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Analytical Relativity of Relativistic Binary Systems

Aims:

• Analytical description of binary systems: binary black holes (BBH),
binary neutron stars (BNS), black-hole-neutron-star (BHNS), ...

• Describe both comparable-mass or extreme-mass-ratio systems

• Describe both the dynamics and the gravitational radiation (and the
effect of gravitational radiation on the dynamics)

• Currently focussed on quasi-circular motion, but this is not a limitation
of principle

• Motivations: LIGO/VIRGO/... as well as LISA
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The Problem of Motion in General Relativity: Basic
Strategies and Technical Tools

• Post-Minkowskian approach:
gµν(x) = ηµν + Gh(1)

µν(x) + · · ·+ Gnh(n)
µν(x) + · · ·

• Post-Newtonian approach: ∂0 � ∂i , GM/rc2 ∼ v2/c2 � 1
• Multi-chart approach: body-charts, near-zone-chart,

wave-zone-chart
• Matching of Asymptotic Expansions: body zone/near zone; and

near-zone/wave zone
• Skeletonized description of strongly self-gravitating bodies
• Arnowitt-Deser-Misner (ADM) Hamiltonian approach
• Multipolar Post-Minkowskian approach in exterior zone (Thorne

80, Blanchet-Damour 86)
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• Effective (skeletonized) action for BHs up to 5PN (Damour 82):
S =

∫
dDx
√

gR(g)/16πG −
∑

A mA

√
−gµν(yA)dyµA dyνA

• Dimensional continuation (and regularization): D ≡ d + 1 = 4 + ε

• Effective action for extended bodies (D+Esposito-Farese 98,
Goldberger-Rothstein 06, D+Nagar 09)
S =

∫
dDx
√

gR(g)/16πG −
∑

A mA

√
−gµν(yA)dyµA dyνA +∑

A
1
4µA

∫
dsA[uµAuνARµανβ(yA)]2 + · · ·

• x-space integrals done using Riesz’ formula
(
∫

dd xra
1 rb

2 = C(a,b,d)ra+b+d
12 ) and its generalizations (e.g.∫

ddx (r2−d
1 r2−d

2 r2−d
3 )), together with local expansions ( in

dimension d near each “point mass” x = yA ).
• Multipole expansion of exterior metric, taking into account

hereditary effects (tails, ...)
• Relativistic generalization of the “quadrupole formula” (D+Iyer 91,

Blanchet 95, Blanchet+D+Esposito-Farese+Iyer 05):
IL ∼

∫
ddx [xL(τ00 + τii) + · · · ]
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Structure of 3PN dynamics (EOM or H)

(Jaranowski-Schäfer 98, Blanchet-Faye 01,
Damour-Jaranowski-Schäfer 01, Itoh-Futamase 03,
Blanchet-Damour-Esposito-Farese 04, Foffa-Sturani 11)
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Structure of 3PN radiation

(Blanchet-Iyer-Joguet 02, BDEFI 04, BF-Iyer-Sinha 08)
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2-body Taylor-expanded waveform
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PN-Expanded equations of motion

a = 1,2; i = 1,2,3

d2 z i
a

dt2 = Ai
a(zb, vb) = Ai cons

a + AiRR
a

Acons = A0 + c−2 A2 + c−4 A4 + c−6 A6

ARR = c−5 A5 + c−7 A7

Need to use balance equations to improve ARR to higher fractional PN
accuracy: fractional 3.5 PN

⇒ ARR = c−5[1+c−2 +c−3 +c−4 +c−5 +c−6 +c−7] = c−5 + . . .+c−12
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Effective-one-body (EOB) approach to the general
relativistic two-body problem

(Buonanno+D 99, 00, DJS00, D01, D+Nagar 07, D+Iyer+Nagar 08)

key ideas:

(1) Replace two-body dynamics (m1,m2) by dynamics of a particle
(µ ≡ m1 m2/(m1 + m2)) in an effective metric geff

µν(u), with

u ≡ GM/c2R , M ≡ m1 + m2

(2) Systematically use RESUMMATION of PN expressions (both geff
µν

and FRR) based on various physical requirements
(3) Require continuous deformation w.r.t.

ν ≡ µ/M ≡ m1 m2/(m1 + m2)
2 in the interval 0 ≤ ν ≤ 1

4
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Two-body/EOB “correspondence”

Mapping real 2-body (m1,m2) c.o.m dynamics → “effective” dynamics
of one body, of mass µ ≡ m1 m2/M following a (Finsler-generalized)
geodesic in the “external” (spherically symmetric) metric

gext
µν dxµ dxν = −A(R) c2 dT 2 + B(R) dR2 + R2(dθ2 + sin2 θdϕ2)

with

A(R) = 1 + a1
GM
c2R

+ a2

(
GM
c2R

)2

+ a3

(
GM
c2R

)3

+ · · · ;

B(R) = 1 + b1
GM
c2R

+ b2

(
GM
c2R

)2

+ · · ·

“Dictionary” between H2-body(q,p) and EOB Hamiltonian-Jacobi:

0 = µ2 + gµνeff (x) pµ pν + Q(p)

where pµ = ∂S(x)/∂xµ and

Q(p) = Aµνρσ(x) pµ pν pρ pσ + . . .
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Dictionary: Think quantum-mechanically (J.A.
Wheeler)

Sommerfeld’s Old Quantum Mechanics:

Iϕ = `h =

∮
pϕ dϕ , N = nh = Iϕ +

∮
pr dr

Eeff(Ieff
a = na h) = f [Ereal(Ireal

a = na h)]
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The EOB energy map (c = 1)

Eeff =
E2

real − m2
1 − m2

2
2(m1 + m2)

=
s − m2

1 − m2
2

2M

EOB Hamiltonian

HEOB = M
√

1 + 2ν(Ĥeff − 1)

where

M ≡ m1 + m2 , µ ≡ m1 m2

M
, ν ≡ µ

M
, Ĥeff =

Heff

µ
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Explicit form of the EOB effective Hamiltonian

ds2
eff = geff

µν(x) dxµdxν = −A(r ;ν) dt2 +B(r , ν) dr2 + r2(dθ2 +sin2 θdϕ2)

in terms of PR∗ =
(

A
B

)1/2
PR and rescaled variables r ≡ R/GM,

pr∗ = PR∗/µ, pϕ = Pϕ/µ

Ĥeff =

√
p2

r∗ + A(r ;ν)
(

1 +
p2
ϕ

r2 + Q(r ,pr∗)

)
where, with u ≡ GM/c2R ≡ 1/r , Q̂(r ,pr∗) = 2(4 − 3ν)νu2 p4

r∗ + . . .

A(u;ν) = 1 − 2u + 2νu3 + νa4 u4 +O(u5)

(A(r) B(r))−1 ≡ D(u;ν) = D(u;ν) = 1+6νu2 +2(26−3ν)νu3 +O(u4)

where

a4 =
94
3

−
41π2

32
' 18.6879027 crucial 3PN information
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EMRI limit (Bernuzzi-Nagar-Zenginoglu)
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On the EOB/GSF synergy

EOB basic functions: A(u;ν), D(u;ν); Q(u,pr∗)

PN limit u → 0:

A(u;ν) = 1 − 2u + 2νu3 + νa4 u4 +O(u5)

D̄(u;ν) = 1 + 6νu2 + 2(26 − 3ν)νu3 +O(u4)

GSF limit ν → 0 (ν always better than q):

A(u;ν) = 1 − 2u + νa(u) + ν2 a2(u) +O(ν3)

D̄(u;ν) = 1 + ν d̄(u) + ν2 d̄2(u) +O(ν3)
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Uncertainties in the knowledge of the A function

In the absence of information, use Padé resummation to go beyond PN
knowledge

A1
3(u, ν) ≡ P1

3 [A3PN] = P1
3 [1 − 2u + 2νu3 + a4νu4]

=
1 + n1(ν)u

1 + d1(ν)u + d2(ν)u2 + d3(ν)u3

Improved parametrization: 4PN(a5) + 5PN(a6), tuned to comparable-
mass NR data

A1
5(u, ν) ≡ P1

5 [A3PN + a5 νu5 + a6 νu6]
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Uncertainties in the knowledge of the A function
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EOB information contained in δGSFΩLSO

(Barack-Sago 09)

Most useful:

G(m1 + m2)Ω
∞
LSO = 6−3/2

[
1 + ν

(
cBS
Ω + 1 −

1√
18

)
+O(ν2)

]
= 6−3/2[1 + 1.25120ν+O(ν2)]

or
xLSO ≡ (GMΩ∞

LSO)2/3 =
1
6

[1 + 0.83413ν+O(ν2)]
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EOB theory of LSO
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EOB theory of LSO

Dependence on δGSF xLSO on EOB A potential.
Consider the 1GSF expansion of the function A(u, ν):

A(u, ν) = 1 − 2u + νa(u) +O(ν2)

xLSO =
1
6

[1 + cEOB
x ν+O(ν2)]

with (Damour 09)

cEOB
x =

2
3

(
1 −

√
8
9

)
+ a

(
1
6

)
+

1
6

a ′
(

1
6

)
+

1
18

a ′′
(

1
6

)
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PN expansion (here without logs)

a(u) =
∑
n≥3

an un = a3 u3 + a4 u4 + a5 u5 + a6 u6 + a7 u7 + . . .

Known 3PN terms:

c3PN
x = 0.038127 + 0.148148 + 0.418171 = 0.604446

which represents 72.5% of the GSF result cBS
x = 0.83413

⇒ information about 4PN + 5PN + . . . terms in a(u):

a5 + 0.242754 a6 ' 38.84(7)

can formally complement the knowledge acquired from EOB/NR com-
parison⇒

a∩5 ' −22.3 , a∩6 ' +252
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EOB/GSF synergy from small-eccentricity orbits

EOB theory of periastron advance (Damour 09)

W (x) ≡
(
Ωr

Ωϕ

)2

= 1 − 6x + νρ(x) +O(ν2)

ρ(x) ≡ ρE(x) + ρa(x) + ρd(x)

ρE(x) = 4x
(

1 −
1 − 2x√
1 − 3x

)
ρa(x) = a(x) + x a ′(x) +

1
2

x(1 − 2x) a ′′(x)

ρd(x) = (1 − 6x) d̄(x)

where d̄(x) is the coefficient of the 1GSF expansion of the second
EOB potential:

D(u, ν) = 1 + νd(u) +O(ν2)

.
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3PN expansion of the function ρ(x)

ρ3PN(x) = ρ2 x2 + ρ3 x3 ,

with

ρ2 = 14 ,

ρ3 =
397

2
−

123
16

π2 = 122.627416

Numerically
cx [ρ3PN] =

ρ2

62 +
ρ3

63 = 0.956608

now larger than cBS
x by 14.67%

Example of unreliability of using (non resummed) PN expansions for
estimating physical quantities in the strong-field regime (here the LSO)
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Precession effect of GSF and the EOB formalism

W (x) ≡
(
Ωr

Ωϕ

)2

= 1 − 6x + νρ(x) +O(ν2)

GSF result for ρ(x)

ρ(x) = fr0(x)F̃ r
circ + fr1(x)F̃ r

1 + fϕ1(x)F̃ϕ1 + f(α)(x)

with F̃ r
circ ≡ ν−2F r

circ, etc.

F r = F r
circ + eF r

1 cosωrτ,

Ft = eωr Ft1 sinωrτ,

Fϕ = eωr Fϕ1 sinωrτ

and fr0(x) = −
2(1−3x)(1−x)

x2(1−2x)
, etc.
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Numerical GSF data for ρ(x)/x2 compared to
various EOB/PN approximations

PN expansion of ρ(x) [with logarithms (Damour; Blanchet-Detweiler-
LeTiec-Whiting; Barack-Damour-Sago)]

ρPN(x) = ρ2x2 + ρ3x3 + (ρc
4 + ρ

log
4 ln x)x4 + (ρc

5 + ρ
log
5 ln x)x5 + O(x6+0)

where ρlog
4 ' 167.466 . . . and ρlog

5 ' −1619.428 . . . are known, but ρc
4,

ρc
5 are not
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Numerical GSF data for ρ(x)/x2 compared to
various EOB/PN approximations
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How to make the best use of GSF data

Try to extract unknown higher PN coefficients from GSF data:
? strength of successive PN signals in ρ(x)
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Quantitative test of GSF data against known
EOB/PN terms 2PN coefficient ρ2 = 14

fit model fixed params. ρ2 (best fit) χ2/DoF L∞-norm
ρ2PN none 21.5941 6.8× 107 2.3× 10−1

ρ3PN none 14.5748 5810 3.6× 10−3

ρ4PN none 14.5135 5264 4.8× 10−3

ρ4PN+ none 13.9665 29.4 6.0× 10−4

ρ5PN none 14.0544 4.08 2.0× 10−4

ρ5PN+ none 13.9721 0.74 4.5× 10−5

ρ6PN none 14.0106 0.59 1.6× 10−5

ρ6PN+ none 13.9619 0.58 1.7× 10−5

ρ7PN none 13.9527 0.61 1.7× 10−5

ρ7PN ρ3 13.9946 0.58 1.7× 10−5

ρ7PN ρ3, ρlog
4 14.0015 0.56 1.6× 10−5

ρ7PN ρ3, ρlog
4 , ρlog

5 14.00002 0.55 1.6× 10−5
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Quantitative test of GSF data against the known
EOB 3PN coefficient ρ3 = 122.6274

fit model fixed params. ρ3 (best fit) χ2/DoF L∞-norm
ρ3PN ρ2 97.953 3.7× 105 8.2× 10−3

ρ4PN ρ2 106.936 4.9× 104 1.2× 10−2

ρ4PN+ ρ2 122.458 20.5 4.4× 10−4

ρ5PN ρ2 120.962 12.0 3.6× 10−4

ρ5PN+ ρ2 124.365 1.04 7.8× 10−5

ρ6PN ρ2 122.256 0.57 1.6× 10−5

ρ6PN+ ρ2 123.758 0.57 1.6× 10−5

ρ7PN ρ2 120.914 0.58 1.7× 10−5

ρ7PN ρ2, ρlog
4 122.929 0.56 1.7× 10−5

ρ7PN ρ2, ρlog
4 , ρlog

5 122.623 0.55 1.6× 10−5

+ Similar tests of the analytically determined ρlog
4 and ρlog

5
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Determination of unknown EOB/PN parameters

Strategy: Fixing all known parameters (ρ2, ρ3, ρ
log
4 , ρ

log
5 ) at their analyti-

cal values, one fits GSF data to some PN models which include a variety
of the a priori most significant unknown higher-order parameters

Result:
ρc

4 = 69+7
−4, ρc

5 = −4800+400
−1200, ρ

log
6 < 0

Implications for EOB theory

10ac
5 + d̄c

4 +
9
2

alog
5 ' 518.6+7

−4,

14ac
5 + 6d̄c

4 − 15ac
6 − d̄c

5 + 8alog
5 −

11
2

alog
6 ' 4779−400

+1200

First constraints on higher PN parameters of direct physical significance
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Determination of the global strong-field behaviour
of an EOB function

PN theory gives information only about the x → 0 behaviour of some
f (x); EOB theory aims at extending into the strong-field region x = O(1)

the PN knowledge of some f (x) : A(x ;ν),B(x ;ν), . . . However, EOB
does this by trying some resummation methods (e.g. Padé [APN]), and
imposing some general requirements, but needs the help of strong-field
data to improve or calibrate its resummed functions. E.g. NR data for
constraining a5(ν), a6(ν) in Padé [A3PN +a5(ν) u5 +a6(ν) u6] (D+Nagar,
Buonanno, Pan et al., . . .)
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Determination of the global strong-field behaviour
of an EOB function

GSF data on small-eccentricity precession → first-ever determination
of a combination of (ν-derivative of) EOB functions in the strong-field
regime

ρ(x) = ρE(x) + ρa(x) + ρd(x)

ρE(x) = 4x
(

1 −
1 − 2x√
1 − 3x

)
,

ρa(x) = a(x) + xa ′(x) +
1
2

x(1 − 2x)a ′′(x),

ρd(x) = (1 − 6x)d̄(x)

where a(x) and d̄(x) enter the 1GSF expansions:
A(x , ν) = 1 − 2u + νa(x) +O(ν2), D̄(x , ν) = 1 + νd̄(x) +O(ν2).
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An efficient strategy for GSF/EOB synergy

EOB resummation is using one-point Padé approximants of various fun-
damental functions.

Proposed new strategy (BDS10) for defining sufficiently accurate global
representations of the strong-field behaviour of dynamically relevant
functions based on combining a minimal amount of strong-field infor-
mation with the available PN information: to use multiple-point Padé
approximants constrained both by PN data at x1 = 0 and GSF (or NR)
data at some strong-field points, x2, x3, . . .

Application to ρ(x): combining PN knowledge of ρ(x) = ρ2 x2 + ρ3 x3 +

O(x4) with, e.g., GSF-computed values of ρ(1/6) and ρ ′(1/6) ⇒ 4
pieces of data allowing one to uniquely determine a 4-parameter Padé
model:

ρ(x) = c0x2
(

1 + c1x
1 + d1x + d2x2

)
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Two-point Padé model of ρ(x) based on PN
information at x = 0 and GSF data at x = 1/6
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Possible future EOB/GSF synergies

• Study ρ(x) for unstable circular orbits: 1
6 < x < 1

3

• Unbound orbits: renormalize E∞
1 and J∞

1 into global E and J and
compare the scattering angle θ(E ,J ) to its EOB prediction
• Special zero-binding zoom-whirl motion ⇒ a

(1
4

)
and a ′

(1
4

)
[then

usable for the two-point Padé strategy]
• Compute conserved E1, J1 for bound orbits, extrapolate them to

global E ,J , and compare the two gauge-invariant functions of two
gauge-invariant variables Ωr = Ωr (E ,J ), Ωϕ = Ωϕ(E ,J ) to EOB
predictions
• In principle δGSF of the BS singular curve in (Ωr ,Ωϕ) plane can

inform EOB
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Possible future EOB/GSF synergies

• On the other hand, the gauge-invariant Detweiler redshift function
ut(Ωcirc

ϕ ) (and its generalization 〈ut〉(Ωr ,Ωϕ) BS11) are not simply
related to the dynamical EOB functions
• Go from 1GSF to 2GSF level ⇒ compute
E − M = e1 ν+ e2 ν

2 +O(ν3), J = j1 ν+ j2 ν2 +O(ν3)

• Spin-dependent effects: compute the strong-field behaviour of the
O(ν) terms in the two gyro-gravitomagnetic ratios geff

S , geff
S∗

(DJS08) and combine this information with the PN knowledge at
NNLO (DJS08, Hartung-Steinhoff11, Nagar11)
• For non-conservative force: 2GSF ⇒ O(ν) fractional corrections

to radiation reaction and waveform?
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Conclusions

• There are many prospects for a fruitful synergy between EOB and
GSF frameworks

• The first examples of this synergy have already shown how GSF
can bring crucial strong-field data that can inform EOB:

• BS09 on δGSFΩLSO:⇒ a
(1

6

)
+ 1

6 a ′
(1

6

)
+ 1

18 a ′′
(1

6

)
' 0.796⇒ help to complement NR data in determining AEOB(u, ν)

• BDS10 on ρ(x):

⇒ quantitative confirmation of PN terms (including 4PN and 5PN
logs)⇒ numerical determination of yet uncalculated PN terms: non-log
terms at 4PN and 5PN
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⇒ first determination of the (medium-)strong-field behaviour of a
combination of the 1GSF coefficients in the ν expansion of EOB
functions: ρ(x) ∼ d(x) & a(x) & a ′(x) & a ′′(x)⇒ introduction of a new strategy for combining PN and a small
sample of GSF data: multiple-point, GSF-informed Padé
approximants

• LMBBPST11 recently considered an interesting multiple
comparison: NR/PN/EOB/GSF. This comparison has confirmed
two of the basic EOB tenets: (i) effectiveness of EOB
resummation; and (ii) usefulness of taking ν = m1m2/(m1 + m2)

2

as continuous deformation parameter with 0 < ν ≤ 1
4

• The general PN-EOB fact that the terms of order O(ν2) (2GSF), or
higher, in the basic EOB functions are subdominant makes 1GSF
data useful for improving EOB. However, O(ν2) effects are known
to be important in some strong-field quantities: e.g.
Ω̂LSO(ν) ' 6−3/2[1 + 1.25ν+ 1.87ν2]
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