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Talk Outline

• The need for approximate waveform models

• “Numerical kludge” approach to waveform modelling

- Description of method

- Computation of corresponding gravitational waveforms

- Tests and applications of the kludge models

• Self-forced evolution

- Method of osculating elements

- Application to EMRI evolution under perturbing forces

- Gravitational self-forced evolution in Schwarzschild

• Collaborators: Stanislav Babak, Rob Cole, Steve Drasco, Eanna 
Flanagan, Kostas Glampedakis, Tanja Hinderer, Scott Hughes and 
Eliu Huerta.
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The need for approximate waveforms

• Computation of template space metrics requires evaluation of 
waveform derivatives – must compute many nearby waveforms and 
iterate at each point in parameter space. 

• Need techniques to compute realistic waveforms quickly and 
cheaply – develop “kludge” approaches that capture the main 
features of generic EMR inspirals but are quicker and cheaper to 
generate than full self-forced evolutions. 

• “Kludge”:

- ‘A system, especially a computer system, that is constructed of poorly 
matched elements or of elements originally intended for other 
applications’ (American Heritage Dictionary).

- ‘A clumsy or inelegant solution to a problem’ (American Heritage 
Dictionary).

- ‘Something hastily or badly put together’ (AskOxford.com).
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“Analytic kludge” (Barack & Cutler 2004)

• Use Keplerian (Peters and Mathews) waveforms as a basis. 

• Add relativistic effects using post-Newtonian results 

- Perihelion precession and precession of orbital plane. 

- Evolution of orbital parameters (frequency, eccentricity) over the 
inspiral. 

• Include low-frequency approximation to the LISA detector 
response. 

• Analytic kludge waveforms can be computed very quickly, but are 
hard to match onto perturbative computations, as the 
parameterisation is different
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“Numerical kludge”

• Compute a phase space trajectory by integrating a prescription 
for    ,      and     as functions of    ,      and    (adiabatic 
approximation). 

• Integrate the Kerr geodesic equations numerically for 
resultant        ,          and        to give      ,        and  
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“Numerical kludge”

• Identify Boyer-Lindquist coordinates (r, θ, φ) with flat space 
spherical polar coordinates. Construct approximate gravitational 
waveform from resulting flat space quadrupole moment tensor 
(“particle on a string”). 

• Include detector modulations using low-frequency approximation 
to LISA response. 

• Numerical kludge waveforms are more computationally intensive 
to generate than the analytic ones but 

- They may be easily identified with perturbative waveforms since they 
are based on a Kerr geodesic parameterisation. 

- The fundamental frequencies are instantaneously correct, again due to 
the Kerr geodesic basis.

- It is easy to incorporate additional physical effects into the model.
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Geodesic parameterization

• Instead of    ,      and    , introduce a semi-latus rectum, 
eccentricity and orbital inclination angle            .

• Find the extrema of the orbit,          , which are roots of the radial 
geodesic equation

• Define    and    using the Keplerian definitions 

• Define an inclination angle,   , in terms of      and     by 
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Phase-space trajectories

• Basic idea (Glampedakis, Hughes & Kennefick 2002) – use post-
Newtonian energy and angular momentum fluxes.

• GHK also took          , to avoid overpredicting inclination change.

• This approach exhibited some pathological behaviour. 
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• GHK inspirals showed pathological behaviour for near-circular 
orbits,                     . 

Consistency corrections

de/dt ∝ 1/e
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• GHK inspirals showed pathological behaviour for near-circular 
orbits,                     . 

• This arose from transforming between                 and           - 
necessary cancellations occur only at PN order of the fluxes.

• Correct by forcing circular orbits to remain circular - use PN 
expression for         to determine circular part of     . 
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(E,Lz, Q) (e, p, ι)

Ė, Q̇ L̇z

Thursday, 7 July 2011



• GHK inspirals showed pathological behaviour for near-circular 
orbits,                     . 

• This arose from transforming between                 and           - 
necessary cancellations occur only at PN order of the fluxes.

• Correct by forcing circular orbits to remain circular - use PN 
expression for         to determine circular part of     . 

Consistency corrections

de/dt ∝ 1/e

(E,Lz, Q) (e, p, ι)
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2PN Energy and Angular Momentum Fluxes

• Previous corrections are always necessary, but become vanishingly 
small as the accuracy of the flux expressions improves. Extend to 
2PN using results for equatorial orbits (Tagoshi 1995) and for low 
inclination circular orbits (Shibata et al. 1995). Truncate at 2PN for 
improved accuracy, and extend to arbitrary inclinations in logical 
way (e.g.,                                            )1− ι2/2→ cos ι, ι2 → sin2 ι
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2PN Carter constant evolution

• Use finiteness at the pole to derive an expression for            by 
cancelling the divergent pieces from             .
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Phase-space evolution - Teukolsky Fit

• Improve evolutions further using accurate perturbative fluxes 
computed from solution of the Teukolsky equation. So far, have 
done this for circular, inclined orbits only. Generic orbital data is 
now available.

• Choose to fit     and   , and derive     and     from these. At fixed 
radius, a fit of the following form works well.

• Coefficients are well fit by simple, but long functions of   . Full 
expressions are given in JG & Glampedakis (2006).
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Conservative Corrections

• Can include conservative effects in the kludge by adding 
corrections into the geodesic equations, e.g., 

• Conservative piece is gauge dependent. Our aim is to reproduce 
observed waveforms as well as possible, so we determine the 
corrections by considering gravitational wave observables -        
and           measured by an observer at infinity.

•  Make progress by comparing to pN results (Huerta & JG 2009)
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Waveform Generation

• Define pseudo-Cartesian coordinates from Boyer-Lindquist             
by

• Construct flat-space quadrupole moment tensor based on these 
coordinates

• This prescription generates purely quadrupolar waveforms. Can 
generate waveforms including higher multipoles in a similar way – 
quadrupole/octupole waveforms or Press waveforms (weak field, 
fast motion approximation) (Babak, Fang, JG et al. 2007).
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Tests - Comparison to Teukolsky Data

• Compare fluxes to Teukolsky-based results. For instance, circular 
orbits with inclination ι = π/3

p
M

a
M |ĖT − ĖK |/ĖT |L̇z

T − L̇z
K |/L̇z

T |ι̇T − ι̇K |/ι̇T

7 0.05 0.0018 0.0018 0.0027
7 0.95 0.0013 0.0018 0.0029

100 0.05 0.00025 0.00025 0.0018
100 0.95 0.00022 0.00018 0.0008
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Tests - Comparison to Teukolsky Data

• Compare fluxes to Teukolsky-based results. For instance, circular 
orbits with inclination 

• Compute overlaps between Teukolsky and kludge waveforms for 
geodesic orbits

ι = π/3
p
M

a
M |ĖT − ĖK |/ĖT |L̇z

T − L̇z
K |/L̇z

T |ι̇T − ι̇K |/ι̇T

7 0.05 0.0018 0.0018 0.0027
7 0.95 0.0013 0.0018 0.0029

100 0.05 0.00025 0.00025 0.0018
100 0.95 0.00022 0.00018 0.0008

p e a overlap p ι a overlap
1.7 0.1 0.99 0.741 5 30 0.5 0.990
1.7 0.3 0.99 0.500 5 30 0.99 0.973
2.5 0.1 0.99 0.827 5 60 0.99 0.888
2.5 0.5 0.99 0.651 10 30 0.5 0.990
5.1 0.5 0 .5 0.967 10 30 0.99 0.982
10 0.3 -0.99 0.966 10 60 0.99 0.937
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Tests - Waveform Comparisons

• Compare kludge waveforms to Teukolsky waveforms for geodesics 
- agreement is remarkable, even in the strong field.
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Tests - Waveform Comparisons

• Compare kludge waveforms to Teukolsky waveforms for geodesics 
- agreement is remarkable, even in the strong field.

• Have also done comparisons for inspiral waveforms, for circular-
inclined inspirals, for which the phase-space evolution is most 
accurate. Agreement is very good until the last few cycles before 
plunge.
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• Compare kludge waveforms to Teukolsky waveforms for geodesics 
- agreement is remarkable, even in the strong field.

• Have also done comparisons for inspiral waveforms, for circular-
inclined inspirals, for which the phase-space evolution is most 
accurate. Agreement is very good until the last few cycles before 
plunge.

• Comparison of spectrum of radiation to Teukolsky results indicates 
that the frequencies represented in the kludge spectrum are 
correct but many modes are absent. However, these modes are 
generally suppressed until the very end.
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Applications of kludge waveforms

• Compute inspirals - generate trajectories and waveforms for 
generic inspirals.
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Applications of kludge waveforms

• Compute inspirals - generate trajectories and waveforms for 
generic inspirals.

• Compute EMRI SNRs - use to estimate event rates for LISA/
NGO; explore scientific applications of EMRI observations.

M m S/N(AET) S/N(X)
(1wk) (1mo) (3mo) (1yr) (3yr) (5yr) (1wk) (1mo) (3mo) (1yr) (3yr) (5yr)

3 · 105 0.6 1.1 3.0 5.1 10.2 16.8 20.4 0.6 1.6 2.2 5.8 10.2 12.6
3 · 105 10 27.8 60.3 80.4 119.0 149.0 162.0 16.6 38.0 48.8 74.7 95.4 104.0
3 · 105 100 277.0 440.0 508.0 591.0 626.0 633.0 1 88.0 300.0 338.0 391.0 414.0 419.0
106 0.6 3.7 7.3 10.0 18.5 29.0 34.9 2.5 4.9 6.3 12.0 19.0 23.0
106 10 58.2 109.0 140.0 205.0 252.0 271.0 40.5 75.5 92.9 136.0 168.0 181.0
106 100 477.0 752.0 860.0 989.0 1060.0 1090.0 338.0 532.0 595.0 678.0 727.0 743.0

3 · 106 0.6 3.1 6.0 8.0 14.1 21.2 24.9 2.2 4.2 5.4 9.5 14.3 16.7
3 · 106 10 45.7 81.8 102.0 138.0 158.0 164.0 32.7 57.8 69.8 93.9 107.0 111.0
3 · 106 100 344.0 508.0 559.0 590.0 601.0 604.0 2 44.0 360.0 391.0 411.0 418.0 420.0
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Applications of kludge waveforms

• Compute inspirals - generate trajectories and waveforms for 
generic inspirals.

• Compute EMRI SNRs - use to estimate event rates for LISA/
NGO; explore scientific applications of EMRI observations.

• Scope out data analysis for LISA/NGO - analytic kludge 
waveforms used for Mock LISA Data Challenges; numerical kludge 
used to to explore semi-coherent search techniques. Also used to 
estimate parameter estimation accuracies. 
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Applications of kludge waveforms

• Compute inspirals - generate trajectories and waveforms for 
generic inspirals.

• Compute EMRI SNRs - use to estimate event rates for LISA/
NGO; explore scientific applications of EMRI observations.

• Scope out data analysis for LISA/NGO - analytic kludge 
waveforms used for Mock LISA Data Challenges; numerical kludge 
used to to explore semi-coherent search techniques. Also used to 
estimate parameter estimation accuracies. 

• Assess importance of conservative corrections - 
estimate dephasing and systematic error that arises from omitting 
conservative corrections to the phase evolution. Find corrections 
are marginally important for black hole inspirals, ignorable for WD/
NS inspirals.
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Self-forced Evolution

JG, E. Flanagan, S. Drasco, T. Hinderer & S. Babak, PRD 83 044037 (2011)
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Method of Osculating Elements

• Method to solve for the evolution of a conservative system under 
a perturbing force

• Identify orbit at any time with the geodesic of the unperturbed 
system (             ) that passes through the same position with the 
same velocity. In this way we describe the trajectory using osculating 
orbital elements 

• The osculating elements evolve as

• Reduces second-order differential equations to a set of coupled 
first-order equations. Valid for any perturbing force, but method is 
most useful when the force is small - use it to construct an 
averaged evolution.

Duµ

Dτ
=

d2xµ

dτ2
− fµ

geo = δfµ

δfµ = 0

I(t) = {E(t), Lz(t), Q(t), ψ0(t), χ0(t), φ0(t)}

İ = ∇rI · ṙ +∇vI · r̈ = ∇vI · δf
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Osculating Elements - example

• Can illustrate osculating element techniques using a forced 
damped harmonic oscillator

• For the unperturbed motion, we have an energy integral that 
defines an amplitude parameter 

• and we can write the solution in a simple amplitude/phase form

ẍ + x + βx3 = �aext aext = −γẋ + δx2

1
2
a2 +

1
4
βa4 =

1
2
ẋ2 +

1
2
x2 +

1
4
βx4

ψ̇ =
�

1 + βa2(1 + cos2 ψ)/2

ȧ = 0

ẋ = −a sin ψ
�

1 + βa2(1 + cos2 ψ)/2

x = a cos(Ψ−Ψ0) = a cos ψ
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Osculating Elements - example

• In the presence of a forcing term, the amplitude parameter 
changes slowly with time. The osculating amplitude is given directly 
by the energy equation

• Differentiation of this equation gives an equation for the evolution 
of the amplitude

• Differentiation of the orbit equation, with a time varying 
amplitude, gives

• Applying the osculating element condition again, we find 

ȧ = −�
�

1 + βa2(1 + cos2 ψ)/2
sin ψ aext

1 + βa2

ψ̇ =
�

1 + βa2(1 + cos2 ψ)/2
�

1− �
cos ψaext

a(1 + βa2)

�

(a + βa3)ȧ = �ẋaext ⇒

ẋ = ȧ cos ψ − a sin ψψ̇

1
2
a2 +

1
4
βa4 =

1
2
ẋ2 +

1
2
x2 +

1
4
βx4

Thursday, 7 July 2011



Osculating Elements - example

• Can also use an elliptic integral solution to unforced motion

• Find osculating solution is

k2 =
√

1 + 2Eβ − 1
2
√

1 + 2Eβ
E = a2 +

1
2
βa4

du

dt
=

1√
1− 2k2

− �aext(x, ẋ)(1− 2k2)
�

β

2
(1− k2)

×
�

1− 2k2 + 2k4

k(1− k2)(1− 2k2)
sd(u; k) +

∂sd
∂k

�

dk

dt
= �aext(x, ẋ)(1− 2k2)2

�
β

2
(1− k2)

∂sd
∂u

x = k

�
2(1− k2)
β(1− 2k2)

sd (u; k) u =
(t− t0)√
1− 2k2
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Osculating Elements - example

• Construct averaged solution by writing

• defining an averaging operation

• and computing the average of the leading order terms

• Then construct average evolution as a function of 

u̇ = ω(u, k) + �g(1)(u, k) + O(�2)
k̇ = �G(1)(u, k) + O(�2)

t̃ = �t

ω̄ = �ω�k = ω

Ḡ(1) = �G1�k = γ(1 − 2k2)
��

2
3

2 − k2

k
− 1

k

�
E(k)
K(k)

− 1 − k2

3k

�

dχ(0)

dt̃
= ω̄(k(0)(t̃)),

dk(0)

dt̃
= Ḡ(1)(k(0)(t̃))

�f(u, k)�k =
1

4K(k)

� 4K(k)

0
du f(u, k)
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u(t, �) =
1
�
χ(0)(�t)

χ

4K(k)
=

� Ξ(χ,a)
0

du
ω(u,a)

� 4K(k)
0

du
ω(u,a)

Osculating Elements - example

• In general, the phase is then given by

• which simplifies greatly in this case to

• Exact and averaged evolution show close agreement in the energy 
parameter, k, for a time of              , while phase starts to disagree 
after a time of            . To be expected from scaling of terms that 
are omitted in the averaged solution.

u(t, �) = Ξ
�
1
�
χ(0)(�t) , k(0)(�t)

�

O(1/�2)
O(1/�)
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Black Hole Osculating Orbits

• To generate osculating evolutions for Kerr black hole spacetimes, 
we need a convenient parameterisation of the orbit.

• Use orbital constants                 or           and two phase angles 
defined by writing

• The coordinates   and    are not oscillatory. Osculating element 
equations for           and            are equivalent to integrating the 
geodesic equations for these coordinates with the evolving orbit 
on the right hand side.

• Final equation follows from orthogonality of acceleration to 
velocity, i.e.,

(E,Lz, Q) (p, e.ι)

r =
p

1 + e cos(ψ − ψ0)

t φ
φ− φ0t− t0

uµδfµ = 0

cos2 θ = cos2 θmax cos2(χ− χ0)
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Black Hole Osculating Orbits

• Equations for                 are most easily derived from covariant 
equations of motion

• where 

• Equations for phase constants appear singular at turning points

(E,Lz, Q)

Ė = −δft

L̇z = δfφ

K̇ = Ė
2
∆

(�4E − a�2Lz) + L̇z
2
∆

(a2Lz − a�2E)− 2∆urδfr

K = Q + (Lz − aE)2, �2 = r2 + a2

ψ̇0 = − 1
∂r/∂ψ0

�
∂r

∂E
Ė +

∂r

∂Lz
L̇z +

∂r

∂Q
Q̇

�

χ̇0 = − 1
∂θ/∂χ0

�
∂θ

∂E
Ė +

∂θ

∂Lz
L̇z +

∂θ

∂Q
Q̇

�
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Black Hole Osculating Orbits

• Singularity is not real. If we take the radial geodesic equation

• differentiate with respect to                 and then combine the 
expressions we find an alternative expression for 

• in which                              . We can derive a similar expression 
for      using the polar geodesic equation. These equations appear 
singular at zeros of             , but these are also not real 
singularities. Can explicitly simplify expressions or use different 
expressions near and far from turning points.

(E,Lz, Q)
ψ̇0

χ̇0

Σ2ṙ2 = Vr(r, Lz, E, Q)

Σ2 = r2 + a2 cos2 θ

∂Vr/∂r

ψ̇0 = 2
ψ̇geo

∂Vr/∂r

�
Σ2

�
Ė

∂ṙ

∂E
+ L̇z

∂ṙ

∂Lz
+ Q̇

∂ṙ

∂Q

�
+ 2Σrṙ

�
Ė

∂r

∂E
+ L̇z

∂r

∂Lz
+ Q̇

∂r

∂Q

�

−2Σa2 cos θ sin θṙ

�
Ė

∂θ

∂E
+ L̇z

∂θ

∂Lz
+ Q̇

∂θ

∂Q

�
− Σ2δfr

�

Thursday, 7 July 2011



Black Hole Osculating Orbits - Tetrad Formulation

• Manifestly non-singular form of the equations can also be found by 
decomposing the force on the Kinnersley tetrad

• The independent acceleration components can be written as

• and we find the evolution of the orbital constants is given by

�δf = −δfn
�l − δfl�n + δf∗

m �m + δfm �m∗
Rf =

1√
2
(δfm + δf∗

m)

If =
i√
2
(δfm − δf∗

m)

AI = rRf + aIf cos θ

AII = rIf − aRf cos θ

AIII = RuRf + IuIf

dE

dλ
=

uran∆
un

− ∆AIII

2un
− a sin θAII

dLz

dλ
=

a sin2 θuran∆
un

− a sin2 θ∆AIII

2un
−�2 sin θAII

dK

dλ
= 2Σ2AIII
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Black Hole Osculating Orbits - Tetrad Formulation

• The evolution of the phase constants can be found to be

• where                   and                   . The Boyer-Lindquist and 
tetrad formalisms give identical results for the forced motion.

dχθ

dλ
=

�
β(z+ − z)

�
1 +

(1− z−)ΣAI cos χθ

β
√

z−(z+ − z−) sin θ

�

+
cos χθ sin χθHa∆(AIII − 2uran)

2(z+ − z−)βun
+

cos χθ sin χθGAII

β(z+ − z−)

dψr

dλ
= P +

CAIII sin ψr

2(1 + e cos ψr)un
+

DΣAIIIP
2(1 + e cos ψr)2un

− aE sin θ sin ψrAII

1 + e cos ψr
+

Pan

un(1 + e cos ψr)2

×
�
(1− e)2(1− cos ψr)

Σ1F1

κ1
+ .(1 + e)2(1 + cos ψr)

Σ2F2

κ2

�

χθ = χ− χ0 ψr = ψ − ψ0
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Black Hole Osculating Orbits - Schwarzschild

• In Schwarzschild, osculating element equations reduce to (Pound & 
Poisson 2008)

• in which                   . These equations are manifestly non-singular. Note 
division of self force into conservative and dissipative parts.

e� =
p5/2(p− 3− e2)

�
(p− 6− 2e2) [(p− 6− 2e cos v)e cos v + 2(p− 3)] cos v + e(p2 − 10p + 12 + 4e2)

�

(p− 6 + 2e)(p− 6− 2e)(p− 6− 2e cos v)1/2(1 + e cos v)4
δfφ

+
p2(p− 3− e2)(p− 6− 2e2) sin v

(p− 6 + 2e)(p− 6− 2e)(1 + e cos v)2
δfr

p� =
2p7/2(p− 3− e2)(p− 6− 2e cos v)1/2(p− 3− e2 cos2 v)

(p− 6 + 2e)(p− 6− 2e)(1 + e cos v)4
δfφ

− 2p3e(p− 3− e2) sin v

(p− 6 + 2e)(p− 6− 2e)(1 + e cos v)2
δfr

ψ�
0 =

p5/2(p− 3− e2)
�
(p− 6) [(p− 6− 2e cos v)e cos v + 2(p− 3)]− 4e3 cos v

�
sin v

e(p− 6 + 2e)(p− 6− 2e)(p− 6− 2e cos v)1/2(1 + e cos v)4
δfφ

− p2(p− 3− e2) [(p− 6) cos v + 2e]
e(p− 6 + 2e)(p− 6− 2e)(1 + e cos v)2

δfr

v = ψ − ψ0
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Applications

• EMRI evolution under external perturbations - e.g., 
drag force from gas in the spacetime or gravitational interaction 
with a distant perturbing body. Compute secular impact on orbit. 
Assess observability and induced parameter estimation errors.

• Transient resonances - model passage of EMRIs through 
orbital resonances (Flanagan & Hinderer 2010).

• Improved approximate waveforms - use osculating 
element approach to compute adiabatic average effects of self-
force to improve kludge models. Can include conservative effects 
in an averaged way.

• Compute full self-force evolution trajectories - 
compute inspiral trajectories under influence of the self-force.
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Application - “gas-drag”

• Illustrate application to EMRIs using a simple model of a drag-
force. Take spatial part of the force to be proportional to spatial 
part of the velocity in the ZAMO frame. 

• Add piece parallel to ZAMO frame velocity in order to impose 
orthogonality condition

• Find secular decrease in semi-latus rectum and inclination, but 
increasing eccentricity.

• Averaged and exact evolutions show close agreement.

�u⊥ = �u + (�u · �uZAMO)�uZAMO

�δf = −γ

�
�u +

�uZAMO

�u · �uZAMO

�
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Application - “gas-drag”
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Application - “gas-drag”
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Application - “gas-drag”
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Osculating Elements and the Self-Force

• Have begun to explore self-forced evolutions using data from 
Warburton, Akcay, Barack and Sago. 
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Osculating Elements and the Self-Force

• Currently have data for a handful of points, widely separated in 
parameter space. Explore evolution in the vicinity of these points.
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Osculating Elements and the Self-Force

• Currently have data for a handful of points, widely separated in 
parameter space. Explore evolution in the vicinity of these points.
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�ψ̇0�, �φ̇0�

 9.96

 9.965

 9.97

 9.975

 9.98

 9.985

 9.99

 9.995

 10

 0  2000  4000  6000  8000 10000 12000 14000 16000 18000 20000

p

t

 0.298

 0.2985

 0.299

 0.2995

 0.3

 0.3005

 0  2000  4000  6000  8000 10000 12000 14000 16000 18000 20000

e

t

Thursday, 7 July 2011



Osculating Elements and the Self-Force

• Currently have data for a handful of points, widely separated in 
parameter space. Explore evolution in the vicinity of these points.

• Explore various approximations

- Exact - full evolution using instantaneous force.

- Geodesic - geodesic motion, no evolution.

- Radiative, uncorrected - evolve orbital constants,        , 
using orbital averaged results           . 

- Radiative, corrected - as above, but adjust orbital 
parameters to improve match.

- Averaged, uncorrected - as radiative, but also add average 
evolution to phase offset,       .

- Averaged, corrected - as above, but adjust                to 
improve match.
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Osculating Elements and the Self-Force
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Osculating Elements and the Self-Force
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Osculating Elements and the Self-Force
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Osculating Elements and the Self-Force
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Summary

• EMRIs are an important source of gravitational waves, but accurate 
modelling is difficult and computationally expensive.

• Need to be able to generate waveforms at arbitrary points in 
parameter space quickly and cheaply for use in scoping out data 
analysis, and perhaps as search templates for LISA/NGO data.

• Kludges provide a framework in which all relevant physical effects 
can be incorporated easily, and in a way that relates clearly to the 
physical system.

• Agreement with perturbative waveforms is remarkably good 
except for orbits very close to rapidly spinning central black holes.

• Framework for forced “osculating” evolutions has been developed. 
Now being used to explore EMRI perturbations.

• Have begun to explore self-forced evolutions and investigate 
approximations. More thorough analysis using data in wider 
parameter space will be coming soon....
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