φ̄2

]
− 1

2

[
Kab(ŷ, P )φ̄,aφ̄,b +M(ŷ, P )φ̄2

]
+ J̄ φ̄

}
+ · · ·

"Flat space background
Lagrangian"

"Interaction Lagrangian"

We can develop the quasi-local expansion for the Green's function expressed in Riemann 
normal coordinates using diagrammatic methods. 

= + + · · ·
x̂ x̂′ x̂ x̂′ x̂ x̂′

ḠF (x̂, x̂′;P ) =

This is the quasi-local expansion of the Feynman Green's function in Riemann normal 
coordinates centered on P. Note that with this method, neither x nor x' have to be at P.

GF (x, x′, P ) = g−1/4(x) ḠF (x, x′, P ) g−1/4(x′)

P
x̂a

x̂′a



*Green's function miscellanea
= + + · · ·

x̂ x̂′ x̂ x̂′ x̂ x̂′
ḠF (x̂, x̂′;P ) =

These terms can be formally resummed since this is essentially a geometric series:

Some interesting properties:

i) V(x,x') can be identified as (and expanded in a quasi-local expansion...)

θ(−σ)V̄ (x̂, x̂′, P ) = −2 Im
∫

ddk

(2π)d
eika(x̂a−x̂′a)

{
(k2 + m2)

1
k2 + m2 +M(iD, P )

−i

k2 + m2
+

i

k2 + m2

}

ii) For x' at P one can show that

[DeWitt (1967), Parker & Toms (1985)]

ḠF (x̂;P ) =
∫

ddk

(2π)d
eikax̂a −i

k2 + m2 + ξR(P )
(1 + · · · )

ḠF (x̂, x̂′;P ) =
∫

ddk

(2π)d
eika(x̂a−x̂′a)(k2 + m2)

1
k2 + m2 +M(iDa, P )

−i

k2 + m2

iDa = x̂a − i
∂

∂ka
= x̂′a + i

∂

∂ka
= · · ·



• Power counting 

Recap of basic ingredients

• Retarded boundary conditions in an action principle

Double the number of variables

Get an "effective action" from "integrating out" the field

• Feynman rules

• Quasi-local expansions of:

Green's function in a momentum representation

van Vleck determinant on an arbitrary (i.e., accelerated) worldline



• Worldline equations of motion follow by varying the effective action 
(through the desired order in the expansion) with respect to the 
worldline coordinates

Equations of motion & radiation

Notice that the worldine coordinates are arbitrary until we impose the 
equations of motion, which chooses the self-consistent solution for the 
worldline through that order in the expansion.

i.e., The appropriate solution is the one that extremizes the effective 
action.

0 =
δSeff [zµ

±]
δz+µ(τ)

∣∣∣∣∣
z−=0,z+=z

= Wµ[zα(τ)]

• Gravitational waves are computed directly from the radiation diagrams 
and the source is the self-consistent solution of the above worldline 
equations of motion through the given order in the mass ratio.

++



A linear scalar field & charge
Total action [Quinn, PRD 62, 064029 (2000)]

S[z, φ] = −1
2

∫
d4x g1/2φ,αφ,α −m

∫
dτ + q

∫
dτ φ(z)

+Effective action

meff (τ)aµ =
1
4π

(
q2

3
wµα

Daα

dτ
+

q2

6
wµαRαβuβ

)
+ q2 lim

ε→0

∫ τ−ε

−∞
dτ ′w ν

µ ∇νDret(zµ, zµ′
)

meff (τ) = m− q2 lim
ε→0

∫ τ−ε

−∞
dτ ′Dret(zµ, zµ′

)

Self-force

= q2

∫ ∞

−∞
dτ ′Dret(x, zµ)

Scalar waves



Gravitational self-force @ 0th order

There is only one diagram that contributes to the effective action 
through O(m/M)^0

Varying to find the worldline equations of motion gives the geodesic 
equation

aµ(τ) = 0



Gravitational waves @ at leading order

There is only one diagram that contributes to the gravitational wave 
emission at leading order

Using the Feynman rules it is straightforward to show that this equals

hret
µν (x) = −16π

∫ ∞

−∞
dτDret

µναβ(x, zµ)uαuβ



Gravitational self-force @ 1st order...

Only one diagram contributes to the effective action at O(m/M)

Using the Feynman rules to evaluate this diagram we see that there is a 
divergence, as expected. The divergent integral is

which vanishes by symmetry.

∝
∫ ∞

−∞
ds

∫ ∞

−∞
d4k

eik0ska

−(k0)2 + k2 =
∫ ∞

−∞
d3k

ηa
iki

k2

Varying the resulting regular effective action gives the MSTQW equation

m aµ =
m

2m2
pl

wµαβν lim
ε→0+

∫ τ−ε

−∞
dτ ′∇νDret

αβγ′δ′(zµ, zµ′
)uγ′

uδ′



Gravitational waves @ NLO

At next-to-leading order there are two diagrams contributing to the 
gravitational wave emission

+

The Feynman rules imply that the radiation, including the leading order 
waves, is given by

htail
αβ (τ) = lim

ε→0+

∫ τ−ε

−∞
dτ ′Dret

αβγ′δ′(zµ, zµ′
)uγ′

uδ′

hret
µν (xα) = 16πm

∫ ∞

−∞
dτ ′Dret

µναβ(xα, zµ)uαuβ + 128π2m2

∫ ∞

−∞
dτ ′Dret

µναβ(xα, zµ)uαuβuγuδhtail
γδ (τ)

−128π2

∫
d4y g1/2(y)A(y)Dret(x, y)

∫ ∞

−∞
∇Dret(y, zµ)uu lim

ε→0+

∫ y0
ret−ε

−∞
dτ ′∇Dret(y, zµ′

)u′u′

−128π2

∫
d4y g1/2(y)B(y)∇Dret(x, y)

∫ ∞

−∞
dτ∇Dret(y, zµ)uu

∫ ∞

−∞
dτ ′Dret(y, zµ′

)u′u′



Gravitational waves @ NLO

A and B are certain parts of the "3-graviton" vertex



Gravitational self-force @ 2nd order...

• Potentially needed for precise parameter estimation with LISA

• There are two diagrams contributing to the effective action at O(m/M)^2

+

+128π2m3wµαβγδνhtail
αβ (τ) lim

ε→0+

∫ τ−ε

−∞
dτ ′∇νDret

γδε′η′(zµ, zµ′
)uε′uη′

= −128π2m3wµαβν lim
ε→0+

∫ τ−ε

−∞
dτ ′∇νDret

αβγ′δ′(zµ, zµ′
)uγ′

uδ′
uε′uη′

htail
ε′η′(τ ′)

The first diagram contributes the following to the second order self-force

The contribution of the second diagram is nearly complete... stay tuned!



Interestingly, there is a third contribution that comes from varying the 
first order contribution to the effective action and seems to contribute a 
correction to the particle's mass that depends on the tail

Pound finds a time-dependent effective mass, too

Mino, Sasaki & Tanaka also find a time-dependent effective mass... 

m(1)
MST (τ)

m
= 1 +

1
6

(
gαβ + 10uαuβ

)
htail

αβ (τ)

*Time-dependent mass

δ

δzµ(τ) = −16πm

(
wµ(αaβ) +

1
2
aµuαuβ

)
htail

αβ (τ)

Factoring out the acceleration and gathering all terms involving the 
acceleration to the left hand side of the worldline equations of motion 
(through second order) we find the time-dependent effective mass 

mµν
eff (τ)
m

= gµν + 16π

(
wµ(αgβ)ν +

1
2
gµνuαuβ

)
htail

αβ (τ)



Gravitational waves @ NNNLO

Can we remove diagrams with self-interactions?

Introduce an extended Lorenz gauge by making second order transformation

Use a field redefinition of gravitational perturbations

++ + + +



... and with spin
• Use Routhian approach (Lagrangian for worldline, Hamiltonian for spin)

• Two diagrams through second order for self-force

• Gravitational waves at NLO order with spin

• Diagrams for gravitational waves at NNLO order with spin

Like a Lagrangian Like a Hamiltonian

S ∼ Iωrot ∼ εL

∫
dτ R = −m

∫
dτ +

1
2

∫
dτ Sabωabµuµ + · · ·

DSab

dτ
= {Sab,R}

∂R
∂zµ(τ)

= 0

+

m aµ = MSTQW + (nonspinning 2nd order) +
1
2
Rµ

αβγuβSγδ + · · ·
Worldline equations of motion

Spin equations of motion

Preliminary!

=
1

2m2
pl

∫ ∞

−∞
dτ ∇γDret

µναβ(x, zµ)uαSβγ

DSµν

dτ
= pµuν − uµpν + · · ·

+ + +

Sαβ Sαβ Sαβ SαµS β
µ

Spin-induced finite
size effect

∼ cESS

∫
dτ EαβSαµSµ

β



A nonlinear scalar model
• Build a nonlinear scalar theory analogous to perturbed general relativity

Equations of motion

Self-force diagrams through 2nd order

Corresponding radiation diagrams

+ ++

++

++ + + ++

aµ = −wµν∇ν lnB(φ)

S[φ, zµ] = −1
2

∫
d4x g1/2φ,αφ,αA2(φ)−m

∫
dτ B(φ)

A(φ) =
∞∑

n=0

an

n!
φn B(φ) =

∞∑

n=0

bn

n!
φn

!φ = −A′

A
φ,αφ,α + m

∫
dτ

δ4(x− z)
g1/2

B′

A2



• But a field redefinition removes self-interaction terms

Self-force through second order

++

F (τ) = lim
ε→0+

∫ τ−ε

−∞
dτ ′Dret(zµ, zµ′

)

meff (τ) = m− m2c2
1

4πm2
pl

F (τ)− m3c2
1c2

4πm4
pl

DF (τ)
dτ

+
m3c2

1c2

2m4
pl

F 2(τ) +
m3c2

1c2

m4
pl

lim
ε→0+

∫ τ−ε

−∞
dτ ′Dret(zµ, zµ′

)F (τ ′)

−m3c2
1c2

m4
pl

lim
ε→0+

∫ τ−ε

−∞
dτ ′ wµν∇νDret(zµ, zµ′

)F (τ ′)

+

(
m2c2

1

m2
pl

− m3c2
1c2

m4
pl

F (τ)

)
lim

ε→0+

∫ τ−ε

−∞
dτ ′ wµν∇νDret(zµ, zµ′

)

meff (τ)aµ =
1
4π

(
1
3
wµ

ν
Daν

dτ
+

1
6
wµνRναuα

) (
m2c2

1

m2
pl

− 2m3c2
1c2

m4
pl

F (τ)

)

S[z, σ] = −1
2

∫
d4x g1/2σ,ασ,α −m

∫
dτ C(σ/mpl)

σ,α = φ,αA(φ) σ =
∞∑

n=1

an−1

n!
φn

C(σ) =
∞∑

n=0

cn

n!
σn = B(φ)



Radiation carrying information of second order perturbed motion to a distant observer

• A clever choice for B results in a fully linear scalar theory for the sigma 
variable

• Therefore, one can use this linear theory for sigma to perturbatively 
reconstruct the self-force in the nonlinear theory for phi

B(φ) = C(σ) = 1 + c1σ bn = c1an−1

+ + +

+
m2c2

2

m4
pl

lim
ε→0+

∫ τ−ε

−∞
dτ ′Dret(zµ, zµ′

)F (τ ′)

}

σrad(xα) = −mc1

m2
pl

∫ ∞

−∞
dτ Dret(x, zµ)

{
1− mc2

m2
pl

F (τ)− m2c2
2

4πm4
pl

DF (τ)
dτ

+
m2c1c3

2m4
pl

F 2(τ)

σ =
∞∑

n=1

an−1

n!
φn



Exact conservative self-force
For a linear scalar charge moving on a circular geodesic of a Schwarzschild 
black hole, the regularized field and self-force have already been computed

[Diaz-Rivera, Messaritaki, Whiting & Detweiller (2004)]

Use the linear theory (in sigma), for which the self-force on these orbits is 
already computed, to determine the second order self-force in the original 
nonlinear theory (in phi)

Consider the following model: A(φ) = eαφ

!σ = mc1

∫
dτ

δ4(x− z)
g1/2

aµ = −c1(gµν + uµuν)σ,ν

1 + c1σ
≡ fµ

Equations of motion in sigma variable

σ,µ = φ,µeαφ φ,µ =
σ,µ

1 + ασ

φ =
1
α

ln(1 + ασ)ασ = eαφ − 1



In terms of the phi variable (of the original nonlinear theory), reconstruct the perturbative 
expressions for the self-force

Fµ
(2) = fµ(σ)

(
1− c1

α

) 1 + c1σ

1 + ασ
ln(1 + ασ) =

(
1− c1

α

)
ln(1 + ασ)Fµ

(1)

Fµ
(1) = fµ(σ)

1 + c1σ

1 + ασ

aµ = Fµ
(1) + Fµ

(2) + · · ·

From Burko (2000) and Diaz-Rivera, etal (2004) we know that the first-order self-force for the 
sigma variable (i.e., linear theory) falls off as R-5 and that the regular field falls off with radius 
as R-3. Therefore, at large values of the orbital radius R,

F r
(1) ∼

1
R5

F r
(2) ∼

1
R8

In general, the nth order radial component of the self-force for circular geodesics in 
Schwarzschild falls off with radius R as

Similar kinds of results can be made for energy, angular momentum, and orbital frequency.
Also, the conclusions don't change for generic choices for A or B.

F r
(n) ∼

1
R2+3n



A new numerical approach for 
self-force computations: 

the main ideas
(in progress with Manuel Tiglio, UMD)



The overall approach
• Compute the retarded Green's function in Schwarzschild/Kerr

Once computed, the Green's function is known once and for all

Analytic expressions for the self-force (e.g., MSTQW equation) are given in terms of 
the integral of a retarded Green's function

Higher order analytic self-force equations will be available in the near future implying 
that these higher order corrections can be computed relatively quickly and easily.

• Solve the integrodifferential equation numerically

Want to compute the solution to the self-consistent worldline equations of motion

Need a high order IDE solver to track 10^5 orbits of inspiral
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Conclusions

• Higher order analytic expressions for:

Second order gravitational wave emission 

Second order self-force is nearly complete... stay tuned

Self-force on and GWs from a spinning compact object... in progress

• A nonlinear scalar model

Found exact (conservative) self-force for a nonlinear scalar model

Found that nth order self-force falls with radius as 1/R2+3n

Can describe binaries with arbitrary mass ratio

• Our numerical approach

Still in the early development phase... but comments, criticisms, and shoe-throwing 
are welcome


