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Outlook

e A brief introduction to the Extreme-Mass Ratio Inspiral (EMRI) problem
e Description of the Particle-without-Particle (PWP) scheme.

» Application to EMRIs with circular orbits

» Application to EMRIs with Eccentric orbits.

e Summary.
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EMRIs

e Extreme-Mass-Ratio Inspirals (EMRIs) are formed
when a massive black hole (MBH) captures a

stellar-mass compact object (SCO).

e These systems have extreme mass ratio:
w=m/M, ~10"7 —107°

e They are one of the main sources of gravitational

waves (GWs) for the future Laser Interferometer

Space Antenna (LISA) 5
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Modelling EMRIs

e Techniques to compute waveforms:

» Frequency domain: They are efficient for e<<lI, but they have convergence

pbroblems for high eccentric orbits.

» Time domain: They handle in the same way circular and eccentric orbits.

e Modelling EMRIS implies deal with different spatial (SMBH and SCO) and temporal

scales —> Challenge for time-domain techniques.

e Perturbation theory: The SCO is pictured as point particle in
a fixed SMBH background, which orbit is deviated by the

action of a local self-force
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The Particle without Particle technique

e The PwP technique avoids working with the singularity associated with the SCO.

e It employs time-domain techniques which allows us to deal easily with eccentric
orbits.

e We employ the mode-sum regularisation scheme for regularise the field modes.
e Runge-Kutta algorithm for the time evolution.

e To test our technique we use a toy problem: A scalar charged particle falling in
a geodesic of a Schwarzschild MBH spacetime.

P = —4nq /54(51C — 2(7))dT

FH* = (g™ + ulu”)V, &7
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Modelling EMRIs

@ The retarded field can be decomposed into spherical harmonics:

00 [

(I)'ret _ Z 2: (I)lm(t, T)ylm((g’ 90)

[=0 m=-—I

e The |+ equation for each harmonic coefficient takes the form:

(=02 + 0% — V'™ — §'™ = (
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e The |+ equation for each harmonic coefficient takes the form:
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PwP technique

e We perform a division of the spatial computational domain into two disjoints regions -

or subdomains, one at the left of the particle ™ > T and other at the right of the
p g

particle r* < 7";

(=07 + 07 = Vi)™ = 8™ =0

—00 17 r* — 00
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PwP technique

e We perform a division of the spatial computational domain into two disjoints regions

or subdomains, one at the left of the particle rt o> 7“; and other at the right of the

particle r* < 7";

4 )
w@m — (I)Em
¢Em _ atwﬁm
gOfm _ ar* wﬁm

—00 17

U = (w@m’ ¢£m’ S0€m>
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PwP technique

e We solve homogeneous wave equation inside each subdomain.
e During the evolution, the solutions have to be communicated through the boundaries
8752/[— — A - 8T*Z/[_ +B-U_ atZ/{+ — A - ar*Z/[+ B - Z/[_|_
\ RN /
—00 «— 17 ‘\I I,' rt — 00
p TP
Particle
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PwP technique

e The source term is replaced with the jumps of the field variables

\ u /
—_—

—00 «— 1* r* — 00

r* rf
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LY S X (8)] [[u] = lim U, — lim L{_J

* ek * ek
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The PwP technique ensures smooth solutions

since we got rid of the singularity associated with the particle
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PwP technique

e The boundary conditions are imposed in our evolution equations

|. The penalty method:

The system is dynamically driven to fulfil a set of additional conditions.

O UL = A-0,.Us +B-Us +1(7, [U])
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PwP technique

2. The direct communication of the characteristic fields:

We pass the value of the characteristic fields.

- ~ t + r* = const.
wﬁm — (I)Em N
m m fm - \\‘~V/\\‘~ V
U™ =¢"" —¢ O S
m _ fm m
Vit =97 —
¢ Time ()
_ 14 14 m
E/{—(wm,Um,V )) Q,

) - Particle Nodes .
/l s "* . .‘* . I‘*
/’ ,’ ,A.R _ ’Arl.l. —_— ’P \\ \\
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Numerical implementation

e To implement the PwP scheme numerically we use the pseudospectral collocation (PSC)

U(t, ") ~ Uy U(t,r™) ~Un
N, o ¥
Un (X:) = U(X;) DT

Discretisation points
X; € [—1, 1],2 =0,....N

Spectral coefficients @, (%)

Chebyshev polynomials {T;,(X)}

Sardinal function C;(X;) = 6, y
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Numerical implementation

e To implement the PwP scheme numerically we use the pseudospectral collocation (PSC)

M(t,r*):L{N U(tT)’:Z/{N
N, W ¥
Un(X;) = U(X,) DR T
N Ty p'p rr
(N - . N
Discretisation points Un = E a,, (t)Tn (X) Spectral representation
X, €[-1,1],i=0,...,N ‘
n—

Spectral coefficients @, (%)

Chebyshev polynomials {T;,(X)}

Sardinal function C;(X;) = 6, y
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Numerical implementation

e To implement the PwP scheme numerically we use the pseudospectral collocation (PSC)

U(t, ") ~ Uy U(t,r™) ~Un
N, W ¥
Z/{N(Xz) :Z/{(Xz) | N| b N
N T p 'p T
. ; D
Discretisation points Un = E a, (t)T,(X) Spectral representation
X;€[-1,1,i=0,..,N ‘
n=
Spectral coefficients @, (%)
. N
Chebyshev polynomials {7, (X)} Un = E U (X)CZ (X) Physical representation
\Cardlnal function C;(X;) = 4, y n—~0
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Numerical implementation

e To implement the PwP scheme numerically we use the pseudospectral collocation (PSC)

U(t, ") ~ Uy U(t,r™) ~Un
N, W ¥
Un(X;) =U(X;) . R S N
N T p 'p rT
. ; D
Discretisation points Un = E a, (t)T,(X) Spectral representation
X;€[-1,1,i=0,..,N ‘
n=
Spectral coefficients @, (1) ro, ] = [—1,1]
N
Chebyshev polynomials {7, (X)} Un = Z U (X)C5(X) Physical representation
Sardinal function C;(X;) = 4, y n—~0

The PSC method converges exponentially with N for

smooth functions
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Numerical implementation

Employing a Chebyshev basis there are some paybacks:

FFT
® Physical representation < »  Spectral representation

{Z/{i} {CLZ}

@ Differentiation is cheaper in the spectral domain:

N N
Uy = > DijUs(X) Uy =Y b T;(X)
=0 =0
N2 operations ~ NLn(N) operations

FFT

o, {U} ™% {a,} =5 (b} PX {0,.U),)
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Number Computations

o0 [

(I)ret _ S: S: (I)lm(t, 7q)lem,((gj g0)

=0 m=—1

For a given fmax the number of modes of evolutions that we need to perform goes as:

1
Nevolutions — 5 (émax T 1) (gmax T 2)

For instance for Zmax = 20, we need 231 evolutions of the wave-type equations instead

Of N 2evolutions = 400.

14th Capra Meeting Southampton 11th. Priscilla Canizares |14



Code Validation

e Covering the spatial domain with a given number of subdomains (D) we improve the

field resolution with a relatively small N.
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Improving the Mode Resolution

* Different harmonic modes need different resolution
* We adjust the size of the subdomain around the particle location to the smaller

mode wavelength
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Code Validation

The dependence of the truncation error (~ |an| ) with respect increasing numbers of collocation

: : : : : —N
points, N, give us an estimation of the exponential convergence of the code: €
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Some numevrical Results

circular case

Snapshots from the Circular case (D=12, N=50)
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Some numevrical Results:

Circular case

e Results for the self-force components

bmaz = 40 PwP scheme diﬁ:iune?ac,)l;)
Tt 3.609002 E-4 | 3.609072 E-4
Fr 1.677282 E-4 | 1.67728 E-4
F¢ -5.304234 E-3|-5.304231 E-3

[ P. Canizares & Carlos F. Sopuerta (2009)].

Arpin ~25My  D=43 N =50

Our time domain results agree
within 10*% with the frequency
domain employing a small amount

of computational resources.

(a) [Diaz-Rivera et al. PRD 70, 124018 (2004)] , (b) [Haas, Poisson. PRD 74, 044009 (2006)]
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PwP with eccentric generic orbits

e The key point of the PwP method is to keep the particle at the interface between subomains:
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[ P. Canizares, Carlos F. Sopuerta & Jose L. Jaramillo (2010)].
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Code Validation

The dependence of the truncation error (~ |an| ) with respect increasing numbers of collocation
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Code Validation

Snapshots from the Eccentric (e=0.5, p= 7.1) case (D=10, N= 100)
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[ P. Canizares, Carlos F Sopuerta & Jose L. Jaramillo (2010)].
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Some numevrical Results:

Eccentric case

(ep) = (0.1, 63) Loy = 17

After tune modes Before tune modes

D =80,N =50 D=41,N=50

0;® = 4.5171 - 10~ *q/ M 0;® = 4.5284 - 10~ *q /M
0,® = 2.1250 - 10~ *q/M? 0,® = 2.1227 - 10~ *q/M;
0,® = —6.2040 - 10~3q /M, 0p® = —6.2086 - 10~ "q/M,

The results differ with a fractional error of 0. 2%, 0.1% and 0.07%

[ P. Canizares & Carlos F. Sopuerta (201 1)].
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Summary

We have developed a robust time-domain technique for modelling EMRISs:
e Avoids the resolution of the small scale associated with the SCO,

e Provides precise determination of the retarded field and its derivatives

near an on the SCO.
e It is suitable to deal with moderate to high eccentric EMRI orbits.

e It is an efficient method to make time-domain computations of the self-

force.
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