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Plan of the talk

Newtonian SF - Uniqueness of free fall - Equivalence principle
Why radial fall (still) ?

Repulsion and velocity at the horizon : the Schwarzschild controversy
1916-2008 (?)

State of the art in the SF for radial fall
Exact 1% order perturbations vis a vis self-force/pragmatic

Continuity (Conditional) of the RWZ perturbations at the position of the
particle

Approximative correction of the waveforms by radiation reaction through
energy balance (with Sofiane Aoudia)



Newtonian self-force (circular)

The Newtonian confusion gauge
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The finitude of the mass may have ambiguos consequences

but it is there...(unless one cancels it in a specific frame, a sort of
equivalence principle - for which gravity disappears in a given
coordinate system - in a Newtonian form)



Uniqueness of free fall

The Newtonian self acceleration For circular motion Detweiler S., Poisson E., 2004. PRD, 69, 084019
Origin of coordinate system = centre of mass

Two bodies M, m and the point P have coordinates p, R,

r
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The equivalence principle as uniqueness of acceleration doesn’t hold. It should state:
All bodies behave independently of their mass....if we neglect their mass




The (multifaceted) equivalence principle
(approximation)

* L All bodies fall with the same acceleration independently from the value of their
mass (sometimes referred as the uniqueness of accceleration principle).

* ]I. Bodies equally accelerate under inertial or gravitational forces.

* [II. Bodies equally accelerate independently from the composition of their masses

In general relativity, the language style gets more sophisticated:

* IV. At every spacetime point in an arbitrary gravitational field, it is possible to
choose a locally inertial coordinate system such that, within a sufficiently small
region around the point in question, the laws of nature take the same form as in an
unaccelerated coordinate system. The laws of nature concerned might be

all laws (strong equivalence principle), or solely those dealing inertial motion (weak
equivalence principle version) or all laws but those dealing inertial motion (semi-
strong equivalence principle)

* V. A freely moving particle, of negligeable mass and size, follows a geodesic of 6
spacetime



The Equivalence principle

(it feels comfortable not to be alone)

...Perhaps they speak of the Principle of Equivalence. If so, it is my turn to have
a blank mind, for I have never been able to understand this Principle...

Does it mean that the effects of a gravitational field are indistinguishable from
the effects of an observer's acceleration? If so, it is false. In Einstein's theory,
either there is a gravitational field or there is none, according as the Riemann
tensor does not or does vanish. This is an absolute property; it has nothing to
do with any observer's world-line. Space-time is either flat or curved....

(the converse is also far reaching)

The Principle of Equivalence performed the essential office of midwife at the
birth of general relativity. ..

I suggest that the midwife be now buried with appropriate honours...

J.L. Synge
Synge J.L., 1960. Relativity: the general theory, North-Holland Publishing Co.
Or else see Rohlrich F., 2000. Found. Phys., { 30}, 621.



Eisenstaedt J.,1987.

"The impasse (or have the relativists fear of free fall? [..] cresect- "o

the problem of the free fall of bodies in the frame of [..] the
Schwarzschild solution. More than any other, this question
gathers the optimal conditions of interest, on the
technical and epistemological levels, without inducing
nevertheless a focused concern by the experts. Though, is it
necessary to emphasise that it is a first class problem to
which classical mechanics has always showed great *
concern ... from Galileo; which more is the reference
model expressing technically the paradigm of the lift in
free fall dear to Einstein ? The matter is that the case is
the most elementary, most natural, an extremely simple
problem ...apparently but which raises extremely delicate
questions to which only the less conscious relativists
believe to reply with answers [..| Exactly the type of naive
question that best experts prefer to leave in the shadow,
in absence of an answer that has to be patently clear to be |
an answer. Without doubts, it is also the reason for which |

this question induces a very moderate interest among the
relativists ..."}



Why radial fall ? (still)

Epistemolo gy / Reference (How do we evaluate progress on
knowledge? )

HiStOI'y,S markings (Pisa tower, Cambridge apple tree, Einstein lift)

No compromise (1 no adiabatic escape* 2 coupling r,t) most delicate issues
are present. No cumulation of effects does not mean their not existence).

Learning case for highly eccentric ? o claim)
The final part is plunge (initial velocity ?)
State of the art (Is it satisfactory ?) Before SF and after SF

* The non-adiabatic gravitational waveforms are aimed by the self-force community
since they express

i) the physics closer to the black hole horizon

ii) the most complex trajectories, the most tantalizing theoretical questions.



Repulsion : the Schwarzschild controversy 1916-2008 (?)

Arifov L.I., 1980. Probl. Teor. Grav. Elem. Chast., { 11}, 96. English translation:

Arifov L.Y., 1981. Soviet Phys. J., { 24}, 346.

Baierlein R., 1973. Phys. Rev. D, { 8}, 4639.

Bauer H., 1922. Matematische einfiihrung in die gravitationstheorie Einsteins, Leipzig.

Becquerel J., 1922. Le principe de relativité et la théorie de la gravitation, Gauthier-Villars et Cie.

Bolés V.J., 2006. J. Geom. Phys., {56}, 813

Bolés V.J., 2007. Commun. Math. Phys., {273}, 217.

Cavalleri G., Spinelli G., 1973. Lett. N. Cim., { 6}, 5.

Cavalleri G., Spinelli G.,1977, PRD, { 15}, 3065.

de Jans C., 1923. Mem. Acad. Roy. Belgique Cl. Sci., { 7}, 1.

de Jans C., 1924. Mem. Acad. Roy. Belgique Cl. Sci., { 7}, 1.

de Jans C., 1924. Mem. Acad. Roy. Belgique Cl. Sci., { 7}, 96.

Droste J., 1916a. Het zwaartekrachtsveld van een of meer lichamen volgens de theorie van Einstein, Doctorate thesis, Dir. H.A. Lorentz, Rijksuniversiteit Leiden.
Droste J., 1916. Kon. Ak. Wet. Amsterdam, { 25}, 163. English translation: 1917. Proc. Acad. Sci. Ams., { 19}, 197.

Drumaux P., 1936. Ann. Soc. Sci. Bruxelles, { 56}, 5.

Eddington A.S., 1920. Nat., { 105}, 37.

Eisenstaedt J., 1982. Arch. Hist. Exact Sci., { 27}, 157.

Eisenstaedt J., 1987. Arch. Hist. Exact Sci., { 37}, 275.

Hilbert D., 1917. Gii}tt. Nachr., 53.

Hilbert D., 1922. Math. Ann., { 92}, 1.

Jaffe J., Shapiro 1.I., 1972. Phys. Rev. D, { 6}, 405.

Janis AL, 1973. Phys. Rev. D { 8}, 2360.

Janis AL, 1977. Phys. Rev. D, { 15}, 3068.

Frolov V., Novikov I, 1998. Black hole physics, Kluwer Academic Publ.

Loinger A., Marsico T., 2009. ArxiV:0904.1578v1

Markley F., 1973. Am. J. Phys., { 41}, 45.

Mc Gruder III C.H., 1982. Phys. Rev. D, { 25}, 3191.

McVittie G.C., 1956. General relativity and cosmology, Chapman and Hall.

Mitra A., 2000. Found. Phys. Lett., { 13}, 543.

Muller_T., 2008. Gen. Rel. Grav., {40}, 2185

Page L., 1920. Nat., { 104}, 692.

Rindler W., 1979. Essential Relativity, 2nd revised edition, Springer.

Robertson H.P., Noonan T.W., 1968. Relativity and Cosmology, W.B. Saunders Company

Shapiro S.L., Teukolsky S.A., 1983. Black holes, white dwarfs, and neutron stars: the physics of compact objects, Wiley.

Spinelli G., 1989. 5th Marcel Grossmann Meeting, 8-13 August 1988 Western Australia, D.G. Blair and M.]. Buckingam Eds., World Scientific, 373.
Srinivasa Rao K.N., 1966. Ann. Inst. Poincaré, { 5}, 227.

Synge J.L.., 1960. Relativity: the general theory, North-Holland.

Treder H.J., 1972. Die relativitit de trdagheit, Akademie.

Treder H.J., Fritze K., 1975. Astron. Nachr., { 296}, 109.

von Laue M., 1921. Die relativitdtstheorie. Vol. 2, Die allgemeine relativitdtstheorie, 1st edition, Vieweg und Sohn. French translation: 1926. La théorie de la relativité. Vol. 2, La
relativité générale et la théorie de la gravitation d'Einstein, Gauthier-Villars et Cie, transl. of the revised and integrated 4thedition of Von Laue M., 1921, published in 1924.
von Rabe E., 1947. Astron. Nachr., { 275}, 251.

Whittaker E.T., 1953. A history of the theories of aether and electricity. Vol. 2, Nelson.

Zel'dovich Y.B., Novikov I.D., 1967. Relyativistskaya astrofyzika, [zdatel'svo Nauka. English translation (revised and enlarged): 1971, Relativistic astrophysics, Univ:.l'g"licago
Press.



Repulsion : the Schwarzschild controversv 1916-2008 (?)

d’r Despite the mathematical

Unrenormalised acceleration 1) 7 simplicity, confusion and
; controversy dominated
d R this debate for almost 100
Renormalised acceleration 2) T2 years and invested
. , hotorious scientists.
. . . 3) d"R  d°T Isthere repulsion ? Does a
A semi-renormalised acceleration dt? AT particle reaches the speed

of light at the horizon ?

Four types of measurements can be envisaged: local measurement of time
dT'. non-local measurement of time df, local measurement of length dR. non-
local measurement of length dr. Locality i1s somewhat a loose definition but
hints at those measurements affected by gravity (of the SD black kole). while
non-locality hints at measurements not affected by gravity (of the SD black
hole)'?. Therefore, for determining (velocities and) accelerations, four possi-
ble combinations do exist:
Coordinates/ Initial conditions/ 2M / Wording / Passion for a gauge

The repulsive gang (Kerr metric excluded): Droste ¥, Hilbert, Bauer, Page, Eddington,
von Laue, de Jans, McVittie, Jaffe and Shapiro, Treder and Fritz, McGruder, Arifov +...

* 1916 independent derivation of the SD metric



The first to introduce the idea of gravitational repulsion was Droste [25,

26]. He defines:

dR— % (8)
/1 —2M

/ =

which, when integrated. Droste calls the ¢ distance from the horizon. This
quantity is derived from the SD metric posing dt = 0, delicate operation since
the relation between proper and coordinate times varies in space [36], and
thus it may be accepted only for a static observer (obviously the notion of
static observer raises in itself a series of questions [15].). Droste derives that
in radial trajectories, the acceleration in coordinate time 1s given by (4 1s a
constant of motion. equal to unity for a particle falling with null speed at

infinity):

- 2(@3)2‘

d2R M| [ 2M dt M AMYN [ 2M

E e L N 74 _r_g(l_ZA+ ; )\-’1‘7 ®)
_ Vim=

From eq.(9) two conditions may be derived for the semi-renormalised accel-
eration, for either of which the repulsion (the acceleration is positive) occurs:
for A=1, r < 4M or else dR/dt > \,-’; 1/2 1,.«"“ 1 —2M/r. Instead in his thesis
25], Droste uses the unrenormalised acceleration:

(10)

iz~ 7 72 r—2M

for which repulsion occurs if. for a particle falling from infinity with null
initial velocity. 7 < 6M or else dr/dt > 1/v3(1—2M /7).

d’r M (-r—Qﬂ-:f_ 372 )
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In the later and French editions of his book, von Laue [50] writes the radial
geodesic In proper time but it i1s only in 1936 that Drumaux exploits it. The
local or proper time given by:

aT = 1—Ed (11)

allows him to state that the velocity and the acceleration in proper time.
respectively given by (E is the orbital energy defined by E = dt/dT(1 —

2M/r):
dR | d-r | M
= E —y A
aT ( ,_2M \E - (12)
% ?1
#R_ M1 [T2M _ M _ 1 13
dar? ~ B2\ 2 [ oM

VT

do not show any repulsion. This result 1s confirmed by Whittaker [52]12.
Nevertheless McVittie, almost thirty vears later [42], still reaffirms that the
particle 1s pushed away by the central body: repulsion resurfaces according
to Jaffe and Shapiro, in a rather obscure paper [33], Treder [48] and in coop-
eration with Fritze [49], Arifov [16, 17].

13



State of the art 2009 a.C. 12 a.S.-F.

“The radial component of the SF is found to point inward (i.e., toward the black hole)
throughout the entire plunge. This seems to be a universal feature which does not
depend on the starting point r,. Consequently, the work done by the SF on the particle is
positive, resulting in that the energy parameter E increases throughout the plunge. It is
important to stress, however, that this result will be attached to our specific choice of
gauge ~as opposed to the energy flux at infinity, which is gauge invariant! “(Barack L.,

Lousto C., 2002. PRD, 66, 061502)

“ the resulting reaction force is repulsive ” (Lousto C.O., 2001. CQG, 18, 3989)
“Radiation reaction effects become more important as the particle approaches the
maximum of the Zerilli’s potential (around r max 3.1 M. They tend to decelerate the
particle with respect to the zeroth order (Schwarzschild) geodesics. This is what one

would qualitatively expect a priori since the system is losing energy and momentum in
the form of gravitational radiation.” (Lousto C.O., 2000. PRL, 84, 5251)

Why the (apparent) discrepancy ?

- Proper time /Coordinate time

- Geodesic deviation terms absent in

SE paper 14



6.2 The pragmatic approach

Lousto C.O., 2000. PRL, 84, 5251; 2001, CQG, 18, 3989; Spallicci A., Aoudia S., 2004.CQG, 21, S563.
The straightforward pragmatic approach [125, 126, 128] is is the direct im-
plementation of the geodesic in the full metric (background + perturbations)
and 1t 1s coupled to a renormalisation by the Riemann-Hurwitz ¢{ function.
Though the application of the { function is somewhat artificial and the prag-
matic method is somewhat naive, the latter has the merit of a clear identifi-
cation of the different factors participating in the motion.

Dealing only with time and radial components. two geodesic eguations
can he written and then combined into a single one, after elimination of the
geodesic parameter. Thus, 1t consists of the computation of the coordinate
acceleration. given by, for radial fall, by the sole radial component:

Ey =Tk 5+ (2T}, —I7,) 25+ (T, - 2T, ) 2, — T, (46)
where I'g. refers to the full metric and z, is given by eq. (47). In eq. (46),
it is considered:

the full field g, (r.t) previously defined,;
the displacement Az. difference between perturbed (z,) and unperturbed
(z,(t)) positions, and its time coordinate derivatives:

Zp = Zu(t) + Az Zp =2y +AZ Pp=Eu+AE  (47)
e the Taylor development of the field and its spatial derivative:

Guv |zﬁ:§pu |zu[t} ""ﬂ:g,uu,r |1r‘=z1¢{t] Juu.r |zp: Guuv.r |zu[t} +£:§';¢u_,-rr r=z,(t)
(48)



RUZ R R Az Az
— & A —— (49)
g g g <p <p
Then the coordinate acceleration correction 1s given by a development up
to 1°¢ order for all quantities:

AZ=0a1(g,24) Az +aa(g,24) Az +ag(h, ) (50)

which corresponds to the expression in [125, 126]?2. All terms (see Tabs.
1-2) in eq. (50) are of 1/M order; the terms o 24 represent the background
field evaluated on the perturbed trajectory (they may alternatively be inter-
preted as producing the geodesic deviation of two particles initially separated
on the radial axis by a Az distance or two particles at initial differential speed
Az); ag represents the perturbed field on the background trajectory. The ex-
pression in Tab.2 1s in Regge-Wheleer gauge and thus Hp = Ho and K =0
as In head-on geodesics.

The particle determines in first instance the emission of radiation h,g3.
which after backscattering by the black hole potential, interacts with the
particle 1tself resulting into a change in acceleration (ag being a h and deriv-
atives depending term). The latter places the particle elsewhere from where
it should have been, that 1s z,(t). The field 1s thus to be evaluated at this new
position resulting into a further variation in acceleration (a1 Az and as Az

being gos and its derivatives depending terms).

16



+h

Radial geodesic in the perturbed metric Eaop aff to be regularised
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Lousto C.O., 2000. PRL, 84, 5251; 2001, CQG, 18, 3989; Spallicci A., Aoudia S., 2004.CQG, 21, S563.




Table 1 First order rachal fall coordinate time geodesic terms
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The C° continuity class of the metric perturbations allows to deal with the
divergence with [ of the ag term [125, 126]. Indeed, the infinite sum over the
finite multipole components contributions leads to the problem of dealing
infinities in the results. One way of regularising this sum 1s to subtract to
each mode precisely the [ = o0 contribution, since for ever larger [ the metric
perturbations tend to an asymptotic behaviour. Thus. the subtraction from
each mode of the [ — o¢ leads to a convergent series. The renormalisation by
the Riemann-Hurwitz ¢ function was proposed first in [125, 126] and then
extended to higher orders in [128]. For L =14-0.5, it can be shown that:

ag=) af af=0ad L+all’+al L' +adL=2+0(L7?) (51)

eq. (51) is casted to have a similar form to the mode-sum expression.
The average of ag. and ag, vanish at the position of the particle, whereas
S o0 d(1+0.5)% determines the divergence.

The Riemann ¢ function [131] and its generalisation, the Hurwitz { func-
tion [132], are defined by:

()= ()~ ((s,0)=7) (I+a)° (52)
=1 =0

where in our case a = 0.5. Two special values of the Hurwitz functions
€(0.0.5) =0 and ¢(2.0.5) = 1/272 nullify the divergent term and determine
that the term Zin adL=2? gets a finite value. respectively.

19



Regularisation (method zeta)

=~J

For n>l >3 modes converge to the same behaviour

(2]
e T e
T T (O T T 11
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L= 1

20
hﬁ ~ h
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Regularisation by subtraction of the divergent part

It is applicable to RWZ gauge (and any gauge)
Used in quantum mechanics and field theory (vacuum expectation value) + others

Drawback: Based on not evident mathematical properties of the Z function 20




Objectives
1) Comparison self-force versus pragmatic via 1st order perturbation (GW

rigorous derivation)
2) Visibility in coordinate time

i i L -3 7 § i 3 o J' a1l 7] §
u'V, (WPv2%) = —Rgs*u” Z7u’ — (g*° + W u)(V; higy — 5‘?_,-3?1; 5w’
(57)

Du“ d2 2

F&p= —=— +0rg. uBu?
aT T o
d’t ¢ Opt 8.~ ’ 1., 5 * = tail 1
) = Fogp—mTz u"u’ = —mg" (hg 5 §I1n.u__a w¥u® —mk? = tail or regular
2 I
d“r - . g - - 1 g -
—— = F .= —mT uPu —mg™P R, s — =h¥s 5 | T —mE
172 self ol g e S L
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Since:

d dtd dr _dr &t d’r ( dt ?
dr  drdt dr?  dtdr? dt? \dr
after some computation:
d?r P 1 ~ &l -
= m | T5,074L (s 5h0 ) 707 )
| 3l . 1., o )
~mTg, 0% mg™ (hﬂﬂf 3~ 5hs ;.ﬂ) v’ (64)

The term &% disappears when the self-force is expressed in coordinate
time. Furthermore, a tedious computation shows that eq. (65) 'expresses the
self-force in coordinate time and it 1s nothing else than the ag term of eq.
(50) apart regularisations by mode-sum or Riemann-Hurwitz ¢ function:

f " I- " T ! 4 J‘ * v 8 E
ag + g*” (h.ﬁ’}' 3~ 5he ;.3) 70 2 (1) — g"° (h.ﬁ’ﬁf 5~ 5P ;.:'3) vlv®  (65)

The recasting of the Riemann tensor term and of the left-hand side of eq.
(57) into coordinate time should show the equivalence to the a9 terms in
eq. (50).



Yo o 3 o . 3y 0 ;o3 e 3 tail 1 _ tmily Y O
w'Va(u"VgZ™)=—Rgys v Z'uw = (g " +uw u” )(Vihg — Ev'ﬁhﬁ’ﬁ Ju'u

(54

oAz a,Az o
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The renormalized radiative piece of the reaction on ¥#,.
We show the regularized sum over £ = 10 multipole contribu-
tions to C, as defined in Eq. (5). Below. the first-order trajectory
r:‘;”._ for my = 0.1M . is compared to the zeroth order one, r}?:'.

r

=7 %3 24 25 26 27,
— =0
— =1
2 3 4 5 8
15 JE*[  aMm |\ N
——ur—| E*+ —1)}:‘ +O(L™%),
167 ;21 T, |
p Fs
, 15 . d |7
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ez 160 Tar\r,,

Why the (apparent) discrepancy ?
- Proper time /Coordinate time

- Geodesic deviation terms absent in SF paper
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Where are we (Orléans) ?

Determination of regularisation parameters via mode-sum and confirmation of
existing results (Aoudia thesis)

Development of a time domain numerical code for solving Regge-Wheeler-
Zerilli equation. Waveforms at infinity like LP-MP

Comparison between pragmatic and self-force expressions (of relevance also in
the frame suggested by the GW “self-consistent” prescription). Role of
geodesic deviations.

Extension of the Riemann-Hurwitz Z function regularisation for higher orders,
Class. Quantum. Grav., 21, S563.

We got stuck in the computation of the perturbations at the position of the
particle and suspected for a while the perturbations not being C° *

Approximative determination of the corrections in the waveforms due to

radiation reaction via energy balance for masses in radial fall.
25



In radial fall. it has been shown by two different heuristic arguments
(125, 127] that the metric perturbations are of C° continuity class at the
location of the particle. One argument [125] is based on the integration over
r of the Hamiltonian constraint, which 1s the ¢t component of the Einstein
equations (eq./C7al in [71]) and the resulting leading order of d,¥; the other
127] on the structure of selected even perturbations equations. In the Appen-
dix, a more stringent demonstration on the C'° continuity is given in terms
of the jump conditions that the wavefunctions and derivatives have to satisfy
to guarantee continuity of the perturbations. Anyvhow. the connection coef-
ficlents and metric perturbation derivatives have a finite jump and they can
be computed as the average of their values at z, £¢ with € — 0.
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The C° continuity class for the perturbations at the position of the particle
in the Regge-Wheeler gauge 1s analysed herein. The purpose 1s to identify the
conditions on the wavefunction ¥ that determine such continuity. After visual
inspection of eq. (25), containing a derivative of the Dirac delta distribution,
it is evinced that the wavefunction ¥ is of C'~! continuity class (¥ may
contain functions of higher continuity class) and thus can be written as:

Ul(t,r)=U"(t,r) @1+ (t,r) O (68)

while its derivatives are given hy:

U, =010, +¥; 0+ (TT—F")6 (69)
Vpr = U501+ 05,0y +2(FF ~07)6+ (IT-07)8  (70)
U =0;01+0;0y+ (T —F") 2,6 (71)

Uy =01,01+0 Os+ (U -0, ) 2,0+ (07 —T7)0

(O =T ) 26— (T =T ) 2,8 (72)

where @1 = O[r — z,(t)], and @y = O [z,(t) — 7| are two Heaviside step
distributions; 4 and &' stand for dlr — z,(¢t)] and &'[r — 2, ()] respectively.
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The perturbation functions K, Ho, Hy are given by [125]:

a2 . L el . J,rﬂ Y 2
o BM2 +3MAr+ MM+ 1)y ﬂ?H—('l—E v k U%(r —2M)
r2(Ar+3M) r (A+1)(Ar+3M)r
(73)
OM3 +OAM2r 302 M2 + 22 (A +1)73 3M?Z —AMr+ \r?

Hy=— , : 1/ , 0 - —IMT,
2 r2(Ar+3M)2 N r(Ar—+3M) rt JWorr
_|_HUG[:?'—2;H}[AETE—’:2)&;“1-1’-?’—3;“l-ir-r’—|—3;“l-f2] 5 kU (r —2M)2 5 (1)

A+ 1)(\r +3M)2 A+ 1)(A\r+3M) “
_ 2 o S LU VN P e U0 2wy ]

Hy—rily + A2 —3MMA\r—3M 7,5 U® 2y M+ M) o £ U° 2y r(r—2M) ,

P —2M) (A +3M) (A+1)(Mr+3M) (A+1)(Ar + 3_113.
(75)

It 13 wished that the discontinuities of ¥ and its derivatives are such that
they are canceled when combined in iK', Hs and H;y. To this end, the per-
turbations, expressed as functions of ¥ and 1its derivatives, may be written
as:

K = f1(r) 0+ fo(r) T p+ f3(r)8]r — 20 (1)] (76)

— fa(P)T + o ()T p+ fo ()T + Fr(r)8[r — 2u(2)] + fo(r)8 [r — 2 (2)
(77)

= fo(r)W re + fro(7)W s + f11(r)0r — 2u ()] + fr2(r)d'[r — zu(8)]  (78)
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where the definitions of the f functions are drawn by visual mmspections
of eq.s (73. T4, 75). After replacing ¥ and 1ts derivatives 1n eq.s (76. 77, 78).
continuity requires that the coefficients of @1 must be equal to the coefficients
of @2, while the coefficients of § and &' must vanish separately. After some
teclious computing and making use of one of the Dirac delta distribution
properties: f(r)d'r — z.(t)] = flzu(t))d8 [r — 2z ()] — F20(t))d[r — 2u(t)], at
the position of the particle, 1t 15 obtained for K-
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- fe~f3
' f2

f2

i +.fE','-'_

The jump conditions set by &gs 81 ) are equivalent. The other

Jump conditions to be satisfied -'cc:mmg from H2 and Hy) are:

fa(PT —07) = f (P —w7)
ST 7T fﬁ

(82)

(foZur— foriu+ Flocu) (FT—F7 ) — f11 + fi2.»

(83)
fg % K

L

T T
ot g, = L0\ 7 (84)
7E LTE . /
fo
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Résolution numeérique de I’équation de Zerilli
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Résolution numeérique de I’équation de Zerilli

Pour de moyennes séparations
Initiales, les trois phases de radiations

commencent a ne plus se discerner.
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Résolution numeérique de I’équation de Zerilli

Pour de faibles séparations initiales,
les trois phases de radiations se
confondent.
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En ergy balance (|:2) (Approximate since instantaneous energy balance is used)

dEss 1 (14 2)! (61;',1)2

Flux at infinity du  64n(l—2)

du

Radiated energy at infinity

Foo(u) = 1 (+2) /; (@)Edu

retarded time u 64r (1 —2)! Jo \du
~tol ﬁ - 2

Energy absorbed by the BH at Epg =0254 Blot — 1 (14 2)! [ (a_L) o

retarded time u Eoo(u) o 64r (1-2)! Jo \du
Ey(uw) = —gtct CH

New energy of the particle Ep(u) = E — Eoo(u) — Ep(u)

/
E=/1-2M/rg

Test case for initial null velocity at starting point: limited effects
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Waveforms corrections

Decalage de temps (s)
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+ Corrected waveforms (0,01 m?c?/M for all I; 0,25 m?c?/M for 1=2)
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= é;} (k + %)_S —2°Y (2k4+ 1)

k=0

)= 3 (zk)—S]
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2-5‘ [§ (k)—s_g—s Z (k)—S]
k=0

k=0

= (2 - 1) ¢(s)

((o2)=c
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Extension de larégularisation par la fonction zéta

L=1+ % Calcul du comportement en
L des dérivées supérieures des ¥
a la position de la particule

8
=

~

Q &
ST

CE% = &%LD 4+ &%L‘Q

3
N

rrr | ;= > ai {}:":7 = &%Lz ~F a%LD S5 Ck%iL_z

] 8
~ 5
o b

{158 = a%LD 4+ &%L‘Z

~
~

| | €l ]| <l <l €l €
S
5

8
3y

ag = o ((0,0.5) +af ¢(2,0.5) £(=2,05)=0 £(0,05)=0

Jrr

1,
ol = a8 ¢(~2,0.5) +ab ¢(0,0.5) +a§ ¢(2,0.5)  (205)=>z

al = ad ¢(0,0.5) + af ¢(2,0.5)

Arp = a:1&rp+a2&%p+a3&r§+a4&?‘§—l—cxg,&rpz‘_\ fprprzp

Spallicci & Aoudia (2004).Class. Quantum. Grav., 21, S563.
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