
Test bodies and naked singularities: 
is the self-force the cosmic censor?

Enrico Barausse (U of Maryland)

in collaboration with V. Cardoso (CENTRA, Lisbon) & 
G. Khanna (UMass Darmouth)

based on PRL 105 261102 (2010) and 
arXiv:1106.1692



Outline

 Naked singularities and the Cosmic Censorship 
Conjecture (CCC)
    

 Creating naked singularities by shooting                 
test-bodies into a BH: is the CCC violated?           
(Wald 1974, Jacobson & Sotiriou 2009)
       

 Is the JS process still valid beyond the test-body 
approximation? 
 Part 1: GW fluxes (radiation reaction, aka dissipative 

self-force)
 Part 2: conservative self-force



Curvature singularities
 

 Near singularities quantum effects must be important.

Same as in QED: if               is large, Schwinger pair 
production, but the curvature invariant                        
is the analog of 
    

 Cloaked by an event horizon in BH spacetimes          
(eg Kerr with a<=1)

 If no event horizon, ”naked” singularities                        
(eg Kerr with a>1)

 Can naked singularities be formed under 
”reasonable” initial conditions?
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Cosmic Censorship Conjecture 
(Penrose 1969)

 Postulates classical GR eqs in 4D contain 
mechanism preventing naked singularities from 
forming under regular initial conditions

 Counterexamples involve unphysical eqs of state 
(eg pressureless matter), very specific initial 
conditions (Christodoulou 1990s), or higher 
dimensional spacetimes (Lehner & Pretorius 
2010)



Can we form naked singularities 
by shooting at BHs?

 Conceivably possible because bullets carry 
angular momentum which can spin BH up to 
a>1, but...   

 .... naked sings do not form in relativistic 
collisions of comparable mass BHs              
(Sperhake et al 2009, Shibata et al 2008)      

 … and if you shoot test particles into a BH with 
a=1, you end up with a=1 (Wald 1974)

 But if we shoot test particles into almost 
extremal BH, we can spin it up to a>1 
(Jacobson & Sotiriou 2009)



How do we aim?



 E/m>>1, L/m>>1 (bullets are almost photons)
 L < Lmax otherwise bullets just scattered: 
 Final spin of the BH needs to be >1:                         

                                                  L > Lmin

 Lmin < Lmax for orbit to exist

                        


but                            is the impact parameter of the 
circular photon orbit (light ring)...

a=1−22

a fin=aL /1E 21

b=L/E=2 , 2 223
2−22E222 

b ph=22 3



...so radiation reaction must be 
important!



Effect of radiation reaction

a fin=18
2
1− x x y2 E rad−LradO

3

E=Eminx E max−E min , L=Lminx  Lmax−Lmin 

Can radiation reaction prevent overspinning?



How do the fluxes scale?

 Erad, Lrad propotional to Ncycles at LR: 

Erad = Ncycles ∆E,   Lrad = Ncycles ∆L

 Using geodesics eqs

 From FD analysis

where E1 is flux in one orbit at the LR at leading 
order in ε

b=b ph1−k  ,N cycles≈[AB log k ]833
2  ,

E / L≈ph≈1/2−3/2 

E rad=N cyclesE=N cyclesE11e 2

L rad=N cycles L=2N cyclesE1 [1e23]

k≪



How does E1  scale?
 Normally scale with body's mass E1 ~ m E2 
 But here we have a relativistic, so m → E

E1 ~ E3 ~ ε3 because E ~ ε
 Using 

 

E rad=N cyclesE=N cyclesE11e 2~
2 log 

Lrad=N cycles L=2N cyclesE1 [1e23]~
2 log 

N cycles≈[AB log k ]833
2 ~ log k 



O3 log k 

a fin=18
2 1− x x y2 E rad−Lrad

=1821−x  x y−23 N cycles E1



Do the fluxes affect JS's analysis?

 If k < exp(-1/ε),

and JS's analysis does not hold. 

 If k > exp(-1/ε),                                               
and fluxes do not prevent formation of naked 
singularities

For fixed k, fluxes unimportant for a ~ 1

a fin=18
2 1− x x yO 3 log k 

O3 log k 821−x  x y

O3 log k 821−x  x y



Test with TD Teukolsky code: 
numerical challenges

 Relativistic plunging orbits: little time to dissipate junk 
radiation → need to create particle gradually and add 
artificial cycles 

 Almost extremal BHs: junk is long-lived, LR and horizon 
freqs are very close (need accuracy to avoid spurious 
super-radiance effects) → use tortoise coords, check 
convergence (with particle's size, grid size and extraction 
radius)

 All multipole moments important. Higher moments damped 
by finite grid resolution, but can be recostructed because 
they are in geometric progression (Finn & Thorne 2000)



Numerical fluxes Erad and Lrad

 Converge with extraction radius, grid resolution 
and particle's size

 Check high multipole moments are in geometric 
progression (Finn & Thorne 2000)

                                             to within 1% 
 Fit with

gives n=2.95 
 Data fit with n=3 to within 2-4% (~ numerical errors 

due to extrapolation to high multipoles)   

E rad /Lrad≈ph≈1/2−3/2 

L rad=E1[1e 23 ] ,
E rad=N cycles E11e2 , E1=C n



Numerical fluxes Erad and Lrad

Fluxes alone cannot prevent formation of 
naked singularities when a~1 

a 0.99 0.992 0.994 0.996 0.998 0.999 0.9998

afin
J S 1.0043 1.0035 1.0026 1.0018 1.0009 1.00045 1.00009

afin 0.882 0.928 0.961 0.984 0.997 0.9996 1.00004



The gravitational self-force

Motion of small BH with mass m in a curved 
spacetime with curvature radius L 

 Near BH, g=gBH+O(r/L)+O(r/L)2 

 Far away, g=gbkgd+O(Rg/L)+O(Rg/L)2, Rg=2 G m/c2

 Matching in a buffer region where both pictures 
are valid, one finds the BH's eqs of motion

                                   are the SF

u∇ u
= f cons

  f diss


f cons
 , f diss


=O Rg/ L

Derived for BH, but result valid also for 
classical ”particle” (any body with size Rg<<L)



Physical meaning of the SF

 Can be written in terms of derivatives of         
(perturbation produced by particle, but regularized 
to avoid divergence at particle's position)                
            SF = interaction of particle with itself  

 
 



 

 

Particle moves on geodesic of ”perturbed” metric

hreg

u
∇ u


= f cons


 f diss

 ,

u
 ∇  u


=0, g=ghreg , hreg

=O Rg /L

f cons
 , f diss


=O Rg/ L



Effect of the SF

 Dissipative SF = radiation reaction

 From                                               the 
conservative self force changes effective 
potential by O(Rg/L)

 For a non-relativistic particle Rg  ~  G m/c2

u
∇ u


= f cons


 f diss

 , E=−mu t

dE /d =−m f t
diss=ORg /L

2

u
 ∇  u


=0,

 ISCO ,ph ,b ph~O Rg /L

hreg=O Rg /L



What if the particle is relativistic?

 Expect Rg ~ E because in GR energy gravitates

e.g. BH boosted to relativistic energy E 
(Aichelburg-Sexl metric) has ”size” ~ 2 G E/c2

 Energy flux for JS orbits:

because                                       

 TD code gives E1 ~ ε3 

 Numerical results confirm that Rg ~ E ~ ε  for a 
relativistic particle

dt / d ~1/ r−rH ~1/

dE /dt=−m f t
dissd /dt~ORg /L 

2




Use Rg  ~ E ~ ε  to calculate  
conservative self-force

 For relativistic orbits we expect 

but in what direction are the changes?

 Barack & Sago (2009): for non-relativistic orbits 
in Schwarzschild

expect                for relativistic orbits in Kerr?
  

 For photon circular orbits

 ISCO0

b ph≈1/ph

ph0

b ph0

ph ,b ph~O Rg /L~O



if ∆bph <0, BH shrinks and dodges bullet!

                     may be enough to prevent JS 
orbits from plunging, because 
b ph~O

b JS=b ph−O 

b ph

O

without conservative SF



Conservative self-force

 Has right magnitude and sign (?) to prevent JS 
particles from falling into BH

 JS also proposed creating naked singularity by 
dropping spinning particle with

but conservative SF changes background 
metric by O(ε), and if it increases horizon 
frequency can prevents particle capture

2−22E222 

S / E=2 , 2 223



Conclusions

 Radiation reaction prevents formation of naked 
sings in some cases, but less and less effective 
when a~1

 BH cross section decreases due to conservative 
SF: BH shrinks and dodges the bullet!

The self-force might be the cosmic censor!

 Numerical tests of this picture:

- Done for radiation reaction

- Few yrs away for conservative SF?



What is a curvature singularity?

 Curvature invariants diverge (GR loses predictive 
power)
    

 Near singularities quantum effects must be important

Same as in QED: if               is large, Schwinger pair 
production, but the curvature invariant                        
is the analog of 
    

 Near singularities there may be closed timelike 
curves (time machines)

but singularities are cloaked by an event horizon in 
BH spacetimes

E 2
−B2

E 2
−B2

R  R
 



What if the singularity is not 
cloaked by event horizon?

 ”Naked” singularity
 Unpleasant properties (breakdown of GR eqs, 

quantum effects, time machines) exposed to 
outside observers

 Kerr with a>1 contains naked singularity, but is 
classically unstable 
(Dotti, Gleiser, Ranea-Sandoval, Vucetich 2008; Cardoso, 
Pani, Cadoni, Cavaglia 2008, Pani, EB, Berti, Cardoso 2010)

Irrespective of stability, can naked sings even be 
formed under reasonable initial conditions?



On what orbit do we shoot?



 Bullet cannot have too much ang mom otherwise it 
is just scattered: L < Lmax

 Final spin of the BH needs to be >1:                         
                                                  L > Lmin

 Lmin < Lmax for orbit to exist
 Orbit needs to go from spatial infinity to horizon       

(if not, body created at finite radius                           
need to check if size << distance to horizon and if 
destroyed by tidal forces)

            E/m, L/m >>1 (almost a photon) 

a=1−22

a fin=aL /1E 21



On what orbit do we shoot the 
particle?

 Combining all constraints, allowed range is

 
  

                          is the impact parameter of the 
circular photon orbit (light ring)                            
if                        particle orbits the LR many 
times, and emission of GWs (radiation reaction) 
must be important

b=L/E=2 , 2 223
2−22E222 

b ph=22 3

b~223



Do the fluxes spin the BH up or down?

 Analysis valid both for fluxes at      and fluxes 
down horizon

 E1 > 0 because Ωph > Ωhor  (i.e. no superradiance) 

               spin-down

 Subtlety: fluxes down the horizon might spin BH 
up before body is captured

a fin=18
2 1− x x y−23 N cyclesE1

∞

abefore capture=123 N cyclesE 1



Do GW fluxes affect JS's analysis?

 If k < exp(-1/ε), no naked sings form by particle 
capture, but might be formed by ingoing fluxes

 If k > exp(-1/ε), and fluxes cannot prevent 
formation of naked singularities

For fixed k, fluxes unimportant for a ~ 1

a fin=18
2 1− x x y−O 3 log k 

abefore capture=1O 3 log k 



How do we test this picture?

 Calculate GW fluxes for JS orbits numerically

 Time domain code solving Teukolsky eqs 
describing GW perturbations for extreme mass-
ratio binaries

Code tested in previous publications (Burko & 
Khanna 2007, Sundararajan, Khanna & Hughes 
2007, 2008, 2010), but calculation of JS fluxes 
challenging

∇∇
h =16T 



Source of Teuk eqs

 JS geodesics around BHs with a = 0.99, 0.992, 0.994, 
0.996, 0.998, 0.999, 0.9998

 E=(Emax+Emin)/2=2ε, L=bphE(1-k) with k=1.e-5, and m=1.e-5<< E

 Extract A, B appearing in 

∇∇
h =16T 

N cycles≈[AB log k ]833
2 



Numerical fluxes Erad and Lrad

 Try additional spin (a=0.9998)

 Requires very high grid resolution and small 
particle's size because Ωph and Ωhor are very close

 Signs that grid resolution and particle's size not 
sufficient (high multipole moments damped 
compared to geometric progression)

 Fluxes ~ 15% smaller than predicted by our 
scaling, but this seems to be corrected by 
Richardson extrapolation (in progress) 



Numerical fluxes Erad and Lrad

Even if fluxes for a=0.9998 are smaller than 
predicted by our scaling, this reinforces our 
conclusion that fluxes alone cannot prevent 
formation of naked sings when a~1 

a 0.99 0.992 0.994 0.996 0.998 0.999 0.9998

afin 0.882 0.928 0.961 0.984 0.997 0.9996 1.00006

afin
J S 1.0043 1.0035 1.0026 1.0018 1.0009 1.00045 1.00009



Numerical fluxes Erad and Lrad

Fluxes alone cannot prevent formation of 
naked singularities when a~1 

a 0.99 0.992 0.994 0.996 0.998 0.999 0.9998

afin
J S 1.0043 1.0035 1.0026 1.0018 1.0009 1.00045 1.00009

afin 0.882 0.928 0.961 0.984 0.997 0.9996 1.00006
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