
Self-Force for a Scalar Particle in

Schwarzschild Spacetime:

Time-Domain Calculations with

Adaptive Mesh Refinement

Jonathan Thornburg

Department of Astronomy

Indiana University

Bloomington, Indiana, USA



Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme



Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Lorenz gauge:

• metric perturbation from point particle is relatively simple
(locally isotropic)



Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Lorenz gauge:

• metric perturbation from point particle is relatively simple
(locally isotropic)

Decompose metric perturbation into spherical harmonics (ℓ,m):

• metric perturbations aren’t separable
⇒ compute modes via time-domain numerical integration

⊔⊓φℓm + Vℓ(r)φℓm = Sℓm(t) δ
(

r(t)− rparticle(t)
)



Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Lorenz gauge:

• metric perturbation from point particle is relatively simple
(locally isotropic)

Decompose metric perturbation into spherical harmonics (ℓ,m):

• metric perturbations aren’t separable
⇒ compute modes via time-domain numerical integration

⊔⊓φℓm + Vℓ(r)φℓm = Sℓm(t) δ
(

r(t)− rparticle(t)
)

Compute self-force via regularized mode sum:

F c

self ∼
∑

ℓ

[

(

∑

m

[

∇cφℓm

]

particle

)

− (ℓ+ 1
2
)A − B

]



Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., ℓ ≤ 30 ⇒ 256 modes)
to very high accuracy, with time-dependent δ-function source terms.



Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., ℓ ≤ 30 ⇒ 256 modes)
to very high accuracy, with time-dependent δ-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown ⇒ use arbitrary BCs (φ = 0) and choose domain large
enough for each mode so transients decay by end of integration.



Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., ℓ ≤ 30 ⇒ 256 modes)
to very high accuracy, with time-dependent δ-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown ⇒ use arbitrary BCs (φ = 0) and choose domain large
enough for each mode so transients decay by end of integration.
(Domain size varies
strongly with ℓ.)



Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., ℓ ≤ 30 ⇒ 256 modes)
to very high accuracy, with time-dependent δ-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown ⇒ use arbitrary BCs (φ = 0) and choose domain large
enough for each mode so transients decay by end of integration.
(Domain size varies
strongly with ℓ.)

r∗

tSchw vu

p
ar

ti
cl

e

v
=

v
m
in

v
=

v
m
a
x

u
=

um
in

u
=

um
a
x

Use characteristic grids,
⇒ very easy to handle BCs



Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., ℓ ≤ 30 ⇒ 256 modes)
to very high accuracy, with time-dependent δ-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown ⇒ use arbitrary BCs (φ = 0) and choose domain large
enough for each mode so transients decay by end of integration.
(Domain size varies
strongly with ℓ.)

r∗

tSchw vu

p
ar

ti
cl

e

v
=

v
m
in

v
=

v
m
a
x

u
=

um
in

u
=

um
a
x

Use characteristic grids,
⇒ very easy to handle BCs

Integrate one v = constant
slice at a time via usual
diamond-cell scheme (!)



4th Order Finite Differencing: Vacuum

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3

Vacuum region:

• scheme described by Haas (2007):

• requires 3 past time levels,
and 3 past points to start
integrating a slice



4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline



4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline
[Could use jump conditions like Sago.]



4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline
[Could use jump conditions like Sago.]

Use hybrid scheme:

• If evaluating at i = iparticle ± {1, 2},
use Haas off-centered scheme.

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3



4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline
[Could use jump conditions like Sago.]

Use hybrid scheme:

• If evaluating at i = iparticle ± {1, 2},
use Haas off-centered scheme.

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3

• If evaluating at i = iparticle,
compute 2nd order steps using
cell sizes 1, 2, and 3 × normal,

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3



4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline
[Could use jump conditions like Sago.]

Use hybrid scheme:

• If evaluating at i = iparticle ± {1, 2},
use Haas off-centered scheme.

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3

• If evaluating at i = iparticle,
compute 2nd order steps using
cell sizes 1, 2, and 3 × normal,

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3



4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline
[Could use jump conditions like Sago.]

Use hybrid scheme:

• If evaluating at i = iparticle ± {1, 2},
use Haas off-centered scheme.

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3

• If evaluating at i = iparticle,
compute 2nd order steps using
cell sizes 1, 2, and 3 × normal,

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3



4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline
[Could use jump conditions like Sago.]

Use hybrid scheme:

• If evaluating at i = iparticle ± {1, 2},
use Haas off-centered scheme.

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3

• If evaluating at i = iparticle,
compute 2nd order steps using
cell sizes 1, 2, and 3 × normal,
then Richardson-extrapolate
to 4th order.

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3

i

i
−

1

i
−

2

i
−

3

j

j
−

1j
−

2j
−

3



Adaptive Mesh Refinement: Motivation

φ and its derivatives have very high dynamic range across the
problem domain:

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

ph
i

re
fle

ve
l

u

phi(u) on relative v=190.0 slice

relative u

real
imag

magnitude
reflevel



Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:



Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain



Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

• integrate each grid independently



Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

• integrate each grid independently



Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

• integrate each grid independently

• fine-grid initial & boundary data
interpolated from coarse grids



Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

x

t

x

t

x

t

• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

• integrate each grid independently

• fine-grid initial & boundary data
interpolated from coarse grids

• inject fine-grid results back into
coarse grid when/where points
coincide [keeps coarse-grid
solution from drifting away
from (accurate) fine-grid solution]



Adaptive Mesh Refinement: Characteristic Berger-Oliger

Standard Cauchy Berger-Oliger also
works in characteristic coordinates,
with one modification: after injecting
fine-grid data back into coarse grid,
we need to re-integrate the tail
of the coarse slice starting from
the injected data.



Adaptive Mesh Refinement: Characteristic Berger-Oliger

u

v
=

v
m
in

v

u
=

um
in

Standard Cauchy Berger-Oliger also
works in characteristic coordinates,
with one modification: after injecting
fine-grid data back into coarse grid,
we need to re-integrate the tail
of the coarse slice starting from
the injected data.



Tail Sum

Fit data points

1
2
(F−

ℓ,reg + F+
ℓ,reg) ±

1
2
|F+

ℓ,reg − F−

ℓ,reg|

to series expansion [Detweiler, Messaritaki, and Whiting (2003)]:

Fℓ,reg =
a2

(ℓ − 1
2
)(ℓ + 3

2
)

+
a4

(ℓ − 3
2
)(ℓ − 1

2
)(ℓ + 3

2
)(ℓ + 5

2
)

+
a6

(ℓ − 5
2
)(ℓ − 3

2
)(ℓ − 1

2
)(ℓ + 3

2
)(ℓ + 5

2
)(ℓ + 7

2
)

+O(ℓ−8)

to determine coefficients {a2, a4, a6}, then evaluate
∑

∞

ℓ=K+1 Fℓ,reg

analytically (the sums telescope).
[Better would be to use analytically-known value of a2.]



Sample Results: (ℓ, m) = (10, 10) Integration

Refinement-Level Map:

 0

 50

 100

 150

 200

-100 -50  0  50  100

tSchw

r*

level 0
level 1
level 2
level 3
level 4
level 5

slice

particle



Sample Results: (ℓ, m) = (10, 10) Integration

Sample Frame ⇒ Movie:

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 50 100 150 200 250
 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

ph
i

re
fle

ve
l

u

phi(u) on relative v=190.0 slice

relative u

real
imag

magnitude
reflevel



Sample Results: (ℓ, m) = (10, 10) Integration

4th Order Convergence with Grid Resolution:

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0 50 100 150 200

-0.3

-0.2

-0.1

0.0

0.1

 0 50 100 150

||φ
[A

] -
 φ

[B
]||

R
e[

φ]
, I

m
[φ

]

relative u

u

refinement level 0

refinement level 1

refinement level 2

refinement level 3

refinement level 4

||φ||
||record - playback×2||

Re[φ], Im[φ] (right scale)

refinement level 5

10-8

10-7

 144 146 148 150 152 154 156

-0.3

-0.2

-0.1

0.0

0.1

 132 134 136 138 140 142

||φ
[A

] -
 φ

[B
]||

R
e[

φ]
, I

m
[φ

]

relative u

u

refinement levels 0−4

Re[φ], Im[φ] (right scale)
||record - playback×2||

refinement level 5

24 ||playback×2 - playback×4||
44 ||playback×4 - playback×8||
84 ||playback×8 - playback×16||



Sample Results: Self-Force Calculation

Test case:

• Particle in circular orbit at r = 10M

• Modes computed numerically for ℓ ≤ 30 (256 modes).



Sample Results: Self-Force Calculation

Test case:

• Particle in circular orbit at r = 10M

• Modes computed numerically for ℓ ≤ 30 (256 modes).

• ℓ = 0 domain size 30 000M
ℓ = 1 domain size 5 000M
ℓ = 2 domain size 1 000M
ℓ = 3, 4 domain size 500M
ℓ ≥ 5 domain size 400M



Sample Results: Self-Force Calculation

Test case:

• Particle in circular orbit at r = 10M

• Modes computed numerically for ℓ ≤ 30 (256 modes).

• ℓ = 0 domain size 30 000M
ℓ = 1 domain size 5 000M
ℓ = 2 domain size 1 000M
ℓ = 3, 4 domain size 500M
ℓ ≥ 5 domain size 400M

• AMR error tolerance
‖φnormal − φ

1
2

resolution‖ ≤ 10−15



Sample Results: Self-Force Calculation

Test case:

• Particle in circular orbit at r = 10M

• Modes computed numerically for ℓ ≤ 30 (256 modes).

• ℓ = 0 domain size 30 000M
ℓ = 1 domain size 5 000M
ℓ = 2 domain size 1 000M
ℓ = 3, 4 domain size 500M
ℓ ≥ 5 domain size 400M

• AMR error tolerance
‖φnormal − φ

1
2

resolution‖ ≤ 10−15

• Performance:
ℓ = 0: 108 minutes (1 proc),
ℓ = 1–30: ∼5 hours (10 procs)
median AMR speedup ≈ 25

 0

 10

 20

 30

 40

 50

 5  10  15  20  25  30  35  40  45  50
0.0

0.2

0.4

0.6

0.8

1.0

nu
m

be
r 

of
 m

od
es

cu
m

ul
at

iv
e 

fr
ac

tio
n 

of
 m

od
es

speedup

Distribution of AMR Speedups for ell ≤ 30

histogram (left scale)
cumulative frequency (right scale)



Sample Results: Self-Force Calculation

Fℓ convergence with ℓ:

10-7

10-6

10-5

10-4

 1  2  3  5  10  20  30

F
el

l

ell

Self-Force at time 100M before end

self-force measured inside particle
self-force measured outside particle

a / ((ell+1/2)(ell+3/2))



Sample Results: Self-Force Calculation

rescaled Fℓ convergence with ℓ:

1.000

1.005

1.010

1.015

1.020

 10  15  20  25  30

F
el

l  / 
[a

 / 
((

el
l-0

.5
)*

(e
ll+

1.
5)

)]

ell

Self-Force vs Mode Fit at time 100M before end

self-force measured inside particle
self-force measured outside particle

average(inside,outside)



Sample Results: Self-Force Calculation #2

rescaled Fℓ convergence with ℓ for r∗ = 10M run:

1.000

1.005

1.010

1.015

1.020

 10  15  20  25  30

F
el

l  / 
[a

 / 
((

el
l-0

.5
)*

(e
ll+

1.
5)

)]

ell

Self-Force vs Mode Fit at time 100M before end (r*=10M run)

self-force measured inside particle
self-force measured outside particle

average(inside,outside)



Sample Results: Self-Force Calculation #2

F [ℓ = 0] time dependence starting at t = 1000M:

-1.4303615e-04

-1.4303610e-04

-1.4303605e-04

-1.4303600e-04

-1.4303595e-04

-1.4303590e-04

-1.4303585e-04

-1.4303580e-04

-1.4303575e-04

-1.4303570e-04

-1.4303565e-04

 5000  10000  15000  20000  25000  30000

se
lf-

fo
rc

e

time

Time Dependence of ell=0 Mode

self-force computed outside particle
self-force computed inside particle



Sample Results: Self-Force Calculation #2

F [ℓ = 0] time dependence starting at t = 10000M:

-1.430356856e-04

-1.430356854e-04

-1.430356852e-04

-1.430356850e-04

-1.430356848e-04

-1.430356846e-04

-1.430356844e-04

-1.430356842e-04

 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000

se
lf-

fo
rc

e

time

Time Dependence of ell=0 Mode

F[ell=0] computed outside particle
F[ell=0] computed inside particle



Sample Results: Self-Force Calculation #2

F time-and inside/outside-dependence near end of evolution:

3.16562e-05

3.16564e-05

3.16566e-05

3.16568e-05

3.16570e-05

3.16572e-05

3.16574e-05

3.16576e-05

-600 -500 -400 -300 -200 -100  0

se
lf-

fo
rc

e

time relative to end of evolution

Time Dependence of Self-Force near End of Evolution

self-force computed outside particle
self-force computed inside particle



Sample Results: Self-Force Calculation #2

F convergence with grid resolutions ×1, ×2, ×3:

3.163e-05

3.164e-05

3.165e-05

3.166e-05

3.167e-05

3.168e-05

3.169e-05

3.170e-05

-600 -500 -400 -300 -200 -100  0

se
lf-

fo
rc

e

time relative to end of evolution

Convergence of Self-Force near End of Evolution

self-force outside (resolution × 1,2,3)
self-force inside (resolution × 3,2,1)



Sample Results: Self-Force Calculation #2

F (outside) time-dependence near end of evolution:

3.1657258e-05

3.1657259e-05

3.1657260e-05

3.1657261e-05

3.1657262e-05

3.1657263e-05

3.1657264e-05

3.1657265e-05

-500 -450 -400 -350 -300 -250 -200 -150 -100 -50  0

se
lf-

fo
rc

e

time relative to end of evolution

Time Dependence of Self-Force near End of Evolution

raw self-force computed outside particle
smoothed self-force computed outside particle



Conclusions

Current status:

• The characteristic Berger-Oliger algorithm works very well

• The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations



Conclusions

Current status:

• The characteristic Berger-Oliger algorithm works very well

• The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations

Near-term plans:

• Clean up tail fitting!



Conclusions

Current status:

• The characteristic Berger-Oliger algorithm works very well

• The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations

Near-term plans:

• Clean up tail fitting!

Longer-term plans:

• Extend finite differencing to handle eccentric orbits

• Implement “self-consistent orbit correction”


