Self-Force for a Scalar Particle in
Schwarzschild Spacetime:
Time-Domain Calculations with
Adaptive Mesh Refinement

Jonathan Thornburg

Department of Astronomy
w Indiana University

Bloomington, Indiana, USA

Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Lorenz gauge:

e metric perturbation from point particle is relatively simple
(locally isotropic)

Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Lorenz gauge:
e metric perturbation from point particle is relatively simple
(locally isotropic)
Decompose metric perturbation into spherical harmonics (¢, m):

e metric perturbations aren't separable
= compute modes via time-domain numerical integration

D¢€m + Vﬁ(r)¢€m = 5€m(t) 5(!’(1’) - rparticle(t))

Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Lorenz gauge:

e metric perturbation from point particle is relatively simple
(locally isotropic)
Decompose metric perturbation into spherical harmonics (¢, m):

e metric perturbations aren't separable
= compute modes via time-domain numerical integration

D¢€m + Vﬁ(r)¢€m = SEm(t) 5(!’(1’) - rparticle(t))

Compute self-force via regularized mode sum:

Far~ D [(Z [VEim] particle) —((+3)A- B}
L m

Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., £ < 30 = 256 modes)
to very high accuracy, with time-dependent J-function source terms.

Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., £ < 30 = 256 modes)
to very high accuracy, with time-dependent J-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown = use arbitrary BCs (¢ = 0) and choose domain large
enough for each mode so transients decay by end of integration.

Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., £ < 30 = 256 modes)
to very high accuracy, with time-dependent J-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown = use arbitrary BCs (¢ = 0) and choose domain large
enough for each mode so transients decay by end of integration.
(Domain size varies

strongly with ¢.)

Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., £ < 30 = 256 modes)
to very high accuracy, with time-dependent J-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown = use arbitrary BCs (¢ = 0) and choose domain large
enough for each mode so transients decay by end of integration.
(Domain size varies
strongly with ¢.)

tsehw

Use characteristic grids,
= very easy to handle BCs

Time-Domain Numerical Integration: Outline

We need to solve many wave equations (e.g., £ < 30 = 256 modes)
to very high accuracy, with time-dependent J-function source terms.

The true BCs (representing the equilibrium metric perturbation)
are unknown = use arbitrary BCs (¢ = 0) and choose domain large
enough for each mode so transients decay by end of integration.
(Domain size varies
strongly with ¢.)

tsehw

Use characteristic grids,
= very easy to handle BCs

Integrate one v = constant
slice at a time via usual
diamond-cell scheme (!)

4th Order Finite Differencing: Vacuum

Vacuum region:

e scheme described by Haas (2007):

. . ').
e requires 3 past time levels, -
and 3 past points to start o e
integrating a slice . pe
X

4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline
[Could use jump conditions like Sago.]

4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

[Could use jump conditions like Sago.] »

Use hybrid scheme: 7 N |

o If evaluating at i = iparicle = {1,2}, _. 7\,

use Haas off-centered scheme. o

————————— A

Pl Gt GRS

4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

Sago o
Use hybrid scheme: O ~
. i i o 7 10 L
e If evaluating at i = iparticte = {1,2}, o el g w
use Haas off-centered scheme. Yo P e
P XX
e If evaluating at i = iparticle, o
compute 2nd order steps using 7 N
cell sizes 1, 2, and 3 x normal, N <
<2 < u :.

%
ceemmmmnee e e

4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

Sago >
Use hybrid scheme: .
: . > ¢ io
e If evaluating at i = iparticle = {1,2}, _. N, | .
use Haas off-centered scheme. AR
I S
e If evaluating at i = iparticle, .
compute 2nd order steps using 7 N
cell sizes 1, 2, and 3 x normal, N <
o <
AN .'
& .:'

-

4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

Sago >

Use hybrid scheme: .
: . > ¢ io
e If evaluating at i = iparticle = {1,2}, _. N, | .
use Haas off-centered scheme. AR

I S

e If evaluating at i = iparticle, .
compute 2nd order steps using 7 N

cell sizes 1, 2, and 3 x normal, N <

o <
AN
@

a
A Y

4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

Sago o
Use hybrid scheme: U
. . A - T
e If evaluating at i = iparticte = {1,2}, P
use Haas off-centered scheme. Yo P x X
PX X
e If evaluating at i = iparticle, -
compute 2nd order steps using o LI

to 4th order.

cell sizes 1, 2, and 3 x normal, U -
then Richardson-extrapolate "\‘? M /i N

Adaptive Mesh Refinement: Motivation

¢ and its derivatives have very high dynamic range across the

prObIem domain: phi(u) on relative v=190.0 slice

relative u
300 250 200 150 100 50 0
0.4 T T T T T
real
imag ——
03 magnitude
reflevel
0.2 |
0.1
R
R
01
02 4
13 %
>
03t 12 2
. l 9_.)
-0.4 0

250 200 150 100 50 0

Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

e use locally uniform grids (possibly in curvlinear coordinates)

e coarsest grid covers entire problem domain

t

Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

e use locally uniform grids (possibly in curvlinear coordinates)
e coarsest grid covers entire problem domain

e refine in both space and time "

e fine grids overlay coarser grids

e integrate each grid independently

Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

e use locally uniform grids (possibly in curvlinear coordinates)
e coarsest grid covers entire problem domain

e refine in both space and time n

e fine grids overlay coarser grids

e integrate each grid independently

Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

use locally uniform grids (possibly in curvlinear coordinates)
coarsest grid covers entire problem domain

refine in both space and time t

fine grids overlay coarser grids

integrate each grid independently

fine-grid initial & boundary data
interpolated from coarse grids |

Adaptive Mesh Refinement: Cauchy Berger-Oliger

Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

e use locally uniform grids (possibly in curvlinear coordinates)
e coarsest grid covers entire problem domain

e refine in both space and time n

e fine grids overlay coarser grids

e integrate each grid independently

e fine-grid initial & boundary data
interpolated from coarse grids |

e inject fine-grid results back into
coarse grid when/where points

coincide [keeps coarse-grid
solution from drifting away
from (accurate) fine-grid solution]

Adaptive Mesh Refinement: Characteristic Berger-Oliger

Standard Cauchy Berger-Oliger also
works in characteristic coordinates,
with one modification: after injecting
fine-grid data back into coarse grid,
we need to re-integrate the tail

of the coarse slice starting from

the injected data.

Adaptive Mesh Refinement: Characteristic Berger-Oliger

Standard Cauchy Berger-Oliger also
works in characteristic coordinates,
with one modification: after injecting
fine-grid data back into coarse grid,
we need to re-integrate the tail
of the coarse slice starting from
the injected data.

Tail Sum

Fit data points

1 _
§(F€ reg I4 reg) +3 | Lreg Fe,reg|

to series expansion [Detweiler, Messaritaki, and Whiting (2003)]:

da» das

f N Ve R) [R)
ap
DD+ D+ D+ D)
+0O(07%)

to determine coefficients {az, as, ag}, then evaluate 3%, 1 Fy g
analytically (the sums telescope).

Sample Results: (¢, m) = (10, 10) Integration

Refinement-Level Map:

200
150
tSchw
100
50
level 0 —
level1 ——
level 2 —
level 3 —
level 4
level 5
0 L !

-100 -50 0 50 100

Sample Results: (¢, m) = (10, 10) Integration

Sample Frame = Movie:

phi(u) on relative v=190.0 slice

phi

relative u
300 250 200 150 100 50
0.4 T T T T T
real
imag ——
03 | magnitude
reflevel
0.2 |
0.1 |
0 ”WW/\Q{J
\‘““U ‘U ““
-0.1 +
-0.2
-0.3 b
04
250 200 150 100 50 0

.
or N WA

reflevel

Sample Results: (¢, m) = (10, 10) Integration

4th Order Convergence with Grid Resolution:

150 100 50 0
T T T ™7 o1
0.0
=
E
0l
T
4
Ilef 02
|Irecord - playbackx2]|
Re[g], Im[g) (right scale) —
. . 1-03
100 50 0
relative t-...._
u —
138 136 134 132
T T

[ltA] - aie]l|

156 154 152 150 148 146 144
relative u
— Relg), Im[¢] (right scale) - 2*||playbackx2 - playbackx4]|
« ||record - playbackx2|| 4*||playbackx4 - playbackx8||

8" ||playbackx8 - playbackx16||

Sample Results: Self-Force Calculation

Test case:
e Particle in circular orbit at r = 10M

e Modes computed numerically for £ < 30 (256 modes).

Sample Results: Self-Force Calculation

Test case:
e Particle in circular orbit at r = 10M
e Modes computed numerically for £ < 30 (256 modes).
e /=0 domain size 30 000M
(=1 domain size 5000M
=2 domain size 1000M

£ =3,4 domain size 500M
£>5 domain size 400M

Sample Results: Self-Force Calculation

Test case:
e Particle in circular orbit at r = 10M
e Modes computed numerically for £ < 30 (256 modes).
e /=0 domain size 30000M
{=1 domain size 5000M
=2 domain size 1000M
£ =3,4 domain size 500M
{>5 domain size 400M

e AMR error tolerance
||¢normal _ ¢% resolutionH < 10—15

Sample Results: Self-Force Calculation

Test case:

e Particle in circular orbit at r = 10M

Modes computed numerically for £ < 30 (256 modes).

{=0 domain size 30 000M
(=1 domain size 5000M
(=2 domain size 1000M
£ =3,4 domain size 500M
£>5 domain size 400M

AMR error tolerance
||¢normal _ ¢% resolutionH < 10—15

Performance:

¢ = 0: 108 minutes (1 proc), ?
¢ =1-30: ~5 hours (10 procs)
median AMR speedup ~ 25

umber of modes

Distribution of AMR Speedups for ell < 30

—— histogram (left scale)

cumulative frequency (right scale)

cumulative fraction of modes

Sample Results: Self-Force Calculation

Fy convergence with ¢:

10

Foll

10°

10°

Self-Force at time 100M before end

T ——— T T
self-force measured inside particle ~ +

self-force measured outside particle

al ((ell+1/2)(ell+3/2))

X

Sample Results: Self-Force Calculation

rescaled F, convergence with ¢:

F'/ [a/ ((ell-0.5)*(ell+1.5))]

1.020

1.015

1.010

1.005

1.000

Self-Force vs Mode Fit at time 100M before end

self-force measured inside particle ~ +
self-force measured outside particle =
'«% average(inside,outside) %
.
*
P
X X
L -
+ . .
T x
’ + Hoex Kooy
+
N
N
! ! ! !
10 15 20 25 30

ell

Sample Results: Self-Force Calculation #2
rescaled F; convergence with ¢ for r, = 10M run:

Self-Force vs Mode Fit at time 100M before end (r.=10M run)

1.020 5 T T
*._ self-force measured inside particle
gglf -force measured outside particle
. average(inside,outside) %

ﬁ_ 1.015 | e E
—
* e
3 *.
E T
) *.
S 1010 F TE .
=~ Tk
S,
fy
B, 1.005 | 1

1.000

10 15 20 25 30

ell

Sample Results: Self-Force Calculation #2
F[¢ = 0] time dependence starting at t = 1000M:

Time Dependence of ell=0 Mode

-1.4303565e-04

self-force computed outside particle
-1.4303570e-04 self-force computed inside particle - 1

-1.4303575e-04 - B

-1.4303580e-04 i

-1.4303585e-04 R

-1.4303590e-04 B

self-force

-1.4303595e-04 k
-1.4303600e-04 |- R
-1.4303605e-04 i

-1.4303610e-04 |- b

-1.4303615e-04
5000 10000 15000 20000 25000 30000

time

Sample Results: Self-Force Calculation #2
F[¢ = 0] time dependence starting at t = 10000M:

Time Dependence of ell=0 Mode

-1.430356842e-04 T

F[ell=0] computed outside particle
F[ell=0] computed inside particle -
-1.430356844e-04

-1.430356846e-04

-1.430356848e-04

self-force

-1.430356850e-04

-1.430356852e-04

-1.430356854€-04 | k

-1.430356856e-04
1000012000140001600018002000@200@400@600@800@B0000

time

Sample Results: Self-Force Calculation #2
F time-and inside/outside-dependence near end of evolution:

Time Dependence of Self-Force near End of Evolution

3.16576e-05

self-force computed outside particle

ﬁ self-force computed inside particle
3.16574e-05 n

3.16572e-05 k

3.16570e-05 b

self-force

3.16568¢-05 | || :

T

3.16566€-05 |, b T

T
L

3.16564e-05

3.16562e-05 ‘ . 5 5 5 5
-600 -500 -400 -300 -200 -100 0

time relative to end of evolution

Sample Results: Self-Force Calculation #2
F convergence with grid resolutions x1, x2, x3:

Convergence of Self-Force near End of Evolution

3.170e-05

3.169e-05

3.168e-05

3.167e-05 | . .
self-force outside (resolution x 1,2,3) ——

self-force inside (resolution x 3,2,1) ——

self-force

3.166e-05

3.165e-05

3.164e-05

3.163e-05 . . 5 5
-600 -500 -400 -300 -200 -100

time relative to end of evolution

Sample Results: Self-Force Calculation #2

F (outside) time-dependence near end of evolution:

self-force

Time Dependence of Self-Force near End of Evolution

3.1657265e-05

3.1657264e-05 |

3.1657263e-05 |

3.1657262e-05

I
3165726105 “ \‘ ‘ i \‘\‘ ‘| | M‘\ Il

3.1657260e-05

3.1657259e-05

raw self-force computed outside particle
smoothed self-force computed outside particle

\M’H’l w

i L

3.1657258e-05
-500

-450 -400 -350 -300 -250 -200 -150 -100 -50
time relative to end of evolution

0

Conclusions

Current status:
e The characteristic Berger-Oliger algorithm works very well

e The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations

Conclusions

Current status:
e The characteristic Berger-Oliger algorithm works very well

e The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations

Conclusions

Current status:
e The characteristic Berger-Oliger algorithm works very well
e The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations
Near-term plans:

e Clean up tail fitting!

Longer-term plans:
e Extend finite differencing to handle eccentric orbits

e Implement “self-consistent orbit correction”

