EOB and GSF

Thibault Damour Institut des Hautes Études Scientifiques

14th Capra Meeting on Radiation Reaction in General Relativity Southampton, July 4-8, 2011

Analytical Relativity of Relativistic Binary Systems

Aims:

- Analytical description of binary systems: binary black holes (BBH), binary neutron stars (BNS), black-hole-neutron-star (BHNS), ...
- Describe both comparable-mass or extreme-mass-ratio systems
- Describe both the *dynamics* and the gravitational radiation (and the effect of gravitational radiation on the dynamics)
- Currently focussed on *quasi-circular motion*, but this is not a limitation of principle
- Motivations: LIGO/VIRGO/... as well as LISA

The Problem of Motion in General Relativity: Basic Strategies and Technical Tools

- Post-Minkowskian approach:
 - $g_{\mu\nu}(x) = \eta_{\mu\nu} + Gh_{\mu\nu}^{(1)}(x) + \cdots + G^n h_{\mu\nu}^{(n)}(x) + \cdots$
- Post-Newtonian approach: $\partial_0 \ll \partial_i$, $GM/rc^2 \sim v^2/c^2 \ll 1$
- Multi-chart approach: body-charts, near-zone-chart, wave-zone-chart
- Matching of Asymptotic Expansions: body zone/near zone; and near-zone/wave zone
- Skeletonized description of strongly self-gravitating bodies
- Arnowitt-Deser-Misner (ADM) Hamiltonian approach
- Multipolar Post-Minkowskian approach in exterior zone (Thorne 80, Blanchet-Damour 86)

• Effective (skeletonized) action for BHs up to 5PN (Damour 82):

 $S = \int d^D x \sqrt{g} R(g) / 16\pi G - \sum_A m_A \sqrt{-g_{\mu\nu}(y_A)} dy^{\mu}_A dy^{\nu}_A$

- Dimensional continuation (and regularization): $D \equiv d + 1 = 4 + \epsilon$
- Effective action for extended bodies (D+Esposito-Farese 98, Goldberger-Rothstein 06, D+Nagar 09)

 $S = \int d^{D}x \sqrt{g}R(g) / 16\pi G - \sum_{A} m_{A} \sqrt{-g_{\mu\nu}(y_{A})} dy^{\mu}_{A} dy^{\nu}_{A} + \sum_{A} \frac{1}{4}\mu_{A} \int ds_{A} [u^{\mu}_{A}u^{\nu}_{A}R_{\mu\alpha\nu\beta}(y_{A})]^{2} + \cdots$

- *x*-space integrals done using Riesz' formula $(\int d^d x r_1^a r_2^b = C(a, b, d) r_{12}^{a+b+d})$ and its generalizations (e.g. $\int d^d x (r_1^{2-d} r_2^{2-d} r_3^{2-d}))$, together with local expansions (in dimension *d* near each "point mass" $x = y_A$).
- Multipole expansion of exterior metric, taking into account hereditary effects (tails, ...)
- Relativistic generalization of the "quadrupole formula" (D+lyer 91, Blanchet 95, Blanchet+D+Esposito-Farese+lyer 05): $I_L \sim \int d^d x \left[x^L (\tau^{00} + \tau^{ii}) + \cdots \right]$

Structure of 3PN dynamics (EOM or H)

(Jaranowski-Schäfer 98, Blanchet-Faye 01, Damour-Jaranowski-Schäfer 01, Itoh-Futamase 03, Blanchet-Damour-Esposito-Farese 04, Foffa-Sturani 11)

Structure of 3PN radiation

(Blanchet-Iyer-Joguet 02, BDEFI 04, BF-Iyer-Sinha 08)

2-BODY TAYLOR-EXPANDED 3PN HAMILTONIAN

$H_{\rm N}(\mathbf{x}_a, \mathbf{p}_a) = \sum \frac{\mathbf{p}_a^2}{2m_a} - \frac{1}{2} \sum \sum_{i=1}^{i} \frac{Gm_am_b}{r_{ab}}.$ Newtonian Hamiltonian					
$H_{1PN}(\mathbf{x}_{a}, \mathbf{p}_{s}) = -\frac{1}{8} \frac{ \mathbf{p} ^{2}}{m_{1}^{2}} + \frac{1}{8} \frac{Gm_{1}m_{2}}{r_{12}} \left[-12 \frac{\mathbf{p}_{1}^{2}}{m_{1}^{2}} + 14 \frac{(\mathbf{p}_{1} \cdot \mathbf{p}_{2})}{m_{1}m_{2}} + 2 \frac{(\mathbf{n}_{12} \cdot \mathbf{p}_{1})(\mathbf{n}_{12} \cdot \mathbf{p}_{2})}{m_{1}m_{2}} \right] + \frac{1}{4} \frac{Gm_{1}m_{2}}{r_{12}} \frac{G(m_{1} + m_{2})}{r_{12}} + \left(1 \leftrightarrow 2\right),$	1PN				
$\begin{split} H_{2PS}(\mathbf{x}_{n},\mathbf{p}_{n}) &= \frac{1}{16} \frac{(p_{1}^{2})^{2}}{m_{1}^{2}} + \frac{6}{16} \frac{Gm_{2PS}}{m_{12}^{2}} \left[\frac{c_{1}(p_{1}^{2})^{2}}{m_{1}^{2}} - \frac{11}{m_{1}^{2}m_{1}^{2}} - \frac{(\mathbf{p}_{n},\mathbf{p}_{1})^{2}}{m_{1}^{2}m_{2}^{2}} + \frac{s_{1}\mathbf{p}^{2}(\mathbf{m}_{2}-\mathbf{p}_{1})^{2}}{m_{1}^{2}m_{2}^{2}} \\ &- \frac{c_{1}(\mathbf{p}_{n},\mathbf{p}_{1})(\mathbf{p}_{n}-\mathbf{p}_{1})(\mathbf{p}_{n}-\mathbf{p}_{1})(\mathbf{p}_{n}-\mathbf{p}_{1})}{m_{1}^{2}m_{1}^{2}} \left[\frac{1}{m_{1}^{2}m_{2}} - \frac{s_{1}^{2}m_{1}^{2}m_{2}}{m_{1}^{2}m_{1}^{2}} \right] \\ &+ \frac{1}{4} \frac{C^{2}m_{1}m_{2}}{c_{1}^{2}} \left[m_{1}^{2} \left\{ \mathbf{n}_{2}\mathbf{D}_{n}^{\mathbf{L}} + \frac{\mathbf{n}_{2}\mathbf{p}_{2}}{m_{1}^{2}} - \frac{1}{2} (m_{1} + m_{2}) \frac{2C(\mathbf{p}_{1} + \mathbf{p}_{2}) + 6(\mathbf{n}_{1} - \mathbf{p}_{1})(\mathbf{n}_{2} - \mathbf{p}_{2})}{m_{1}m_{2}} \right] \\ &- \frac{1}{6} \frac{Gm_{1}m_{2}C(\mathbf{n}_{1})^{2} - \frac{C(\mathbf{n}_{1})^{2}}{m_{1}^{2}} + \frac{\mathbf{n}_{2}\mathbf{p}_{2}}{m_{1}^{2}} - \frac{1}{2} (m_{1} + m_{2}) \frac{2C(\mathbf{p}_{1} + \mathbf{p}_{2}) + 6(\mathbf{n}_{1} - \mathbf{p}_{1})(\mathbf{n}_{2} - \mathbf{p}_{2})}{m_{1}m_{2}} \right] \end{split}$	2PN				
$\begin{aligned} B_{223}^{(0)}(\mathbf{x}, \mathbf{p},) &= -\frac{5}{128} \frac{ \mathbf{p}_{1}^{0 } + \frac{1}{42} \frac{G(\mathbf{m}, \mathbf{p}_{2})}{m_{1}^{2}} \left[-\frac{1}{m_{1}^{2}} \left[\frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})^{2} + \frac{1}{4} \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})^{2} \frac{g(\mathbf{p}_{2}, \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} \right] \\ &-\frac{16}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}(\mathbf{n}_{2}, \mathbf{p}_{2})^{2} + \frac{g(\mathbf{p}_{2}, \mathbf{p}_{2})^{2} (\mathbf{n}_{2}, \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2} (\mathbf{n}_{2}, \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} \right] \\ &+ \frac{f(\mathbf{p}_{1}^{0})^{2} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2} (\mathbf{n}_{2}, \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2} (\mathbf{n}_{2}, \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} \right] \\ &+ \frac{f(\mathbf{p}_{1}^{0})^{2} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2} (\mathbf{n}_{2}, \mathbf{p}_{2})}{m_{1}^{2}m_{2}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2} (\mathbf{n}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right] \\ &+ \frac{f(\mathbf{p}_{1}^{0})^{2} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}} \frac{1}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right] \\ &+ \frac{f(\mathbf{p}_{1}, \mathbf{p}_{2})^{2} \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})}{m_{1}^{2}} \frac{1}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right] \\ &+ \frac{f(\mathbf{p}_{1}, \mathbf{p}_{2})^{2}}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})^{2}}{m_{1}^{2}} \frac{1}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})}{m_{1}^{2}m_{2}^{2}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} \right] \\ &- \frac{g(\mathbf{p}_{1}^{0})^{2} \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}m_{2}^{2}} + \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}}} \right] \\ \\ &+ \frac{f(\mathbf{p}_{1}, \mathbf{p}_{2}) \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}} \frac{g(\mathbf{p}_{2}, \mathbf{p}_{2})^{2}}{m_{1}^{2}}} \\ \\ &- \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2}) \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})}{m_{1}^{2}} \frac{g(\mathbf{p}_{1}, \mathbf{p}_{2})}$	3PN				

Thibault Damour (IHES)

2-body Taylor-expanded waveform

TAYLOR-EXPANDED 3PN WAVEFORM

Blanchet, Iyer&Joguet, 02; Blanchet, Damour, Iyer&Esposito-Farese, 04; Kidder07; Blanchet et al.,08

$$\begin{split} h^{22} &= -8\sqrt{\frac{\pi}{5}}\frac{G\nu m}{c^2 R}e^{-2i\phi}x\Big\{1 - x\Big(\frac{107}{42} - \frac{55}{42}\nu\Big) + x^{3/2}\Big[2\pi + 6i\ln\Big(\frac{x}{x_0}\Big)\Big] - x^2\Big(\frac{2173}{1512} + \frac{1069}{216}\nu - \frac{2047}{1512}\nu^2\Big) \\ &- x^{5/2}\Big[\Big(\frac{107}{21} - \frac{34}{21}\nu\Big)\pi + 24i\nu + \Big(\frac{107i}{7} - \frac{34i}{7}\nu\Big)\ln\Big(\frac{x}{x_0}\Big)\Big] \\ &+ x^3\Big[\frac{27027409}{646800} - \frac{856}{105}\gamma_E + \frac{2}{3}\pi^2 - \frac{1712}{105}\ln^2 - \frac{428}{105}\ln x \\ &- 18\Big[\ln\Big(\frac{x}{x_0}\Big)\Big]^2 - \Big(\frac{278185}{33264} - \frac{41}{96}\pi^2\Big)\nu - \frac{20261}{2772}\nu^2 + \frac{114635}{99792}\nu^3 + \frac{428i}{105}\pi + 12i\pi\ln\Big(\frac{x}{x_0}\Big)\Big] + O(\epsilon^{7/2})\Big\}. \end{split}$$

$$\begin{split} \mathcal{X} &= \Big(M\Omega\Big)^{2/3} \sim v^2/c^2 \qquad \qquad M = m_1 + m_2 \\ \nu &= \frac{m_1m_2}{M^2} \end{split}$$

PN-Expanded equations of motion

$$\frac{d^2 z_a^i}{dt^2} = A_a^i(z_b, v_b) = A_a^{i \operatorname{cons}} + A_a^{iRR}$$

$$A^{\rm cons} = A_0 + c^{-2} A_2 + c^{-4} A_4 + c^{-6} A_6$$

$$A^{RR} = c^{-5} A_5 + c^{-7} A_7$$

Need to use balance equations to improve A^{RR} to higher fractional PN accuracy: fractional 3.5 PN

$$\Rightarrow \quad A^{RR} = c^{-5}[1 + c^{-2} + c^{-3} + c^{-4} + c^{-5} + c^{-6} + c^{-7}] = c^{-5} + \ldots + c^{-12}$$

Effective-one-body (EOB) approach to the general relativistic two-body problem

(Buonanno+D 99, 00, DJS00, D01, D+Nagar 07, D+Iyer+Nagar 08) key ideas:

(1) Replace two-body dynamics (m_1, m_2) by dynamics of a particle $(\mu \equiv m_1 m_2/(m_1 + m_2))$ in an effective metric $g_{\mu\nu}^{\text{eff}}(u)$, with

$$u \equiv GM/c^2R$$
, $M \equiv m_1 + m_2$

- (2) Systematically use RESUMMATION of PN expressions (both $g_{\mu\nu}^{\rm eff}$ and \mathcal{F}_{RR}) based on various physical requirements
- (3) Require continuous deformation w.r.t.

 $\nu\equiv \mu/M\equiv m_1~m_2/(m_1+m_2)^2$ in the interval $0\leq \nu\leq rac{1}{4}$

Two-body/EOB "correspondence"

Mapping real 2-body (m_1, m_2) c.o.m dynamics \rightarrow "effective" dynamics of one body, of mass $\mu \equiv m_1 m_2/M$ following a (Finsler-generalized) geodesic in the "external" (spherically symmetric) metric

 $g_{\mu\nu}^{\text{ext}} dx^{\mu} dx^{\nu} = -A(R) c^2 dT^2 + B(R) dR^2 + R^2 (d\theta^2 + \sin^2 \theta d\phi^2)$

with

$$A(R) = 1 + a_1 \frac{GM}{c^2 R} + a_2 \left(\frac{GM}{c^2 R}\right)^2 + a_3 \left(\frac{GM}{c^2 R}\right)^3 + \cdots;$$

$$B(R) = 1 + b_1 \frac{GM}{c^2 R} + b_2 \left(\frac{GM}{c^2 R}\right)^2 + \cdots$$

"Dictionary" between $H_{2\text{-body}}(q, p)$ and EOB Hamiltonian-Jacobi:

$$0 = \mu^2 + g_{\rm eff}^{\mu\nu}(x) \, \rho_{\mu} \, \rho_{\nu} + Q(\rho)$$

where $p_{\mu} = \partial S(x) / \partial x^{\mu}$ and

$$Q(\boldsymbol{p}) = \boldsymbol{A}^{\mu\nu\rho\sigma}(\boldsymbol{x}) \, \boldsymbol{\rho}_{\mu} \, \boldsymbol{\rho}_{\nu} \, \boldsymbol{\rho}_{\rho} \, \boldsymbol{\rho}_{\sigma} + \dots$$

Dictionary: Think quantum-mechanically (J.A. Wheeler)

Sommerfeld's Old Quantum Mechanics:

12/44

The EOB energy map (c = 1)

$$\mathcal{E}_{\rm eff} = \frac{E_{\rm real}^2 - m_1^2 - m_2^2}{2(m_1 + m_2)} = \frac{s - m_1^2 - m_2^2}{2M}$$

EOB Hamiltonian

$$H_{\rm EOB} = M \sqrt{1 + 2\nu(\widehat{H}_{\rm eff} - 1)}$$

where

$$M \equiv m_1 + m_2$$
, $\mu \equiv \frac{m_1 m_2}{M}$, $\nu \equiv \frac{\mu}{M}$, $\widehat{H}_{\rm eff} = \frac{H_{\rm eff}}{\mu}$

Explicit form of the EOB effective Hamiltonian

$$ds_{\text{eff}}^{2} = g_{\mu\nu}^{\text{eff}}(x) \, dx^{\mu} dx^{\nu} = -\mathbf{A}(r;\nu) \, dt^{2} + \mathbf{B}(r,\nu) \, dr^{2} + r^{2} (d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

in terms of $P_{R_{*}} = \left(\frac{A}{B}\right)^{1/2} P_{R}$ and rescaled variables $r \equiv R/GM$,
 $p_{r_{*}} = P_{R_{*}}/\mu, \, p_{\varphi} = P_{\varphi}/\mu$
 $\widehat{H}_{\text{eff}} = \sqrt{p_{r_{*}}^{2} + \mathbf{A}(r;\nu) \left(1 + \frac{p_{\varphi}^{2}}{r^{2}} + \mathbf{Q}(r,p_{r^{*}})\right)}$

where, with $u \equiv GM/c^2R \equiv 1/r$, $\widehat{Q}(r, p_{r_*}) = 2(4 - 3\nu) \nu u^2 p_{r_*}^4 + \dots$ $A(u; \nu) = 1 - 2u + 2\nu u^3 + \nu a_4 u^4 + O(u^5)$

 $(A(r) B(r))^{-1} \equiv \overline{D}(u; v) = \overline{D}(u; v) = 1 + 6v u^2 + 2(26 - 3v) v u^3 + O(u^4)$ where

$$a_4 = \frac{94}{3} - \frac{41 \pi^2}{32} \simeq 18.6879027$$
 crucial 3PN information

Thibault Damour (IHES)

HAMILTON'S EQUATIONS & RADIATION REACTION

$$\frac{dr}{dt} = \left(\frac{A}{B}\right)^{1/2} \frac{\partial \hat{H}_{\rm EOB}}{\partial p_{r_*}},$$

$$\frac{dp_{r_*}}{dt} = -\left(\frac{A}{B}\right)^{1/2} \frac{\partial \hat{H}_{\rm EOB}}{\partial p_r},$$

$$\Omega \equiv \frac{d\varphi}{dt} = \frac{\partial \hat{H}_{\rm EOB}}{\partial p_{\varphi}},$$

$$\frac{dp_{\varphi}}{dt} = \hat{\mathcal{F}}_{\varphi}.$$

The system must radiate angular momentum How?Use PN-based (Taylor-expanded) radiation reaction force (ang-mom flux)

Need flux resummation

 $\mathcal{T}^{\mathrm{Taylo}}$

$$F = -\frac{32}{5}\nu\Omega^5 r_\Omega^4 \hat{F}^{\mathrm{Taylor}}(v_\varphi)$$

1-1-0-1-1--- 0010 DL

NEW: resummation multipole by multipole (parameter free)

20

25

p_{warphi} = 3.2 [LSO] p_ = 2.8 [plunge]

OLD: Padé resummation (parameter dependent)

WAVEFORM RESUMMATION PROCEDURE

Resummation of the waveform multipole by multipole

Factorized (multipolar) waveform at highest available PN order (from Blanchet et al.)

$$\mathcal{F}_{\varphi} \equiv -\frac{1}{8\pi \,\Omega} \sum_{\ell=2}^{\ell_{\max}} \sum_{m=1}^{\ell} (m \,\Omega)^2 \, |R \, h_{\ell m}^{(\epsilon)}|^2$$

Residual amplitude correction:

EFFECTIVENESS OF FLUX RESUMMATION

Test-mass Comparing fluxes, circular orbits)

Equal-mass (Comparing non-resummed & EOB-resummed *amplitudes* to Caltech-Cornell BBH data)

EMRI limit (Bernuzzi-Nagar-Zenginoglu)

Thibault Damour (IHES)

EOB and GSF

COMPARISON EOB VS NR WAVEFORMS

- Two unknown EOB parameters
- NR calibration of the maximum GW amplitude
- Need to tune only 1 parameter
- Banana-like "best-region" in the plane (a_5, a_6) extending from (0, -20) to (-36, 520) where EOB/NR phase difference < 0.02 rad
- Consistency with 2:1 mass ratio case (not shown)

In the absence of information, use Padé resummation to go beyond PN knowledge

$$A_{3}^{1}(u,v) \equiv P_{3}^{1}[A_{3PN}] = P_{3}^{1}[1 - 2u + 2vu^{3} + a_{4}vu^{4}]$$
$$= \frac{1 + n_{1}(v)u}{1 + d_{1}(v)u + d_{2}(v)u^{2} + d_{3}(v)u^{3}}$$

Improved parametrization: $4PN(a_5) + 5PN(a_6)$, tuned to comparable-mass NR data

$$A_5^1(u,v) \equiv P_5^1[A_{3\rm PN} + a_5 v \, u^5 + a_6 v \, u^6]$$

Uncertainties in the knowledge of the A function

Thibault Damour (IHES)

EOB information contained in $\delta^{GSF} \Omega_{LSO}$ (Barack-Sago 09)

Most useful:

$$G(m_1 + m_2) \,\Omega_{\rm LSO}^{\infty} = 6^{-3/2} \left[1 + \nu \left(c_{\Omega}^{\rm BS} + 1 - \frac{1}{\sqrt{18}} \right) + \mathcal{O}(\nu^2) \right]$$

= 6^{-3/2} [1 + 1.25120 \nu + \mathcal{O}(\nu^2)]

or

$$x_{\text{LSO}} \equiv (\text{GM}\,\Omega_{\text{LSO}}^{\infty})^{2/3} = \frac{1}{6} \left[1 + 0.83413\,\nu + \mathcal{O}(\nu^2)\right]$$

EOB theory of LSO

EOB theory of LSO

Dependence on $\delta_{GSF} x_{LSO}$ on EOB *A* potential. Consider the 1GSF expansion of the function A(u, v):

$$A(u, v) = 1 - 2u + v a(u) + \mathcal{O}(v^2)$$

$$x_{\text{LSO}} = \frac{1}{6} \left[1 + c_{\chi}^{\text{EOB}} \nu + \mathcal{O}(\nu^2) \right]$$

with (Damour 09)

$$c_{x}^{\text{EOB}} = \frac{2}{3} \left(1 - \sqrt{\frac{8}{9}} \right) + a \left(\frac{1}{6} \right) + \frac{1}{6} a' \left(\frac{1}{6} \right) + \frac{1}{18} a'' \left(\frac{1}{6} \right)$$

PN expansion (here without logs)

$$a(u) = \sum_{n \ge 3} a_n u^n = a_3 u^3 + a_4 u^4 + a_5 u^5 + a_6 u^6 + a_7 u^7 + \dots$$

Known 3PN terms:

 $c_x^{\rm 3PN} = 0.038127 + 0.148148 + 0.418171 = 0.604446$

which represents 72.5% of the GSF result $c_x^{BS} = 0.83413$

 \Rightarrow information about 4PN + 5PN + ... terms in a(u):

 $a_5 + 0.242754 a_6 \simeq 38.84(7)$

can formally complement the knowledge acquired from EOB/NR comparison

$$a_5^{\cap} \simeq -22.3, \qquad a_6^{\cap} \simeq +252$$

Thibault Damour (IHES)

 \Rightarrow

EOB/GSF synergy from small-eccentricity orbits

EOB theory of periastron advance (Damour 09)

$$W(x) \equiv \left(\frac{\Omega_r}{\Omega_{\varphi}}\right)^2 = 1 - 6x + \nu \rho(x) + \mathcal{O}(\nu^2)$$
$$\rho(x) \equiv \rho_E(x) + \rho_a(x) + \rho_d(x)$$
$$\rho_E(x) = 4x \left(1 - \frac{1 - 2x}{\sqrt{1 - 3x}}\right)$$
$$\rho_a(x) = a(x) + x a'(x) + \frac{1}{2}x(1 - 2x) a''(x)$$
$$\rho_d(x) = (1 - 6x) \bar{d}(x)$$

where $\bar{d}(x)$ is the coefficient of the 1GSF expansion of the second EOB potential:

$$\overline{D}(u, v) = 1 + v \overline{d}(u) + \mathcal{O}(v^2)$$

3PN expansion of the function $\rho(x)$

$$\rho^{3PN}(\textbf{\textit{x}}) = \rho_2 \, \textbf{\textit{x}}^2 + \rho_3 \, \textbf{\textit{x}}^3 \, ,$$

with

$$\begin{array}{rcl} \rho_2 & = & 14\,, \\ \rho_3 & = & \frac{397}{2} - \frac{123}{16}\,\pi^2 = 122.627416 \end{array}$$

Numerically

$$c_x[\rho^{3\text{PN}}] = \frac{\rho_2}{6^2} + \frac{\rho_3}{6^3} = 0.956608$$

now larger than c_x^{BS} by 14.67%

Example of unreliability of using (non resummed) PN expansions for estimating physical quantities in the strong-field regime (here the LSO)

Precession effect of GSF and the EOB formalism

$$W(x) \equiv \left(\frac{\Omega_r}{\Omega_{\varphi}}\right)^2 = 1 - 6x + \nu \rho(x) + \mathcal{O}(\nu^2)$$

GSF result for $\rho(x)$

$$\rho(\mathbf{x}) = f_{r0}(\mathbf{x})\tilde{F}_{\rm circ}^r + f_{r1}(\mathbf{x})\tilde{F}_1^r + f_{\phi 1}(\mathbf{x})\tilde{F}_{\phi 1} + f_{(\alpha)}(\mathbf{x})$$

with $\tilde{F}_{circ}^r \equiv v^{-2} F_{circ}^r$, etc. $F^r = F_{circ}^r + eF_1^r \cos \omega_r \tau$, $F_t = e\omega_r F_{t1} \sin \omega_r \tau$, $F_{\varphi} = e\omega_r F_{\varphi 1} \sin \omega_r \tau$

and $f_{r0}(x) = -\frac{2(1-3x)(1-x)}{x^2(1-2x)}$, etc.

Numerical GSF data for $\rho(x)/x^2$ compared to various EOB/PN approximations

PN expansion of $\rho(x)$ [with logarithms (Damour; Blanchet-Detweiler-LeTiec-Whiting; Barack-Damour-Sago)]

 $\rho^{\text{PN}}(x) = \rho_2 x^2 + \rho_3 x^3 + (\rho_4^c + \rho_4^{\log} \ln x) x^4 + (\rho_5^c + \rho_5^{\log} \ln x) x^5 + O(x^{6+0})$ where $\rho_4^{\log} \simeq 167.466...$ and $\rho_5^{\log} \simeq -1619.428...$ are known, but ρ_4^c , ρ_5^c are not

Numerical GSF data for $\rho(x)/x^2$ compared to various EOB/PN approximations

Thibault Damour (IHES)

How to make the best use of GSF data

Try to extract unknown higher PN coefficients from GSF data: ? strength of successive PN signals in $\rho(x)$

33 / 44

Quantitative test of GSF data against known EOB/PN terms 2PN coefficient $\rho_2 = 14$

fit model	fixed params.	ρ_2 (best fit)	$\chi^2/{\sf DoF}$	L^{∞} -norm
ρ ^{2PN}	none	21.5941	$6.8 imes 10^{7}$	$2.3 imes 10^{-1}$
$ ho^{3PN}$	none	14.5748	5810	$3.6 imes10^{-3}$
$ ho^{4PN}$	none	14.5135	5264	$4.8 imes10^{-3}$
$ ho^{4\mathrm{PN}+}$	none	13.9665	29.4	$6.0 imes10^{-4}$
$ ho^{5PN}$	none	14.0544	4.08	$2.0 imes10^{-4}$
$ ho^{5PN+}$	none	13.9721	0.74	$4.5 imes10^{-5}$
$ ho^{6PN}$	none	14.0106	0.59	$1.6 imes10^{-5}$
$ ho^{6PN+}$	none	13.9619	0.58	$1.7 imes10^{-5}$
$ ho^{7PN}$	none	13.9527	0.61	$1.7 imes10^{-5}$
ρ ^{7PN}	ρ ₃	13.9946	0.58	$1.7 imes 10^{-5}$
$ ho^{7PN}$	ρ_3, ρ_4^{\log}	14.0015	0.56	$1.6 imes10^{-5}$
$ ho^{7PN}$	$\rho_3, \rho_4^{\log}, \rho_5^{\log}$	14.00002	0.55	$1.6 imes10^{-5}$

Quantitative test of GSF data against the known EOB 3PN coefficient $\rho_3 = 122.6274$

fit model	fixed params.	ρ_3 (best fit)	$\chi^2/{\sf DoF}$	L^{∞} -norm
ρ ^{3PN}	ρ ₂	97.953	$3.7 imes10^5$	$8.2 imes 10^{-3}$
$ ho^{4\mathrm{PN}}$	ρ ₂	106.936	$4.9 imes10^4$	$1.2 imes 10^{-2}$
$ ho^{4PN+}$	ρ ₂	122.458	20.5	$4.4 imes10^{-4}$
$ ho^{5PN}$	ρ ₂	120.962	12.0	$3.6 imes10^{-4}$
$ ho^{5PN+}$	ρ ₂	124.365	1.04	$7.8 imes10^{-5}$
$ ho^{6PN}$	ρ ₂	122.256	0.57	$1.6 imes 10^{-5}$
$ ho^{6PN+}$	ρ ₂	123.758	0.57	$1.6 imes 10^{-5}$
$ ho^{7PN}$	ρ ₂	120.914	0.58	$1.7 imes10^{-5}$
ρ^{7PN}	ρ_2, ρ_4^{\log}	122.929	0.56	$1.7 imes10^{-5}$
$ ho^{7PN}$	$\rho_2, \rho_4^{\log}, \rho_5^{\log}$	122.623	0.55	$1.6 imes10^{-5}$

+ Similar tests of the analytically determined ρ_{4}^{\log} and ρ_{5}^{\log}

Thibault Damour (IHES)

Determination of unknown EOB/PN parameters

Strategy: Fixing all known parameters $(\rho_2, \rho_3, \rho_4^{\log}, \rho_5^{\log})$ at their analytical values, one fits GSF data to some PN models which include a variety of the a priori most significant unknown higher-order parameters

Result:

$$\rho_4^{\rm c} = 69^{+7}_{-4}, \qquad \rho_5^{\rm c} = -4800^{+400}_{-1200}, \quad \rho_6^{\rm log} < 0$$

Implications for EOB theory

$$10a_5^c + \bar{d}_4^c + \frac{9}{2}a_5^{\log} \simeq 518.6^{+7}_{-4},$$

$$14a_5^c + 6\bar{d}_4^c - 15a_6^c - \bar{d}_5^c + 8a_5^{\log} - \frac{11}{2}a_6^{\log} \simeq 4779^{-400}_{+1200}$$

First constraints on higher PN parameters of direct physical significance

Determination of the global strong-field behaviour of an EOB function

PN theory gives information only about the $x \to 0$ behaviour of some f(x); EOB theory aims at extending into the strong-field region x = O(1) the PN knowledge of some $f(x) : A(x;v), B(x;v), \ldots$ However, EOB does this by trying some resummation methods (e.g. Padé $[A^{\text{PN}}]$), and imposing some general requirements, but needs the help of strong-field data to improve or calibrate its resummed functions. E.g. NR data for constraining $a_5(v)$, $a_6(v)$ in Padé $[A^{\text{3PN}} + a_5(v) u^5 + a_6(v) u^6]$ (D+Nagar, Buonanno, Pan et al., ...)

Determination of the global strong-field behaviour of an EOB function

GSF data on small-eccentricity precession \rightarrow first-ever determination of a combination of (v-derivative of) EOB functions in the strong-field regime

$$\rho(\mathbf{x}) = \rho_{\mathbf{E}}(\mathbf{x}) + \rho_{\mathbf{a}}(\mathbf{x}) + \rho_{\mathbf{d}}(\mathbf{x})$$

$$\rho_E(x) = 4x \left(1 - \frac{1 - 2x}{\sqrt{1 - 3x}} \right),$$

$$\rho_a(x) = a(x) + xa'(x) + \frac{1}{2}x(1 - 2x)a''(x),$$

$$\rho_d(x) = (1 - 6x)\bar{d}(x)$$

where a(x) and $\bar{d}(x)$ enter the 1GSF expansions: $A(x,v) = 1 - 2u + va(x) + O(v^2)$, $\bar{D}(x,v) = 1 + v\bar{d}(x) + O(v^2)$.

An efficient strategy for GSF/EOB synergy

EOB resummation is using one-point Padé approximants of various fundamental functions.

Proposed new strategy (BDS10) for defining sufficiently accurate global representations of the strong-field behaviour of dynamically relevant functions based on combining a minimal amount of strong-field information with the available PN information: to use multiple-point Padé approximants constrained both by PN data at $x_1 = 0$ and GSF (or NR) data at some strong-field points, $x_2, x_3, ...$

Application to $\rho(x)$: combining PN knowledge of $\rho(x) = \rho_2 x^2 + \rho_3 x^3 + O(x^4)$ with, e.g., GSF-computed values of $\rho(1/6)$ and $\rho'(1/6) \Rightarrow 4$ pieces of data allowing one to uniquely determine a 4-parameter Padé model:

$$p(x) = c_0 x^2 \left(\frac{1 + c_1 x}{1 + d_1 x + d_2 x^2} \right)$$

Two-point Padé model of $\rho(x)$ based on PN information at x = 0 and GSF data at x = 1/6

Thibault Damour (IHES)

- Study $\rho(x)$ for unstable circular orbits: $\frac{1}{6} < x < \frac{1}{3}$
- Unbound orbits: renormalize E₁[∞] and J₁[∞] into global E and J and compare the scattering angle θ(E, J) to its EOB prediction
- Special zero-binding zoom-whirl motion $\Rightarrow a(\frac{1}{4})$ and $a'(\frac{1}{4})$ [then usable for the two-point Padé strategy]
- Compute conserved E_1 , J_1 for bound orbits, extrapolate them to global \mathcal{E} , \mathcal{J} , and compare the *two* gauge-invariant functions of *two* gauge-invariant variables $\Omega_r = \Omega_r(\mathcal{E}, \mathcal{J})$, $\Omega_{\varphi} = \Omega_{\varphi}(\mathcal{E}, \mathcal{J})$ to EOB predictions
- In principle δ^{GSF} of the BS singular curve in (Ω_r,Ω_ϕ) plane can inform EOB

- On the other hand, the gauge-invariant Detweiler redshift function $u^t(\Omega_{\varphi}^{\text{circ}})$ (and its generalization $\langle u^t \rangle(\Omega_r, \Omega_{\varphi})$ BS11) are not simply related to the dynamical EOB functions
- Go from 1GSF to 2GSF level \Rightarrow compute $\mathcal{E} - M = e_1 \nu + e_2 \nu^2 + \mathcal{O}(\nu^3), \ \mathcal{J} = j_1 \nu + j_2 \nu^2 + \mathcal{O}(\nu^3)$
- Spin-dependent effects: compute the strong-field behaviour of the $\mathcal{O}(\nu)$ terms in the two gyro-gravitomagnetic ratios g_S^{eff} , $g_{S^*}^{\text{eff}}$ (DJS08) and combine this information with the PN knowledge at NNLO (DJS08, Hartung-Steinhoff11, Nagar11)
- For non-conservative force: $2GSF \Rightarrow \mathcal{O}(v)$ fractional corrections to radiation reaction and waveform?

Conclusions

- There are many prospects for a fruitful synergy between EOB and GSF frameworks
- The first examples of this synergy have already shown how GSF can bring crucial strong-field data that can inform EOB:
- BS09 on $\delta^{GSF}\Omega_{LSO}$:
- $\Rightarrow \ a\left(\frac{1}{6}\right) + \frac{1}{6} a'\left(\frac{1}{6}\right) + \frac{1}{18} a''\left(\frac{1}{6}\right) \simeq 0.796$
- \Rightarrow help to complement NR data in determining $A^{\text{EOB}}(u, v)$
 - BDS10 on *ρ*(*x*):
- $\Rightarrow\,$ quantitative confirmation of PN terms (including 4PN and 5PN logs)
- $\Rightarrow\,$ numerical determination of yet uncalculated PN terms: non-log terms at 4PN and 5PN

- ⇒ first determination of the (medium-)strong-field behaviour of a combination of the 1GSF coefficients in the ν expansion of EOB functions: $\rho(x) \sim \overline{d}(x) \& a(x) \& a'(x) \& a''(x)$
- ⇒ introduction of a new strategy for combining PN and a small sample of GSF data: multiple-point, GSF-informed Padé approximants
 - LMBBPST11 recently considered an interesting multiple comparison: NR/PN/EOB/GSF. This comparison has confirmed two of the basic EOB tenets: (i) effectiveness of EOB resummation; and (ii) usefulness of taking v = m₁m₂/(m₁ + m₂)² as continuous deformation parameter with 0 < v ≤ 1/4
 - The general PN-EOB fact that the terms of order $\mathcal{O}(\nu^2)$ (2GSF), or higher, in the basic EOB functions are subdominant makes 1GSF data useful for improving EOB. However, $\mathcal{O}(\nu^2)$ effects are known to be important in some strong-field quantities: e.g. $\widehat{\Omega}_{LSO}(\nu) \simeq 6^{-3/2}[1+1.25\nu+1.87\nu^2]$