
Comments on First and Second 
Order Gravitational Self-force

Samuel E. Gralla
University of Chicago

Capra 2009, Bloomington, IN

or:

some stuff I’d love to have discussions about at this meeting
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1.

 

Perturbative versus Self-consistent formulation

 
•

 

Overview

 
•

 

Role of geodesic deviation term 
•

 

Gauge-dependence

Aside: the “natural”

 

class of gauges

2.   First-order and (hopefully) Second-order Self-force

 
•

 

Equation for the metric perturbations

 
•

 

Center of mass definition

 
•

 

Gauge-independent self-force formula



My definition of perturbation theory is a Taylor series.

For gravitational self-force, one Taylor expands exact solutions in mass M and radius R

 
(or uses a dimensionless parameter proportional to mass and radius).

Every term in this series is evaluated at M=R=0; i.e., the background and all 
perturbations live on the same “background space”.

Our “background space”

 

here is a manifold with a preferred worldline (the place where 
the body “disappeared to”).

Perturbative Formulation

The mathematical objects describing the perturbations are

1. Rank-2 tensors (“metric perturbations”) defined on the background manifold 
minus the background worldline

2. Rank-1 tensors (“deviation vectors”) defined on the background worldline

Once suitable assumptions on a family of exact solutions are found, item 1 follows from 
Einstein’s equation and item 2 follows from a center of mass definition.

That’s all there is to the perturbative formulation



Self-consistent Formulation

Going to higher order in perturbation theory can only help so much.  Eventually, 
the true motion will have deviated from the background motion by

 

so much that 
the series will “not converge”.  At this point it makes sense to switch to a new 
perturbation series, based off of a new background motion that is close to the 
present motion.

One often imagines that this process of “switching to a new background”

 

should 
happen constantly, and correspondingly makes up an equation whose 
appearance suggests those words.  We call such an equation a self-consistent 
perturbative equation.  Examples are the harmonic-gauge-relaxed linearized 
Einstein equation, the MiSaTaQuWa equation, the blackbody-cooling equation, 
and many other equations.

These equations go beyond Taylor’s theorem and have fewer “rules”

 

governing 
how they are derived.  However, in many cases they are obviously

 

better. 

Self consistent equations are like English class: there are no right 
answers, but there are definitely wrong answers.



Examples of Perturbative and Self-consistent Equations

Perturbative result Self-consistent equation(s)

Blackbody cooling
(box with hole of area A)

Gravitational self-force

EM self-force

Metric perturbations

(and              )

(tail on geodesic)
(tail on self-consistent motion

or

 

tangent geodesic)

(source on geodesic) (source on self-consistent motion)

ALD equation not allowed!



Role of geodesic deviation term

Our perturbative derivation came with a surprise,

But it is clear in hindsight that this term should be here.  Consider a one-parameter-

 
family wherein the initial position of a spinless body is smoothly translated with 
lambda.  In the limit as M0 we have a family of geodesics, and the correct 
perturbative description of motion is the geodesic deviation equation.

This term represents the “perturbation to a nearby geodesic”.  As soon as the 
particle has deviated from the background geodesic, it “wants”

 

to move primarily on 
the new geodesic to which it is tangent.  From the vantage-point of the background 
geodesic, this constitutes an extra force.

self-forcespin force

Geodesic deviation!

self-force

The geodesic deviation effect is real!  Unless perturbative calculations of 
inspiral plan to update the background orbit every timestep, these calculations 
should include the geodesic deviation term.



Gauge dependence in the Perturbative Formulation

[audience spared from additional gauge-dependence blurb]  

Consider just smooth gauge transformations.  In this case it is obvious that the 
description of motion just changes by the gauge vector,

If you want the gauge-dependence of the “force”

 

you just take two time derivatives.

That is all there is to it.  The metric perturbations h transform in the standard way, 
and observables are constructed from Z and h.

If the coordinates change to O(λ)…

the O(λ) position of the body changes.

(The treatment of non-smooth gauge transformations will 
be given in part 2 after the discussion of center of mass.)



Gauge dependence in the Self-consistent Formulation (1)

One can extend the notion of gauge to the self-consistent formulation at one’s own risk.

Some dangers are:

Of course, any formalism that works would be very interesting!

•

 

Any self-consistent equation for the metric perturbations has to handle 
non-geodesic motion and will therefore not be the linearized Einstein 
equation.  How does one determine how the solutions of this equation 
change under gauge?

•

 

Some gauges that are perfectly fine perturbatively may not have

 

good 
associated self-consistent equations.  An example is the gauge where the 
self-force vanishes.

•

 

Would the operations of “changing gauge”

 

and “making up a self-

 
consistent equation”

 

commute?



Gauge dependence in the Self-consistent Formulation (2)

That said, there does appear to be a natural notion of the way the “self-consistent 
force”

 

changes under gauge transformations away from the Lorenz gauge.

The equations of motion in the new gauge is

which can be written,

two derivatives of the 
gauge vector for a smooth
transformation

This form suggests

The Barack and Ori

 

law



Part I Punchline

In my experience…

The perturbative formulation is straightforward and clear.

The self-consistent formulation is confusing, but often necessary.

I find the distinction between perturbative and self-consistent 
equations of essential use in understanding such hot topics as 
“gauge invariant observables”, second-order perturbations for 
consistency of the waveform, and runaway solutions in 
electromagnetism.



Aside: Non-smooth gauge transformations

It is clear that at least some non-smooth gauge transformations should be allowed.  
For example, a gauge vector that is radial near the particle simply changes you 
from “isotropic”

 

to “Schwarzschild”

 

coordinates (or back).

Why should the position of a black hole be defined for a hole in

 

isotropic 
coordinates (corresponding to Lorenz gauge), but not for a hole in Schwarzschild 
coordinates (corresponding to a gauge not smoothly related)?

When dealing with finite quantities it is natural to consider smooth coordinate 
transformations.  When dealing with a singularity, it is natural

 

to consider 
coordinate transformations that do not change the “degree of singularity”.  In the 
self-force case the singularity remains 1/r as long as the gauge vector is bounded 
(but it could be direction dependent).  This seems to be the natural class of gauges 
to consider.  (It is also what comes out of our formalism.)



The 1/r singularity is integrable

 

and the equation is linear.  So, one may regard h as a 
distribution and calculate the distributional “stress-energy”

 

.  This gives

First-order and Second-order: Metric Perturbations

Some derivations of self-force begin by considering the (gauged-relaxed) linearized 
Einstein equation with point particle source.  A better approach

 

is to just consider 
extended bodies in GR under “small size”

 

approximations, and see what comes out.  
We assumed a kind of “already matched asymptotic expansion”,

Denoting the first-order part of the metric by h, we have

Conservation of stress-energy (i.e., the distributional linearized Bianchi identity) fixes 
and requires the background worldline x^i=0 to be a geodesic.

We thus find that the first-order perturbations of (1) satisfy the linearized Einstein 
equation with point particle source on a geodesic.



Attempting this procedure at second-order, we have

where M’

 

is a correction to the mass, and S is the spin of the body.

This observation allows jH

 

to be found by Green’s function techniques.

A particular solution must still be found, of course.  (Aside: how does 
one choose “no incoming radiation”

 

here?)

The 1/r^2 singularity is integrable, so j—and hence G1[j]—make sense as 
distributions.  But G2[h,h] goes as 1/r^4 and does not define a distribution.  
There is therefore no distributional interpretation

 

of the Einstein equation at 
second-order.  However, homogeneous solutions jH

 

can still be treated 
distributionally.  The “stress-energy”

 

calculated  is  will be

background geodesic



First-order and Second-order: Center of Mass

The assignment of a “representative worldline”

 

to a body in exact General Relativity is 
at best highly non-trivial.  In the case where the body is a black hole, such a task 
seems impossible.

However, there is a perturbative notion of “position”

 

for black holes and other bodies.

To illustrate our perturbative center of mass definition, consider the Schwarzschild 
metric of mass M0

 

λ

 

in coordinates that are shifted to O(λ). We ask, “Where in flat 
spacetime is the center of the black hole”? Consider just the time-time component,

There is no position information is in the zeroth order term.

The first-order term tells you the background position (by being singular at r=0).

The second-order term tells you the first-order position via a dipolar distortion.  
It is still singular on the background worldline.



Such an O(λ^2/r^2) dipolar distortion shows up in the “near-zone”

 

at zeroth order, where 
the metric (characterizing the “body at an instant of time”) is known to be stationary and 
asymptotically flat.  It becomes the mass dipole moment, a quantity well-known to 
characterize the origin of coordinates.

I want to emphasize: The information about where the body “is” to first-order is 
contained in the second-order metric perturbations.

It turns out, however, that where the body is “accelerating to”

 

to first order (i.e., two 
time derivatives of the perturbed position) can be found from just the zeroth and 
first-order metric.

We define the perturbed center of mass to be (minus) this mass dipole (equivalently, the 
smooth far-zone gauge transformation required to eliminate the mass dipole).



Second Order Center of Mass?

A second-order shift in coordinates will introduce a dipolar dipolar distribution at 
O(λ^3/r^2), i.e., in the third-order metric perturbations.

The extra power of λ

 

makes this translate to the

 

near-zone first-order metric instead 
of the background.  Here one deals with a solution to the linearized Einstein equation 
that can a priori be neither stationary nor asymptotically flat.

However, it turns out that the solution is stationary to O(1/r^2) (this is related to the 
constancy of the lowest-order mass and spin), and also asymptotically flat (this is 
related to geodesic background motion).  Thus, it appears reasonable to generalize 
the “mass dipole moment”

 

notion to this setting.

However, there is a new subtlety: for certain (far-zone) gauge choices the near-zone 
perturbations do not come out in coordinates adapted to the (approximate) timelike 
killing field. It is not clear whether it makes sense to speak of the “spatial position”

 

of 
a (stationary!) body expressed in such coordinates.

I do hope to have this all resolved soon!



Gauge dependence at first order

The mass dipole (i.e., perturbed position) can be extracted with

 

the formula

According to our “already matched expansion”

 

assumption, the gauge vectors behave as

Notice that second-order gauge changes 
don’t affect what we’ve claimed is the first-

 
order position (phew!).One can then compute that

We can now ask how the perturbed position changes under changes of gauge.  
We need the second-order gauge transformation law,

and plug to the top in to find

This formula holds for all allowed gauges.



Gauge-independent self-force formula (first order)
We had

The force is just two derivatives, and we manipulate…

…to get a formula in terms of the change in the metric perturbations.  This 
function of a rank-2 tensor also gives the correct self-force when the Lorenz 
gauge metric perturbations are inserted.  Thus it in fact gives the self-force in 
an arbitrary (allowed) gauge,



Gauge at second-order

Now we need the third-order gauge-transformation formula,

The gauge vectors go like

and the expression for the change in the mass dipole is much more complicated.  
Some apparently pathological terms correspond directly to redefining the time 
coordinate away from the (approximate) timelike killing field.  Other terms are not 
yet understood.

Once this is understood, I should be able to derive the analogous formula for the 
change in second-order self-force under a change of gauge.  Hopefully there is also an 
argument that lets me leap to a gauge-independent second-order self-force formula!



fine
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