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Overall Strategy for Self-Force Calculations

Barack-Ori mode-sum regularization scheme

Lorenz gauge:

e metric perturbation from point particle is relatively simple
(locally isotropic)
Decompose metric perturbation into spherical harmonics (¢, m):

e metric perturbations aren't separable
= compute modes via time-domain numerical integration

D¢€m + Vﬁ(r)¢€m = SEm(t) 5(!’(1’) - rparticle(t))

Compute self-force via regularized mode sum:
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The true BCs (representing the equilibrium metric perturbation)
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enough for each mode so transients decay by end of integration.
(Domain size varies
strongly with ¢.)

tsehw

Use characteristic grids,
= very easy to handle BCs

Integrate one v = constant
slice at a time via usual
diamond-cell scheme (!)




4th Order Finite Differencing: Vacuum

Vacuum region:

e scheme described by Haas (2007):
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4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

Sago o
Use hybrid scheme: O ~
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use Haas off-centered scheme. Yo P e
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e If evaluating at i = iparticle, o
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cell sizes 1, 2, and 3 x normal, N <
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4th Order Finite Differencing: Near the particle

d-function source term = ¢ is C° at the particle worldline

Sago o
Use hybrid scheme: U
. . A - T
e If evaluating at i = iparticte = {1,2}, P
use Haas off-centered scheme. Yo P x X
PX X
e If evaluating at i = iparticle, -
compute 2nd order steps using o LI

to 4th order.

cell sizes 1, 2, and 3 x normal, U -
then Richardson-extrapolate "\‘? M /i N



Adaptive Mesh Refinement: Motivation

¢ and its derivatives have very high dynamic range across the

prObIem domain: phi(u) on relative v=190.0 slice

relative u
300 250 200 150 100 50 0
0.4 T T T T T
real
imag ——
03 magnitude
reflevel
0.2 |
0.1
R
R
01
02 4
13 %
>
03t 12 2
. l 9_.)
-0.4 0

250 200 150 100 50 0



Adaptive Mesh Refinement: Cauchy Berger-Oliger
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Berger & Oliger [J. Comp. Phys. 53, 484 (1984)] defined what has
become the standard approach to Eulierian finite-difference mesh
refinement for “hyperbolic-like” time-evolution PDEs:

e use locally uniform grids (possibly in curvlinear coordinates)
e coarsest grid covers entire problem domain

e refine in both space and time n

e fine grids overlay coarser grids

e integrate each grid independently

e fine-grid initial & boundary data
interpolated from coarse grids |

e inject fine-grid results back into
coarse grid when/where points

coincide [keeps coarse-grid
solution from drifting away
from (accurate) fine-grid solution]
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Tail Sum

Fit data points
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to series expansion [Detweiler, Messaritaki, and Whiting (2003)]:
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to determine coefficients {az, as, ag}, then evaluate 3%, 1 Fy g
analytically (the sums telescope).



Sample Results: (¢, m) = (10, 10) Integration

Refinement-Level Map:
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Sample Results: (¢, m) = (10, 10) Integration

Sample Frame = Movie:

phi(u) on relative v=190.0 slice
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relative u
300 250 200 150 100 50
0.4 T T T T T
real
imag ——
03 | magnitude
reflevel
0.2 |
0.1 |
0 ”WW/\Q{J
\‘““U ‘U ““
-0.1 +
-0.2
-0.3 b
04 . . . . . .
250 200 150 100 50 0

.
or N WA

reflevel



Sample Results: (¢, m) = (10, 10) Integration

4th Order Convergence with Grid Resolution:
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Sample Results: Self-Force Calculation

Test case:

e Particle in circular orbit at r = 10M

Modes computed numerically for £ < 30 (256 modes).

{=0 domain size 30 000M
(=1 domain size 5000M
(=2 domain size 1000M
£ =3,4 domain size 500M
£>5 domain size  400M

AMR error tolerance
||¢normal _ ¢% resolutionH < 10—15

Performance:

¢ = 0: 108 minutes (1 proc), ?
¢ =1-30: ~5 hours (10 procs)
median AMR speedup ~ 25

umber of modes

Distribution of AMR Speedups for ell < 30

—— histogram (left scale)

cumulative frequency (right scale)

cumulative fraction of modes



Sample Results: Self-Force Calculation

Fy convergence with ¢:
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Sample Results: Self-Force Calculation

rescaled F, convergence with ¢:
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Sample Results: Self-Force Calculation #2
rescaled F; convergence with ¢ for r, = 10M run:

Self-Force vs Mode Fit at time 100M before end (r.=10M run)

1.020 5 T T
*._ self-force measured inside particle
gglf -force measured outside particle
. average(inside,outside) %

ﬁ_ 1.015 | e E
—
* e
3 *.
E T
) *.
S 1010 F TE .
=~ Tk
S,
fy
B, 1.005 | 1

1.000 . . . .

10 15 20 25 30

ell



Sample Results: Self-Force Calculation #2
F[¢ = 0] time dependence starting at t = 1000M:

Time Dependence of ell=0 Mode
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Sample Results: Self-Force Calculation #2
F[¢ = 0] time dependence starting at t = 10000M:

Time Dependence of ell=0 Mode
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Sample Results: Self-Force Calculation #2
F time-and inside/outside-dependence near end of evolution:

Time Dependence of Self-Force near End of Evolution
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Sample Results: Self-Force Calculation #2
F convergence with grid resolutions x1, x2, x3:

Convergence of Self-Force near End of Evolution
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Sample Results: Self-Force Calculation #2

F (outside) time-dependence near end of evolution:

self-force

Time Dependence of Self-Force near End of Evolution
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Conclusions

Current status:
e The characteristic Berger-Oliger algorithm works very well
e The combination of 4th order finite differencing and
Berger-Oliger adaptive mesh refinement gives very high
accuracy for self-force calculations
Near-term plans:

e Clean up tail fitting!

Longer-term plans:
e Extend finite differencing to handle eccentric orbits

e Implement “self-consistent orbit correction”



