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|. Intro
A single complex Weyl scalar, either

v, Or v, |
determines gravitational perturbations of a Kerr
geometry (outside perturbative matter sources) up
to changes in mass, angular momentum, and
change In the center of mass.

v, and v, are each a component of the perturbed
Weyl tensor along a tetrad associated with the two
principal null directions of the spacetime.

Each satisfies a separable wave equation, the
Teukolsky equation for that component.



Newman-Penrose Formalism
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Spin weight: Under a rotation of the 6, ¢ basis
0 — 6cosy —psinay

g?ﬁ—> gAbcosszr@sin Y,
m and m change by m — me™, m—me ™
An object 7 Is said to have spin-weight s If it
changes under this basis rotation by
n— e

Then mand m have spin weights +1 and -1, and
v, and y, have spin-weights +2 and -2.



They are gauge invariant, because the Weyl
tensor of the unperturbed Kerr geometry has
only ¥, = nonzero.

A gauge transformation changes the Weyl

tensor by
oC . .=LC
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Components of £ are — _
&m, &m  spin £1

C,z,shas only a spin 0 component

= LC_,; hasonlyspin 0, +1



Teukolsky equation: &, w=3S
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Source function S = T o
T 5= energy-momentum tensor

g a 2"d-order differential operator



*Outgoing Radiation Gauge (ORG)

p_ _
h,,n” =0 h=0

5 constraints, similar to those for ingoing waves in flat space
with a transverse-tracefree gauge. The metric perturbation
satisfying these conditions is given by

N, =LY

where L ;Is a 2nd-order differential operator involving
only @ and O,



Two theorems:

1. Lethbegivenby h =Lz % with #Zan ORG
potential obtained from dy, (0y,) . If y satisfies
the sourcefree Teukolsky equation then h satisfies
the vacuum Einstein equation.



2a. Given a solution v, (y,) to the sourcefree
Teukolsky equation on a globally hyperbolic type
D vacuum spacetime, one can find a local ORG
gauge:
There Is a perturbed metric h, In an
ORG gauge that satisfies the linearized vacuum
Einstein equation, and for which oy, (oy,) Is the
perturbed Weyl tensor component.

(Whiting, L. Price)



2b. Under the conditions of (a) there Is a local
solution ¥to the sourcefree Teukolsky equation
for which h=L ¥is a perturbed vacuum metric
associlated with v (). (Not yet proved)



Explicitly,
%[(6—iasin 00,)" ¥ +12M 8311} =V

Integrate 4 times with respectto &

Algebraic solution
for each frequency and angular harmonic
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Resulting metric has only the 7 > 2 part of the
source. The ¢ =0,1 part has support on a spherical
shell at r=r,, and the metric Is discontinuous at

=Ty,



Equivalent alternative involves radial
derivatives along principal null geodesics:

Y= (1"0,)' U =0,"T(u,r,0,¢)

For each angular harmonic of y, this gives
a unique solution satisfying the Teukolsky
equation: e.g., for r>r,,

U= (1"0,)' U =0,"T(u,r,0,0)

\If:froodrlﬂlmdrzﬂwdrgfwdr4¢0(u,r4,6’,$).

(Kerr coordinates : ¢ gb+foo dr



Because hret and hs'"9 have the same source,
hren=Rhret - hsing js g solution to the vacuum

perturbation equations, and
pen =y - A9, is a solution to the vacuum

Teukolsky equation, allowing one to compute a
Hertz potential.



Although the argument used the order
Vret ~ Vraa
l
}Z}B

rad

The diagram commutes
Vred — Vrua
| l because of the algebraic

t R :
he — h character of the operations
rad rad



Outline of method

ret

1. Compute ¥, from the Teukolsky equation as a
mode sum over |,m, .

2. Find the Hertz potential U™ from ¢y or ¢,"
algebraically from angular equation or as a 4
radial integrals from the radial equation.

The angular harmonics of U™ are defined for
r>r, or r<r,, with r, the radial coordinate of the
particle.

3. Find, in a radiation gauge, the components of h.;
and Its derivatives that occur in the expression
for a“.




ret o

3. Compute a " from the perturbed geodesic equation
as a mode sum truncated at ¢, Compute the
renormalization vectors A¢ and B¢ (and C#?),
numerically matching a power series in L:=/¢+1/2
to the values of a;"" , and subtract from a*°
the truncated sum

ZA“L+B“

rena

to obtain &,

4. Determine the contribution to h; of the
perturbations in mass, angular momentum, and
change in center of mass.



v, —> Hertz potential ¥ —> h™ [y,] -> a®[y,] — a®"y,]

But h™ [y,] Is not the full metric.



The missing pieces

v, and w, do not determine the full perturbation:
Spin-weight 0 and 1 pieces undetermined.

There are algebraically special perturbations of Kerr,
perturbations for which y, and y, vanish:
changing mass om

changing angular momentum o&J
(and singular perturbations —
to C-metric and to Kerr-NUT).

And gauge transformations



h;eﬁt [,] via CCK procedure

hret [ 5m] from the conserved currents assoclated
ap with the background Killing vector t<.

" from the conserved currents associated
haﬂ [0J]  with the background Killing vector ¢,
for the part of 6J along background J.



There are two remaining pieces:

ret
ha y [0 ] the partof &J orthogonal
to the background J

h;eﬂt [Cl\/l ] the change In the center of mass

Each Is pure gauge outside the source, but the
gauge transformation is discontinuous across the
source.



1°  hy[em], h,[53]

jo  =8(2T7, =5, T)t”
Background T, =0 =
V.o =0 V ]

- a
Jpy =

om= | j,*ds, 53 =~ j,)"dS

=m(2u“V t —) =—mu_g“



Then h_[om], h,[oJ] are the perturbed
metrics in any desired gauge associated with the
Infinitesimal changes sm, &J

outside the particle.

What does outside the particle mean?

tCZ



Schwarzschild background:
Decompose the source into spherical harmonics
on symmetry spheres:

h,s[om], h[6J] are nonzero outside the
symmetry sphere r =r, through the particle,
Zero or pure gauge inside.

hey each have as source a spherical shell at r =,
but the sum of all angular harmonics of h

IS a perturbed metric whose source Is the point
particle.



Kerr background:
No natural symmetry spheres.
No separation of different
¢ harmonics in field
equations forh, .

Free to chose any stationary axisymmetric radial
coordinate, e.g. Boyer-Lindquist r, with
h,s[om], h,[6J] nonzerooutside I =T,



2°  h,[63.1 h,[CM]
Two questions:

If they are pure gauge, how can they have a
source?

h,s =£:9,, ©(r—1,) isnot pure gauge at r=r;

(hg - £§®(r—r0) Jop IS pure gauge)



For Schwarzschild these are =1 perturbations, with
axial and polar parity, respectively.

How do we identify them in Kerr?

The i1dea Is to find the part of the source that has not
contributed to hz[w]+h, [om]+h,,[6J]

One could in principle simply subtract from 6T the
contribution from these three
terms. Writing

Cr .
“h,,=6G,,



we have
')A ret L
“h* ,=8r0T,,,

87T M — 87T~ (W [y]+h[sm]+h[53]),,

Find &at r, from the jump condition

Iy t+& o t&

j ((/ hgauge aﬂ J' 872_5-|-ar;maining

For h9auge continuous, the jump in ¢~ h%"* involves
only the few terms in /~ with second derivatives in the
radial direction orthogonal to u« .



But
Now we’re back to the old difficulty of handling

terms that are singular at the particle.

Instead of trying directly to evaluate
870T,, — (W [yw]+h[om]+h[5J]),,

use the fact tfﬁﬁ‘”g has source OT

/(O/»hgaugeaﬁ _ ;/ (hsing)aﬂ - ;/ (hret [W]+ h[ﬁm] + h[éJ ])05,3

T AR = —r0+g?”>e” 4 om]+h[oJ
[ orhowe == [ (W [y]+ h[om] + h[5J]),,

lh—¢



e h+e

[, = (v gompe o,

Ih—¢ 0



The test:
First calculation involving renormalization

Computation of AU™" and a™" for a mass In circular
orbit in a Schwarzschild spacetime. (Shah et al. 2010)
(AU (Q)=0u"|...,, IS the quantity that Is gauge-invariant
under helically symmetric gauge transformations.)

J Obtain agreement to the six-place accuracy of the
comparison of U'" computed in Regge-Wheeler
(Detweller) and Lorenz (Barack-Sago) gauges.

d Renormalization coefficients A, B, C(=0) agree
with those of Lorenz with fractional error < 10-19



We find the singular part of the self-force by matching
a power series to Its numerically computed large-L

behavior. Explicitly, we match the sequence of values
to successive terms In a series of the form

~

max

E,
AL+B+ZF’ZK(€)
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ro/M At B ?% —1 i.ﬂﬁ{' 1
6 |-1.064185503206000 x 10-2|-0.710020760018032 = 10- 6.8 % 1014 —5.0 % 1011
7 |-1.542712134731507 x 10-2|-7.505781032643107 = 10 3.7 % 10714 —3.0 % 1071
g8 |-1.235264711003273 % 10-%|-6.072205050300139 = 10 < 10718 —5.7 % 10712
9  |-1.008020470281125 x 10-%|-4.954081856603618 x 107 1.8 x 1071 —3.3x 10712
10 |-8.366600265340854 x 10*|-4.113353788131433 x 10 1.2 x 1071 ~7.3 x 10712
11 |-7.047957565474786 x 107 |-3.467126055140815 = 10° 8.0 % 10715 —3.7x 10712
12 |-6.014065304058753 x 107 |-2.060554843842130 = 10 2.5 % 1071 ~1.1x 1071
13 |-5.189602421934956 x 10-*|-2.556541533520004 x 10° —24 x 10714 6.5 x 10712
14 |-4.522475818510165 x 107*[-2.220301187012286 = 107 B4 x 1071 —2.0 % 1071
15 |-3.975231050000661 x 107 |-1.960006506358008 = 10° 8.0 % 10715 —3.6 x 10712
16 |-3.521046167445508 x 107*|-1.7379341466098723 x 10 5.8 x 1071 —1.7x 1071
17 |-3.140087242121197 x 10-*|-1.550788700414580 = 10- —4.6 % 10715 —6.7 x 10715
18  |-2.817502R67825028 » 107*|-1.30221 7662603554 x 107 3.5 x 1071 —1.1x 10~
19  |-2.542002591363557 x 10-*|-1.256707170227638 = 10- —3.1 x 10715 0.4 %1013
20 |-2.304886114323200 x 10*|-1.140007036078271 = 10 —5.7 x 10718 1.8 x 10712
25 |-1.500933043143495 x 10-%|-7.437542878000537 = 10- —1.6 % 1015 —3.0 x 1014
30 |-1.054002553380464 x 10*|-5.230310186714355 x 10 492 % 10718 ~1.1x 10712
35 |-7.805574501571754 x 107Y|-3.876032003800011 = 10 2.6 % 1071 —6.5 x 10712
40 |-6.011057519272318 x 107*|-2.987922074634742 x 10 3.8 x 10715 —8.5 x 107 1#
45 |-4.770823620144716 x 10*]-2.372801353438443 x 10 0.3 x 10717 —2.5x 10712
50 |-3.878143885033070 x 10-1]|-1.920854012525034 = 10 1.8 x 10— 15 —2.3 x 10718
55 |-3.214363205318354 x 10Y]-1.600201924066196 x 10 6.0 x 10715 —1.7x 10712
60 |-2.707442873558057 x 10r1]-1.348310208624353 x= 10- 42 x 1018 —0.6 » 1013
65 [|-2.311598761671936 x 1071|-1.151520162087173 x 10 2.0 x 10~ 1€ —8.0 % 1071
70 L1L.0966056755002092 « 1004 -0.048607781191319 » 10 90 » 1018 — 5.0 % 10— 14




Comparison of AU

ro/M AU AU (from SD) | AU(from BS)
6 10.20602751 | -0.2060275 | -0.296040244
7 _0.22084753 | -0.2208475 | -0.220852781
8 0.17771974 | -0.1777197 | -0.177722443
9 _0.14936061 | -0.1493606 | -0.149362192
10 | -0.12012227 | -0.1201222 | -0.120123253
11 | -0.11387465 | -0.1138747 | -0.113875315
12 | -0.10193557 | -0.1010355 | -0.101036046
13 | -0.092313311 | -0.00231331 | -0.002313661
14 | -0.084381953 | -0.08438195 | -0.084382221
15 | -0.077725319 | -0.07772532 | -0.077725527
16 | -0.072055057 | -0.07205505 | -0.072055223
18 | -0.062001809 | -0.06200180 | -0.062002026
20 | -0.055827710 | -0.05582771 | -0.055827795
25 | -0.043500843 | -0.04350084 | -0.043500881
30 | -0.035778314 | -0.03577831 | -0.035778334
40 | -0.026339677 | -0.02633967 | -0.026339690
50 | -0.020844656 | -0.02084465 | -0.020844661
60 | -0.017247593 | -0.01724759 | -0.017247596
70 | -0.014700646 | -0.01470064 | -0.014709648
80 | -0.012822061 | -0.01282206 | -0.012822962
00 | -0.011365316 | -0.01136531 | -0.011365317




In(residual)

0.01 |
.
0

1011 L
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Verification of power-law residuals after
subtraction of successive terms
in Lk expansion of aret
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