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Motion of Bodies in General Relativity

General relativity with suitable forms of matter has a

well posed initial value formulation. In principle,

therefore, to determine the motion of bodies in general

relativity—such as binary neutron stars or black

holes—one simply needs to provide appropriate initial

data (satisfying the constraint equations) on a spacelike

slice and then evolve this data via Einstein’s equation. It

would be highly desireable to obtain simple analytic

descriptions of motion. However, it is clear that, in

general, the motion of a body of finite size will depend on

the details of its composition as well as the details of its

internal states of motion. Therefore, one can hope to get



a simple description of motion only in some kind of

“point particle limit”. Such a limit encompasses many

cases of physical interest, such as “extreme mass ratio”

inspiral. Of particular interest are the “radiation

reaction” or “self-force” effects occuring during inspiral

(which, of course, are the cause of the inspiral).



Point Particles in General Relativity

Einstein’s equation is nonlinear, and a straightforward

analysis (see Geroch and Traschen, PRD 36, 1017 (1987))

shows that it does not make any mathematical sense to

consider solutions of Einstein’s equation with a

distributional stress-energy tensor supported on a

worldline. Mathematically, the expected behavior of the

metric near a “point particle” is too singular to make

sense of the nonlinear terms in Einstein’s equation, even

as distributions. Physically, if one tried to compress a

body to make it into a point particle, it should collapse

to a black hole.

[By contrast “shells” (i.e., distributional solutions



of Einstein’s equation with support on a timelike

hypersurface) do make mathematical sense. “Strings” are

a borderline case.]

Therefore, since point particles do not make sense, it

might appear that no simplifications in the description of

motion can be achieved.



Point Particles in Linearized Gravity

Solutions, hab, to the linearized Einstein equation (off of

an arbitrary background solution, gab) with a

distributional stress-energy tensor supported on a

world-line do make mathematical sense. Therefore, one

might begin a treatment of gravitational self-force by

considering considering solutions to

G
(1)
ab [h](t, xi) = 8πMua(t)ub(t)

δ(3)(xi − zi(t))√
−g

dτ

dt
,

where ua is the unit tangent (i.e., 4-velocity) of the

worldline γ defined by xi(t) = zi(t). However, two major

difficulties arise in this approach:



• The linearized Bianchi identity implies that the point

particle stress-energy must be conserved, which

requires that the worldline γ of the particle is a

geodesic of the background spacetime. Therefore,

there are no solutions for non-geodesic source curves,

making it a hopeless to use the linearized Einstein

equation to derive corrections to geodesic motion.

• Even if the first problem were solved, solutions to this

equation are singular on the worldine of the particle.

Therefore, naive attempts to compute corrections to

the motion due to hab—such as demanding that the

particle move on a geodesic of gab + hab—are virtually

certain to encounter severe mathematical difficulties,



analogous to the difficulties encountered in

treatments of the electromagnetic self-force problem.



Lorenz Gauge Relaxation

The first difficulty has been circumvented by a number of

researchers by modifying the linearized Einstein equation

as follows: Choose the Lorenz gauge condition, so that

the linearized Einstein equation takes the form

∇c∇ch̃ab−2Rc
ab

dh̃cd = −16πMua(t)ub(t)
δ(3)(xi − zi(t))√

−g

dτ

dt

∇bh̃ab = 0

where h̃ab ≡ hab − 1
2
hgab with h = habg

ab. The first

equation, by itself, has solutions for any source curve γ;

it is only when the Lorenz gauge condition is adjoined

that the equations are equivalent to the linearized



Einstein equation and geodesic motion is enforced.

Therefore, if one solves the Lorenz-gauge form of the

linearized Einstein equation while simply ignoring the

Lorenz gauge condition that was used to derive this

equation, one allows for the possibility non-geodesic

motion. Of course, this “gauge relaxation” of the

linearized Einstein equation produces an equation

inequivalent to the original. However, because deviations

from geodesic motion are expected to be small, the

Lorenz gauge violation should likewise be small, and it

thus has been argued that solutions to the two systems

should agree to sufficient accuracy.



Hadamard Expansions

In order to solve the (relaxed) linearized Einstein

equation near the worldline of the particle, we would like

to have a short distance expansion for the (retarded)

Green’s function for a general wave equation

gab∇a∇bφ + Aa∇aφ + V φ = 0

Such an expansion was provided by Hadamard in the

1920’s. It is easiest to explain in the Riemannian case,

where one is solving a generalized Laplace equation, and

the Green’s function is unique up to smooth solutions. In

4-dimensions, in Euclidean space with Aa = 0 and V = 0,



the Green’s function with source at x′ is simply

G(x, x′) =
1

σ(x, x′)

where σ(x, x′) denotes the squared geodesic distance

between x and x′. This suggests that we seek a solution

to the generalized Laplace equation of the form

G(x, x′) =
U(x, x′)

σ(x, x′)
+ V (x, x′) ln σ(x, x′) + W (x, x′)

where V and W are, in turn, expanded as

V (x, x′) =

∞
∑

j=0

vj(x, x′)σj , W (x, x′) =

∞
∑

j=0

wj(x, x′)σj

If one substitutes these expansions into the generalized



Laplace equation and formally sets the coefficient of each

power of σ to zero, one gets an equation that can be

uniquely solved for U—the solution is the square root of

the van Vleck-Morette determinant—and one gets

“recursion relations” for the vj and wj, which uniquely

determine them—except for w0, which can be chosen

arbitrarily. In the analytic case, one can then show that

the series have a finite radius of convergence (which,

however, clearly must be smaller than the radius of the

normal neighborhood in which σ is defined!), and that

the above expansion provides a Green’s function.

A similar construction works in the Lorentzian case (and

can be obtained from the Riemannian result by insertion



of suitable iǫ’s in σ). The corresponding Hadamard

expansion for the retarded Green’s function is

G+(x, x′) = U(x, x′)δ(σ)Θ(t, t′) + V (x, x′)Θ(−σ)Θ(t, t′)

where V again is given by a series whose coefficients vj

are uniquely determined by recursion relations. The

following points should be noted

• For a self-adjoint equation, V (x, x′) = V (x′, x), and

(where defined!) V is a smooth solution of the

homogeneous wave equation in each variable.

• For a globally hyperbolic spacetime, G+(x, x′) is

globally well defined. By contrast the Hadamard

expansion of G+(x, x′) can be valid at best within a



convex normal neighborhood. One occasionally sees

in the literature Hadamard formulae that are

purported to be valid when multiple geodesics

connect x and x′. I do not believe that there is any

mathematical justification for these formulae.

• It is rigorously true that, globally, G+(x, x′) is

singular if and only if there is a future directed null

geodesic from x′ to x (whether or not this geodesic

enters the chronological future of x′).



Hadamard Expansion for a Point Particle Source

Using the above Hadamard expansion for the retarded

Green’s function, we find that the solution to the relaxed

linearized Einstein equation with a point particle source

is

hαβ =
2M

r
δαβ −8Ma(αuβ)(1−aix

i)+htail

αβ +MRαβ +O(r2)

where

htail

αβ ≡ M

∫ τ−

−∞

(

G+αβα′β′ − 1

2
gαβG γ

+ γα′β′

)

uα′

uβ′

dτ ′

The symbol τ− means that this integration is to be cut

short of τ ′ = τ to avoid the singular behavior of the

Green’s function there; this instruction is equivalent to



using only the “tail” (i.e., interior of the light cone)

portion of the Green’s function, i.e., the portion arising

from V (x, x′) where V is defined.



Equations of Motion Including Self-Force

With the above type of formula for hαβ as a starting

point, the equations of motion of a point

particle—accurate enough to take account of self-force

corrections—have been obtained by the following 3

approaches:

• One can proceed in parallel with the derivations of

Dirac and DeWitt and Brehme for the

electromagnetic case and derive the motion from

conservation of total stress-energy (Mino, Sasaki, and

Tanaka, PRD 55, 3457 (1997)). This requires an (ad

hoc) regularization of the “effective stress energy”

associated to hαβ.



• One can derive equations of motion from some simple

axioms (Quinn and Wald, PRD 56, 3381 (1997)),

specifically that: (i) the difference in “gravitational

force” between different curves of the same

acceleration (in possibly different spacetimes) is

given by the (angle average of) the difference in

−Γµ
αβuαuβ where Γµ

αβ is the Christoffel symbol

associated with hαβ and (ii) the gravitational

self-force vanishes for a uniformly accelerating

worldline in Minkowski spacetime.

• One can derive equations of motion via matched

asymptotic expansions (Mino, Sasaki, and Tanaka;

Poisson, Liv. Rev. Rel. 7, 6 (2004)). The idea here is



to postulate a suitable metric form (namely,

Schwarzschild plus small perturbations) near the

“particle”, and then “match” this “near zone”

expression to the “far zone” formula for hαβ.

Equations of motion then arise from the matching.



The MiSaTaQuWa Equations

All three approaches have led to the following system of

equations:

∇c∇ch̃ab−2Rc
ab

dh̃cd = −16πMua(t)ub(t)
δ(3)(xi − zi(t))√

−g

dτ

dt

ub∇bu
a = −(gab + uaub)(∇dh

tail
bc − 1

2
∇bh

tail
cd )ucud

where it is understood that the retarded solution to the

equation for h̃ab is to be chosen. Note that the equation

of motion for ua corresponds to the geodesic equation in

the metric gab + htail
ab . However, htail

ab is not a

(homogeneous) solution to the (relaxed) linearized

Einstein equation, nor is it smooth.



The Detweiler-Whiting Reformulation

The symmetric Green’s function is defined by

Gsym = (G+ + G−)/2 where G− is the advanced Green’s

function. The Hadamard expansion of Gsym is

Gsym(x, x′) =
1

2
[U(x, x′)δ(σ) + V (x, x′)Θ(−σ)]

Now V is a homogeneous solution (where defined!).

Detweiler and Whiting define a new Green’s function by

GDW(x, x′) =
1

2
[U(x, x′)δ(σ) + V (x, x′)Θ(σ)]

The Detweiler-Whiting Green’s function has the odd

property of having no support in the interior of the future

or past light cones. Detweiler and Whiting show that the



MiSaTaQuWa equation is equivalent to geodesic motion

in the metric gab + hR
ab where hR

ab is the homogeneous

solution of the (relaxed) linearized Einstein obtained

from applying G+ − GDW to the worldline source.



How Should Gravitational Self-Force be Derived?

A precise formula for gravitational self-force can hold

only in a limit where the size, R, of the body goes to

zero. However, to avoid difficulties associated with the

non-existence of point particles, it is essential that one let

M go to zero as well. This suggests that we consider a

one-parameter family of solutions to Einstein’s equation,

gab(λ), for which the body scales to zero size and mass in

an asymptotically self-similar way as λ → 0. In the limit

as λ → 0 (where the body shrinks down to a worldline γ

and “disappears”), geodesic motion is obtained. Last

year, Gralla and I have proved that, in the Lorenz gauge,



to first order in λ, the deviation Zi from γ satisfies

d2Zi

dt2
=

1

2M
SklRkl0

i − R0j0
iZj − M

(

htaili
0,0 −

1

2
htail

00
,i

)

The MiSaTaQuWa equations arise as “self-consistent

perturbative equations” associated with this perturbative

result.


