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Decompose metric perturbation into spherical harmonics (ℓ,m):

• metric perturbations aren’t separable
⇒ compute modes via time-domain numerical integration

⊔⊓φℓm + Vℓ(r)φℓm = Sℓm(t) δ
(

r(t)− rparticle(t)
)

Compute self-force via regularized mode sum:
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Use characteristic grids,
⇒ very easy to handle BCs

Integrate one v = constant
slice at a time via usual
diamond-cell scheme (!)



4th Order Finite Differencing: Vacuum
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Vacuum region:

• scheme described by Haas (2007):

• requires 3 past time levels,
and 3 past points to start
integrating a slice
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• If evaluating at i = iparticle,
compute 2nd order steps using
cell sizes 1, 2, and 3 × normal,
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4th Order Finite Differencing: Near the particle

δ-function source term ⇒ φ is C 0 at the particle worldline
[Could use jump conditions like Sago.]

Use hybrid scheme:

• If evaluating at i = iparticle ± {1, 2},
use Haas off-centered scheme.
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• If evaluating at i = iparticle,
compute 2nd order steps using
cell sizes 1, 2, and 3 × normal,
then Richardson-extrapolate
to 4th order.
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Adaptive Mesh Refinement: Motivation

φ and its derivatives have very high dynamic range across the
problem domain:
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Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:
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• use locally uniform grids (possibly in curvlinear coordinates)

• coarsest grid covers entire problem domain

• refine in both space and time

• fine grids overlay coarser grids

• integrate each grid independently

• fine-grid initial & boundary data
interpolated from coarse grids

• inject fine-grid results back into
coarse grid when/where points
coincide [keeps coarse-grid
solution from drifting away
from (accurate) fine-grid solution]



Adaptive Mesh Refinement: Characteristic Berger-Oliger

Standard Cauchy Berger-Oliger also
works in characteristic coordinates,
with one modification: after injecting
fine-grid data back into coarse grid,
we need to re-integrate the tail
of the coarse slice starting from
the injected data.
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Tail Sum

Fit data points
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1
2
|F+

ℓ,reg − F−

ℓ,reg|

to series expansion [Detweiler, Messaritaki, and Whiting (2003)]:
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to determine coefficients {a2, a4, a6}, then evaluate
∑

∞

ℓ=K+1 Fℓ,reg

analytically (the sums telescope).
[Better would be to use analytically-known value of a2.]



Sample Results: (ℓ, m) = (10, 10) Integration

Refinement-Level Map:
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Sample Results: (ℓ, m) = (10, 10) Integration

Sample Frame ⇒ Movie:
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Sample Results: (ℓ, m) = (10, 10) Integration

4th Order Convergence with Grid Resolution:
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Sample Results: Self-Force Calculation

Test case:

• Particle in circular orbit at r = 10M

• Modes computed numerically for ℓ ≤ 30 (256 modes).

• ℓ = 0 domain size 30 000M
ℓ = 1 domain size 5 000M
ℓ = 2 domain size 1 000M
ℓ = 3, 4 domain size 500M
ℓ ≥ 5 domain size 400M

• AMR error tolerance
‖φnormal − φ

1
2

resolution‖ ≤ 10−15

• Performance:
ℓ = 0: 108 minutes (1 proc),
ℓ = 1–30: ∼5 hours (10 procs)
median AMR speedup ≈ 25
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Sample Results: Self-Force Calculation

Fℓ convergence with ℓ:
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Sample Results: Self-Force Calculation #2

rescaled Fℓ convergence with ℓ for r∗ = 10M run:
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Sample Results: Self-Force Calculation #2

F [ℓ = 0] time dependence starting at t = 1000M:

-1.4303615e-04

-1.4303610e-04

-1.4303605e-04

-1.4303600e-04

-1.4303595e-04

-1.4303590e-04

-1.4303585e-04

-1.4303580e-04

-1.4303575e-04

-1.4303570e-04

-1.4303565e-04

 5000  10000  15000  20000  25000  30000

se
lf-

fo
rc

e

time

Time Dependence of ell=0 Mode

self-force computed outside particle
self-force computed inside particle



Sample Results: Self-Force Calculation #2
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Sample Results: Self-Force Calculation #2

F time-and inside/outside-dependence near end of evolution:
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Sample Results: Self-Force Calculation #2

F convergence with grid resolutions ×1, ×2, ×3:
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Sample Results: Self-Force Calculation #2

F (outside) time-dependence near end of evolution:
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• The characteristic Berger-Oliger algorithm works very well

• The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations

Near-term plans:

• Clean up tail fitting!

Longer-term plans:

• Extend finite differencing to handle eccentric orbits

• Implement “self-consistent orbit correction”


