Self-force in a radiation gauge

John Friedman

Capra 14

Abhay Shah, Toby Keidl Larry Price, Dong-Hoon Kim

I. Intro

A single complex Weyl scalar, either

 ψ_0 or ψ_4 ,

determines gravitational perturbations of a Kerr geometry (outside perturbative matter sources) up to changes in mass, angular momentum, and change in the center of mass.

 ψ_0 and ψ_4 are each a component of the perturbed Weyl tensor along a tetrad associated with the two principal null directions of the spacetime. Each satisfies a separable wave equation, the Teukolsky equation for that component.

e.g.,Kinnersley tetrad for Schwarzschild

 $\Delta = r^2 - 2Mr$

$$\psi_0 = -\delta C_{\alpha\beta\gamma\delta} l^{\alpha} m^{\beta} l^{\gamma} m^{\delta} \qquad \psi_4 = -\delta C_{\alpha\beta\gamma\delta} n^{\alpha} \overline{m}^{\beta} n^{\gamma} \overline{m}^{\delta}$$

Spin weight: Under a rotation of the $\hat{\theta}, \hat{\phi}$ basis $\hat{\theta} \rightarrow \hat{\theta} \cos \psi - \hat{\phi} \sin \psi$ $\hat{\phi} \rightarrow \hat{\phi} \cos \psi + \hat{\theta} \sin \psi$,

m and \overline{m} change by $m \to m e^{i\psi}$, $\overline{m} \to \overline{m} e^{-i\psi}$

An object η is said to have spin-weight s if it changes under this basis rotation by

$$\eta \rightarrow \eta e^{is\psi}$$

Then *m* and *m* have spin weights +1 and -1, and ψ_0 and ψ_4 have spin-weights +2 and -2.

They are gauge invariant, because the Weyl tensor of the unperturbed Kerr geometry has only Ψ_2 = nonzero.

A gauge transformation changes the Weyl tensor by

Components of ξ are $\begin{array}{c} \xi \cdot l, \quad \xi \cdot n & \text{spin 0} \\ \xi \cdot m, \quad \xi \cdot m & \text{spin } \pm 1 \end{array}$

$C_{\alpha\beta\chi\delta}$ has only a spin 0 component

 $\delta C_{\alpha\beta\nu\delta} = \mathcal{L}_{\varepsilon} C_{\alpha\beta\nu\delta}$

 $\Rightarrow \mathcal{L}_{\xi} C_{\alpha\beta\gamma\delta} \text{ has only spin } 0, \ \pm 1$

Teukolsky equation: $\mathcal{O}_s \psi = S$

$$\mathcal{O}_{s} = \left[\frac{(r^{2}+a^{2})^{2}}{\Delta} - a^{2}\sin^{2}\theta\right]\frac{\partial^{2}}{\partial t^{2}} - 2s\left[\frac{M(r^{2}-a^{2})}{\Delta} - r - ia\cos\theta\right]\frac{\partial}{\partial t} + \frac{4Mar}{\Delta}\frac{\partial^{2}}{\partial t\partial\phi} - \Delta^{-s}\frac{\partial}{\partial r}\left(\Delta^{s+1}\frac{\partial}{\partial r}\right)$$
$$-\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) - 2s\left[\frac{a(r-M)}{\Delta} + \frac{i\cos\theta}{\sin^{2}\theta}\right]\frac{\partial}{\partial\phi}$$
$$+\left[\frac{a^{2}}{\Delta} - \frac{1}{\sin^{2}\theta}\right]\frac{\partial^{2}}{\partial\phi^{2}} + (s^{2}\cot^{2}\theta - s)$$

Source function
$$S = \mathcal{J}^{\alpha\beta}T_{\alpha\beta}$$
,

$$T_{\alpha\beta}$$
 = energy-momentum tensor

$\mathcal{J}^{\alpha\beta}$ a 2nd-order differential operator

•Outgoing Radiation Gauge (ORG)

$$h_{\alpha\beta}n^{\beta}=0 \qquad h=0$$

5 constraints, similar to those for *ingoing* waves in flat space with a transverse-tracefree gauge. The metric perturbation satisfying these conditions is given by

$$h_{\alpha\beta} = L_{\alpha\beta} \Psi$$

where $L_{\alpha\beta}$ is a 2nd-order differential operator involving only \eth and \eth_t

Two theorems:

- 1. Let *h* be given by $h = L_{ORG} \Psi$, with Ψ an ORG potential obtained from $\delta \psi_0 (\delta \psi_4)$. If ψ satisfies the sourcefree Teukolsky equation then h satisfies the vacuum Einstein equation.
 - (Chzrzanowski; Cohen, Kegeles; Wald)

- 2a. Given a solution $\psi_0(\psi_4)$ to the sourcefree Teukolsky equation on a globally hyperbolic type D vacuum spacetime, one can find a local ORG gauge:
 - There is a perturbed metric $h_{\alpha\beta}$ in an ORG gauge that satisfies the linearized vacuum
 - Einstein equation, and for which $\delta \psi_0 (\delta \psi_4)$ is the perturbed Weyl tensor component.

(Whiting, L. Price)

2b. Under the conditions of (a) there is a local solution Ψ to the sourcefree Teukolsky equation for which $h=L\Psi$ is a perturbed vacuum metric associated with ψ_0 (ψ_4). (Not yet proved)

Explicitly,

$$\frac{1}{8} \left[\left(\eth -ia \sin \theta \partial_t \right)^4 \overline{\Psi} + 12M \partial_t \Psi \right] = \psi_0$$

Integrate 4 times with respect to θ

Algebraic solution for each frequency and angular harmonic

$$\psi_{0\ell m\omega} = {}_2R_{\ell m\omega}(r) {}_2S_{\ell m\omega}(\theta) e^{i(m\phi-\omega t)}$$

$$\Psi_{\ell m \omega} = 8 \frac{(-1)^m D \overline{\psi}_{0\ell - m - \omega} + 12iM \,\omega \psi_{0\ell m \omega}}{D^2 + 144M^2 \,\omega^2}$$

Resulting metric has only the $\ell \ge 2$ part of the source. The $\ell = 0,1$ part has support on a spherical shell at $r=r_0$, and the metric is discontinuous at $r=r_0$.

Equivalent alternative involves radial derivatives along principal null geodesics:

$$\psi_0 = (l^{\mu}\partial_{\mu})^4 \Psi = \partial_r^4 \Psi(u, r, \theta, \widetilde{\phi})$$

For each angular harmonic of ψ_0 , this gives a unique solution satisfying the Teukolsky equation: e.g., for $r > r_0$,

$$\psi_{0} = (l^{\mu}\partial_{\mu})^{4}\Psi = \partial_{r}^{4}\Psi(u, r, \theta, \widetilde{\phi})$$

$$\Psi = \int_{r}^{\infty} dr_{1} \int_{r_{1}}^{\infty} dr_{2} \int_{r_{2}}^{\infty} dr_{3} \int_{r_{3}}^{\infty} dr_{4}\psi_{0}(u, r_{4}, \theta, \widetilde{\phi}).$$

(Kerr coordinates : $\widetilde{\phi} = \phi + \int_{r}^{\infty} \frac{dr}{\Lambda}$)

Because h^{ret} and h^{sing} have the same source, $h^{ren} = h^{ret} - h^{sing}$ is a solution to the vacuum perturbation equations, and

 $\psi^{ren}_{0} = \psi^{ret}_{0} - \psi^{sing}_{0}$ is a solution to the vacuum Teukolsky equation, allowing one to compute a Hertz potential.

Although the argument used the order

The diagram commutes

$$egin{array}{ret} \psi^{ret}_{rad} &
ightarrow \psi^R_{rad} \ &\downarrow & \downarrow \ h^{ret}_{rad} &
ightarrow h^R_{rad} \end{array}$$

because of the algebraic character of the operations

Outline of method

- 1. Compute ψ_0^{ret} from the Teukolsky equation as a mode sum over l, m, ω .
- 2. Find the Hertz potential Ψ^{ret} from ψ_0^{ret} or ψ_4^{ret} algebraically from angular equation or as a 4 radial integrals from the radial equation. The angular harmonics of Ψ^{ret} are defined for $r > r_0$ or $r < r_0$, with r_0 the radial coordinate of the particle.
- 3. Find, in a radiation gauge, the components of $h_{\alpha\beta}^{\text{ret}}$ and its derivatives that occur in the expression for a^{α} .

3. Compute $a^{\text{ret}\alpha}$ from the perturbed geodesic equation as a mode sum truncated at ℓ_{max} Compute the renormalization vectors A^{α} and B^{α} (and C^{α} ?), numerically matching a power series in $L := \ell + 1/2$ to the values of $a_{\ell}^{\text{ret}\alpha}$, and subtract from $a_{\ell}^{\text{ret}\alpha}$ the truncated sum

 $\sum_{\ell=0}^{\ell_{\max}} A^{\alpha} L + B^{\alpha} + \frac{C^{\alpha}}{L}$ to obtain $a_{\ell}^{\operatorname{ren}\alpha}$.

4. Determine the contribution to $h_{\alpha\beta}^{\text{ret}}$ of the perturbations in mass, angular momentum, and change in center of mass.

 $\psi_0^{\text{ret}} \rightarrow \text{Hertz potential } \Psi \rightarrow h^{\text{ret}}[\psi_0] \rightarrow a^{\text{ret}}[\psi_0] \rightarrow a^{\text{ren}}[\psi_0]$

But $h^{ret} [\psi_0]$ is not the full metric.

The missing pieces

 ψ_0 and ψ_4 do not determine the full perturbation: Spin-weight 0 and 1 pieces undetermined.

There are algebraically special perturbations of Kerr, perturbations for which ψ_0 and ψ_4 vanish: changing mass δm

changing angular momentum δJ (and singular perturbations – to C-metric and to Kerr-NUT).

And gauge transformations

from the conserved currents associated with the background Killing vector t^{α} .

 $h_{\alpha\beta}^{\rm ret}[\delta J]$

 $h_{\alpha\beta}^{\rm ret}[\delta m]$

from the conserved currents associated with the background Killing vector ϕ^{α} , for the part of δJ along background J. There are two remaining pieces:

$h_{\alpha\beta}^{\text{ret}}[\delta J_{\perp}]$ the part of δJ orthogonal to the background J

 $h_{\alpha\beta}^{\text{ret}}[CM]$ the change in the center of mass

Each is pure gauge outside the source, but the gauge transformation is discontinuous across the source.

1° $h_{\alpha\beta}[\delta m], h_{\alpha\beta}[\delta J]$

 $j_{(t)}^{\ \alpha} = \delta (2T^{\alpha}_{\ \beta} - \delta^{\alpha}_{\beta}T)t^{\beta} \quad j_{(\phi)}^{\ \alpha} = -\delta T^{\alpha}_{\ \beta}\phi^{\beta}$

Background $T^{\alpha}_{\ \beta} = 0 \implies$

$$\nabla_{\alpha} j_{(t)}^{\ \alpha} = 0, \qquad \nabla_{\alpha} j_{(\phi)}^{\ \alpha} = 0$$

 $\delta m = \int j_{(t)}^{\alpha} dS_{\alpha} \qquad \delta J = -\int j_{(\phi)}^{\alpha} dS_{\alpha}$ $= m(2u^{\alpha} \nabla_{\alpha} t - \frac{1}{u_{\alpha} t^{\alpha}}) \qquad = -mu_{\alpha} \phi^{\alpha}$

Then $h_{\alpha\beta}[\delta m]$, $h_{\alpha\beta}[\delta J]$ are the perturbed metrics in any desired gauge associated with the infinitesimal changes δm , δJ outside the particle.

What does *outside the particle* mean?

Schwarzschild background:

Decompose the source into spherical harmonics on symmetry spheres:

 $h_{\alpha\beta}[\delta m], h_{\alpha\beta}[\delta J]$ are nonzero outside the symmetry sphere $r = r_0$ through the particle, zero or pure gauge inside.

They each have as source a spherical shell at $r = r_0$ but the sum of all angular harmonics of $h_{\alpha\beta}$ is a perturbed metric whose source is the point particle.

Kerr background: No natural symmetry spheres. No separation of different θ harmonics in field equations for $h_{\alpha\beta}$.

Free to chose any stationary axisymmetric radial coordinate, e.g. Boyer-Lindquist *r*, with $h_{\alpha\beta}[\delta m], h_{\alpha\beta}[\delta J]$ nonzero outside $r = r_0$

 2° $h_{\alpha\beta}[\delta J_{\perp}], h_{\alpha\beta}[CM]$

Two questions: If they are pure gauge, how can they have a source?

 $h_{\alpha\beta}^{g} = \pounds_{\xi} g_{\alpha\beta} \Theta(r - r_{0}) \text{ is not pure gauge at } r = r_{0}$ $(h_{\alpha\beta}^{g} = \pounds_{\xi\Theta(r - r_{0})} g_{\alpha\beta} \text{ is pure gauge})$

For Schwarzschild these are l=1 perturbations, with axial and polar parity, respectively.

How do we identify them in Kerr?

The idea is to find the part of the source that has not contributed to $h_{\alpha\beta}^{\text{ret}}[\psi] + h_{\alpha\beta}[\delta m] + h_{\alpha\beta}[\delta J]$

One could in principle simply subtract from $\delta T^{\alpha\beta}$ the contribution from these three three terms. Writing

$$\mathscr{E}h_{\alpha\beta}\coloneqq \delta G_{\alpha\beta}$$

we have

For h^{gauge} continuous, the jump in $\mathcal{E} h^{gauge}$ involves only the few terms in \mathcal{E} with second derivatives in the radial direction orthogonal to u^{α} .

But

Now we're back to the old difficulty of handling terms that are singular at the particle.

Instead of trying directly to evaluate

use the fact that h^{sing} has source $\delta T_{\alpha\beta}$: $\mathscr{E}h^{\text{gauge}}_{\alpha\beta} = \mathscr{E}(h^{\text{sing}})_{\alpha\beta} - \mathscr{E}(h^{\text{ret}}[\psi] + h[\delta m] + h[\delta J])_{\alpha\beta}$ $\int_{r_0-\varepsilon}^{r_0+\varepsilon} \mathscr{E}h^{\text{gauge}}_{\alpha\beta} = -\int_{r_0-\varepsilon}^{r_0+\varepsilon} \mathscr{E}(h^{\text{ren}}[\psi] + h[\delta m] + h[\delta J])_{\alpha\beta}$ $8\pi\delta T_{\alpha\beta} - \mathscr{C} \left(h^{\text{ret}}[\psi] + h[\delta m] + h[\delta J]\right)_{\alpha\beta}$

- The test:
- First calculation involving renormalization
- Computation of ΔU^{ren} and a^{ren} for a mass in circular orbit in a Schwarzschild spacetime. (Shah et al. 2010) $(\Delta U(\Omega) = \delta u^t |_{fixed \Omega}$ is the quantity that is gauge-invariant under helically symmetric gauge transformations.)
- Obtain agreement to the six-place accuracy of the comparison of U^{ren} computed in Regge-Wheeler
 (Detweiler) and Lorenz (Barack-Sago) gauges.
- □ Renormalization coefficients A, B, C(=0) agree with those of Lorenz with fractional error $< 10^{-10}$

We find the singular part of the self-force by matching a power series to its numerically computed large-Lbehavior. Explicitly, we match the sequence of values to successive terms in a series of the form

r_0/M	A^+	В	$\left \frac{A^+}{A^+_{\text{analytic}}} \right - 1$	$\left \frac{B}{B_{\rm analytic}} \right - 1$
6	$\text{-}1.964185503296099 \times 10^{\text{-}2}$	$-9.719920769918032 \times 10^{-8}$	$6.8 imes 10^{-14}$	-5.0×10^{-11}
7	$-1.542712134731597 \times 10^{-2}$	$-7.595781032643107 \times 10^{-8}$	3.7×10^{-14}	-3.0×10^{-11}
8	$-1.235264711003273 \times 10^{-2}$	$-6.072295959309139 \times 10^{-8}$	$< 10^{-16}$	-5.7×10^{-12}
9	$-1.008020470281125 \times 10^{-2}$	$-4.954081856693618 \times 10^{-8}$	1.8×10^{-14}	-3.3×10^{-12}
10	$-8.366600265340854 \times 10^{-3}$	$-4.113353788131433 \times 10^{-8}$	1.2×10^{-14}	-7.3×10^{-12}
11	$-7.047957565474786 \times 10^{-3}$	$-3.467126055149815 \times 10^{-8}$	8.9×10^{-15}	-3.7×10^{-12}
12	$-6.014065304058753 \times 10^{-3}$	$-2.960554843842139 \times 10^{-8}$	2.5×10^{-14}	-1.1×10^{-11}
13	$-5.189692421934956 \times 10^{-3}$	$-2.556541533529994 \times 10^{-8}$	-2.4×10^{-14}	6.5×10^{-12}
14	$-4.522475818510165 \times 10^{-3}$	$-2.229391187912286 \times 10^{-8}$	8.4×10^{-14}	-2.9×10^{-11}
15	$-3.975231959999661 \times 10^{-3}$	$-1.960906506358998 \times 10^{-8}$	8.9×10^{-15}	-3.6×10^{-12}
16	$-3.521046167445508 \times 10^{-3}$	$-1.737934146698723 \times 10^{-8}$	5.8×10^{-14}	-1.7×10^{-11}
17	$-3.140087242121197 \times 10^{-3}$	$-1.550788700414580 \times 10^{-8}$	$-4.6 imes 10^{-15}$	-6.7×10^{-15}
18	$-2.817502867825028 \times 10^{-3}$	$-1.392217662603554 \times 10^{-8}$	3.5×10^{-14}	-1.1×10^{-11}
19	$-2.542002591363557 \times 10^{-3}$	$-1.256707170227638 \times 10^{-8}$	-3.1×10^{-15}	$9.4 imes 10^{-13}$
20	$-2.304886114323209 \times 10^{-3}$	$-1.140007036978271 \times 10^{-8}$	-5.7×10^{-15}	1.8×10^{-12}
25	$-1.500933043143495 \times 10^{-3}$	$-7.437542878990537 \times 10^{-4}$	-1.6×10^{-15}	$-3.0 imes10^{-14}$
30	$-1.054092553389464 \times 10^{-3}$	$-5.230319186714355 \times 10^{-4}$	4.2×10^{-15}	-1.1×10^{-12}
35	$-7.805574591571754 \times 10^{-4}$	$-3.876932093890911 \times 10^{-4}$	2.6×10^{-14}	-6.5×10^{-12}
40	$-6.011057519272318 \times 10^{-4}$	$-2.987922074634742 \times 10^{-4}$	3.8×10^{-15}	-8.5×10^{-13}
45	$-4.770823620144716 \times 10^{-4}$	$-2.372891353438443 \times 10^{-4}$	9.3×10^{-15}	-2.5×10^{-12}
50	$-3.878143885933070 \times 10^{-4}$	$-1.929854912525034 \times 10^{-4}$	$1.8 imes 10^{-15}$	-2.3×10^{-13}
55	$-3.214363205318354 \times 10^{-4}$	$-1.600201924066196 \times 10^{-4}$	$6.9 imes 10^{-15}$	-1.7×10^{-12}
60	$-2.707442873558057 \times 10^{-4}$	$-1.348310298624353 \times 10^{-4}$	$4.2 imes 10^{-15}$	-9.6×10^{-13}
65	$-2.311598761671936 \times 10^{-4}$	$-1.151520162987173 \times 10^{-4}$	$2.0 imes 10^{-16}$	-8.0×10^{-14}
70	$-1.996605675599292 \times 10^{-4}$	$-9.948607781191319 \times 10^{-5}$	-2.0×10^{-16}	-5.0×10^{-14}

Comparison of ΔU

r_0/M	ΔU	ΔU (from SD)	ΔU (from BS)
6	-0.29602751	-0.2960275	-0.296040244
7	-0.22084753	-0.2208475	-0.220852781
8	-0.17771974	-0.1777197	-0.177722443
9	-0.14936061	-0.1493606	-0.149362192
10	-0.12912227	-0.1291222	-0.129123253
11	-0.11387465	-0.1138747	-0.113875315
12	-0.10193557	-0.1019355	-0.101936046
13	-0.092313311	-0.09231331	-0.092313661
14	-0.084381953	-0.08438195	-0.084382221
15	-0.077725319	-0.07772532	-0.077725527
16	-0.072055057	-0.07205505	-0.072055223
18	-0.062901899	-0.06290189	-0.062902026
20	-0.055827719	-0.05582771	-0.055827795
25	-0.043599843	-0.04359984	-0.043599881
30	-0.035778314	-0.03577831	-0.035778334
40	-0.026339677	-0.02633967	-0.026339690
50	-0.020844656	-0.02084465	-0.020844661
60	-0.017247593	-0.01724759	-0.017247596
70	-0.014709646	-0.01470964	-0.014709648
80	-0.012822961	-0.01282296	-0.012822962
90	-0.011365316	-0.01136531	-0.011365317

ln(residual)

Verification of power-law residuals after subtraction of successive terms in L^k expansion of $a^{\text{ret}, r}$